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The density of states N( )� of a mesoscopic cylindrical structure consisting of a normal pure metal and a

superconductor has been calculated using the Gorkov–Green functions. It is shown that magnetic fluxes of

certain values cause resonance spikes of N( )� suggesting a large-amplitude paramagnetic contribution

which accounts for the reentrant effect detected (P. Visani, A.C. Mota, and A. Pollini, Phys. Rev. Lett. 65,

1514 (1990)).
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1. Introduction

The technological advance in preparation of pure sam-

ples has enabled investigations of the coherent properties

of mesoscopic structures taking into account the proxim-

ity effect [1]. The samples were superconducting (S) Nb

wires (cylinders with a radius of tens of microns) coated

with a thin layer of a normal (N) pure metal (Cu or Ag ).

The structure was placed in a weak magnetic field.

A.C. Mota et al. [2,3] who measured the magnetic suscep-

tibility � of such structures could observe its rather sur-

prising reentrant-type behavior: at lowering temperatures

the (diamagnetic) susceptibility (in a constant field)

changed in accordance with theory but it unexpectedly

started growing at T � 100 mK. A similar behavior was ob-

served with the isothermal reentrant effect in a decreasing

magnetic field: the susceptibility started to grow sharply

in a held decreasing below a certain value. The effect was

observed only on mesoscopic NS structures. The authors

[2] interpreted the discovered phenomenon as a new co-

herent quantum effect in pure NS structures. They as-

sumed that a paramagnetic contribution could appear for

some reason in the NS structure in addition to the diamag-

netic current.

The origin of the paramagnetic currents in NS struc-

tures has been discussed in several theoretical publica-

tions. Bruder and Imry [4] analyze the paramagnetic con-

tribution to susceptibility made by quasiclassical («glanc-

ing») trajectories of quasiparticles that do not collide with

the superconducting boundary. The authors [4] point to a

large paramagnetic effect within their physical model.

However, their ratio between the paramagnetic and dia-

magnetic contributions is rather low and cannot account

for the experimental results [2,3].

Fauchere, Belzig, and Blatter [5] explain the large

paramagnetic effect assuming a pure repulsive elec-

tron-electron interaction in noble metals. The proximity

effect in the N metal induces an order parameter whose

phase is shifted by � from the order parameter � of the su-

perconductor. This generates the paramagnetic instability

of the Andreev states, and the density of states of the NS

structure exhibits a single peak near the zero energy. The

theory in Ref. 5 essentially rests on the assumption of the

repulsive electron interaction in the N metal. Is the

reentrant effect a result of specific properties of the noble

metals, or does it display the behavior of any normal

metal experiencing the proximity effect from the neigh-

boring superconductor? Only experiment can provide an-

swers to these questions. We just note that the theories of

Refs. 4 and 5 do not account for the temperature and field

dependences of the paramagnetic susceptibility and the

nonlinear behavior � of the NS structure. The current the-

ories cannot explain the origin of the anomalously large
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paramagnetic reentrant susceptibility in the region of

very low temperatures and weak magnetic fields.

It is worth mentioning the assumption made by Maki

and Haas [6] that below the transition temperature

( �10 mK) some noble metals (Cu, Ag, Au) can exhibit

p-ware superconducting ordering, which may be respon-

sible for the reentrant effect. This theory does not explain

the high paramagnetic reentrant effect either.

Note that the NS structure generally has three contri-

butions to its magnetic susceptibility. First, this is a dia-

magnetic response induced by the electron excitation

specularly reflected from the dielectric boundary and

scattered (Andreev scattering) at the NS boundary. The

Andreev levels form in the film [7] when the normal layer

thickness is small. The peculiar feature of the quantum

proximity effect is the magnetic susceptibility diamagne-

tism (Meissner effect) modified by the Andreev levels.

Another contribution is related to the electron trajecto-

ries that do not collide with the NS boundary («whisper-

ing mode»). They generate persistent current in the nor-

mal layer and make a weak paramagnetic contribution to

the magnetic moment of the system.

Finally, a large-amplitude persistent paramagnetic cur-

rent is induced in the normal layer due to the Aharo-

nov–Bohm effect [8] caused by strong degeneracy of the

system when the Andreev level superimposes on the Fer-

mi level of the metal. In this case resonance spikes are ob-

served in the density of states. The spectrum of quasi-

particles (sec Eq. (4)) includes an angle � at which they

hit the dielectric boundary. For a pre-assigned �-value,

resonance occurs at a certain magnetic flux through the

quantized area enclosed by the trajectory. For other an-

gles � the resonance-inducing fluxes are slightly differ-

ent. The total contribution to the density of the states of a

NS structure is a sum of contributions from all trajecto-

ries. It is found [9,10] that the high paramagnetic re-

sponse can occur in a certain range of weak magnetic

fields and at temperatures no higher than 100 mK.

We obtained a large paramagnetic contribution � p to

the susceptibility of a NS structure within the model of

free electrons. When � p is added to the diamagnetic con-

tribution � d , the resulting total susceptibility features the

reentrant effect. Theoretically [9,10] the effect is expect-

ed in samples in which quasiparticles have large mean

free paths comparable with the cylindrical N layer perim-

eter. This was observed experimentally in Refs. 2,3.

As the magnetic field (or temperature) increases and

eliminates a prerequisite to resonance, the large paramag-

netic contribution disappears. The paramagnetic contri-

bution from the «whispering mode» persists but it is small

due to the smallness of the quasiclassical parameter of the

problem �1/ ( )k RF (�k F is the Fermi momentum, R is

the radius of the cylinder) and cannot effect the total

susceptibility of the system.

When the magnetic field increases considerably (or

the temperature approaches Tc of the superconductor) the

diamagnetic susceptibility has only the «classical» contri-

bution from the motion of the Cooper pains inside the

superconducting layer near the NS boundary. This contri-

bution persists in the whole range of temperatures (and

magnetic fields) where the superconducting state exists.

The Meissner effect in pure NS structure has been in-

vestigated recently by Galaktionov and Zaikin [11] who

used the Gorkov microscopic equations of superconduc-

tivity [12]. They calculated the diamagnetic current of a

NS structure taking into account the proximity effect. The

result obtained is essentially similar to that in Zaikin’s

first publication on the subject [13]. At the same time it

was stated [11] that a paramagnetic contribution to the

susceptibility of a NS structure is absent if there is no

strong electron–electron repulsion in the N layer.

The goal of this study is to show the existence of a

paramagnetic contribution to the susceptibility of a NS

structure using the Green function approach. The density

of states N ( )� of such a structure has been calculated. It is

shown that magnetic flux of certain values induce reso-

nance spikes of N ( )� . The model of free electrons was

applied.

Note that a large paramagnetic contribution is unob-

tainable with the Eilenberger–Green functions [13]. The

Eilenberger equations [14] were derived by integrating

the Gorkov microscopic equations of superconductivity

with respect to the quasipartieles energies. The remark-

able effect of quasiparticle state degeneracy occurs in a

narrow interval of energies approximately equal to the en-

ergy gap of the superconductor (see above). This is the in-

terval in which the density of states of a NS structure ex-

hibits resonance features. The integration of the Gorkov

Green functions over energies reduces the large contribu-

tion from the quantized Andreev levels to its average

value. As a result the paramagnetic contribution to the

thermodynamics of the NS structure disappears. To detect

this contribution one should proceed from the exact Gor-

kov equations for the Green functions of a contact in a

magnetic field.

2. The density of states of a NS structure

A mesoscopic cylindrical NS contact consisting of a

thin pure normal-metal layer (0 � �x d) and a bulk super-

conductor has been considered (see Fig. l). We neglect the

curvature of the cylindrical NS surface, which is permis-

sible if R d�� . The assumption of a flat NS boundary

largely simplifies the consideration, whereas the value of

the screened current is practically similar for cylindrical

and flat geometries. The currents are distinctive in param-

eter d R/ �� 1(see [11]). We proceed from the free-elec-

tron model and assume a stepwise variation of the order

parameter at the NS boundary. The mean free paths of the
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quasiparticle exceed the characteristic dimensions of the

structure.

The density of states of a NS contact, is found as

N G iR( ) Im ( )�
�

� 	
 � �
1

11Sp . (1)

The Spur operation is performed over the variables deter-

mining the Green matrix function. G R
11 is the analytical

continuation of the11-th component of the Green function
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Here � �n n T
 �( )2 1 is the Matsubara frequency; �( )x is
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Fermi energy andV x( ) is the potential of the metal bound-

ary. �H c is found from �H by reversing the sign of the elec-

tron charge e. It is assumed that the London penetration

depth of the field is small in a bulk superconductor and

the field inside the superconductor of our structure is

zero.

The Green function of a NS structure was calculated

for pure metals in a zero magnetic field by Arnold [15].

The Green function of the composite structure was found

from the Green functions of isolated systems G x xN ( , )�
and G x xS ( , )� and was then used to calculate the tunnel

density of states at the NS boundary. The Green function

of a NS structure in a magnetic field was obtained by

Galaktionov and Zaikin [11]:
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 �2 2 , vF is the Fermi velocity, q is

the momentum component along the symmetry axis of the
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where j is the current density in the N layer. We assume

that this current includes both the diamagnetic and para-

magnetic components. Integration of both sides of Eq. (5)
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The parameter a is dependent both on the magnetic field

and the temperature.

The expression for the density of states depends from

the Green function of the structure. Substituting Eq. (3) in

the Green function and using its analytical continuation,
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Fig. 1. Normal-metal layer (thickness d) in proximity to a bulk

superconductor. A magnetic field H parallel to the surface is

applied, driving screening current J along the surface.



The angle � is measured from the positive direction of

the normal to the boundary. The spectrum of the Andreev

levels (Eq. (4)) is formed by the quasiparticle paths in the

N layer whose angles vary within 0 � | |� � � c . � c is

the angle at which the quasiparticle trajectory touches the

NS boundary [10]. Those trajectories are responsible for

a large paramagnetic contribution to the susceptibility

and hence for the reentrant effect. Another group includes

the trajectories with � �� c that collide only with the di-

electric boundary. They induce states practically coincid-

ing with the «whispering gallery» type of states occurring

in the cross-section of a normal solid cylinder in a weak

magnetic field [16]. These trajectories generate paramag-

netic contribution of small amplitudes (see the Introduc-

tion) and are therefore discarded from this consideration.

The main contribution to the density of states comes

from the vicinity of the tangent poles. Expanding the nu-

merator and denominator into a series near the Andreev

levels, we obtain (	 
 0)
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where P is the principal quantity and obtain an expression

similar to that in [10]:
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The density of states can be written as
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from the pre-assigned trajectory with a fixed �. After in-

tegration with respect to q and introduction of the nota-

tion & �
 � / ( *)2dm , we can pass on to the dimensionless

energy º /
 � &pF . We obtain the expression for % �(º; )

% �
� &

�' ( �

( (
(º; ) º

[ º ]

( ) ( ) º



� �

� � �

2

2

2
2

2 2 2

p

d

n

n n

F sec sec

sec 2�n

� , (8)

where (
�

�

 � �

1

2

tan
and '( )x is the Heaviside step func-
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Nonresonance case

If n � )( 0 the energy dependence under the radical

sign in Eq. (8) can be neglected for small energies. Then,

the nonresonance contribution to the density of states is
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The series in Eq. (9) is calculated by the formula of

Ref. 17:

1
1

1

1
1

1( )
( )

( )!k n

d

dn
k

n
n

n�

 �

�

��

��
�

�

��
(

�

(
�(cot ,

which yields

%
�

&
�

�

� �

�

( ) º
[ ]

cos cos [ ]

0 2

0

2 3

2
�

�

��
p

d
dF

c
sin tan

tan
. (10)

After integration over � we have
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Resonance case

Now we go back to Eq. (8) and find % res as
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where the notations a nn 
 �1 2/ , b a
 �2 0/ are intro-

duced. Equation (11) shows that at certain values of the

magnetic flux, the radicand in the denominator tends to

zero. Our interest is concentrated on the asymptotics of

%(º ) at low energies º.

Prier to estimation of % res , we shall consider the con-

tributions of different angles � to the resonance ampli-

tude. It is reasonable to assume that because of the factor

sec 2� in the numerator of Eq. (11), the angles � �� c are

the main contributors to the integral. It is convenient to

introduce a new variable of integration x 
 tan �. Then

the neighborhood of the upper limit x c0 
 tan � is the

main contributor to the integral. Introducing the notation
~a a bxn
 � 0 and the small deviation + 
 � ��x x0 1, we

can write down the equation for the resonance condi-

tion as:

( º ) (~ º ) ~ º ( )b ab x a x2 2 2 2
0

2 2
0
22 1 0� � � � � � 
+ + . (12)
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The solution of Eq. (12) to the accuracy within the first

order terms of |º | gives:
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The expression in front of the radical in the denominator

is of second order smallness in |º |, i.e. | ~|a 2
� |º | ( )2

0
21� x ,

which leads to its cancellation with the similar term in the

numerator.

The remaining integral is estimated to be a constant of

about unity. Resonance-induced spikes of the density of

states appear when the Andreev level coincides with the

Fermi energy at a certain flux in the N layer. In the vicin-

ity of the chemical potential there is a strong degeneracy

of the quasiparticle states with respect to the quantum

number q. As a result a macroscopic number of q states

contributes significantly to the amplitude of the effect.

Near the resonance, the ratio of the resonance and

nonresonance amplitudes of the density of states is

%

%

res

( ) |º |0 2

1
1� �� . (14)

Thus, we have shown that a change in the magnetic

flux leads to resonance spikes in the density of states of

the NS contact. The flux interval between the spikes is

equal to the superconducting flux quantum �0.

3. Discussion

The flux quantization effect and the paramagnetic con-

tribution to the susceptibility of a thin-wall pure metal

cylinder in the vector potential field were predicted

by Kulik [18]. In pure normal metals there is a length

+N F Bk T
 �v / , which has the meaning of a coherence

length of a system with disturbed long-range order. When

the temperature lowers, this length becomes equal to the

characteristic dimensions of the system, which can lead to

interference effects in the system. Kulik [18] shows that

the magnetic moment of a thin-wall cylinder is an oscil-

lating function of the magnetic flux through the cross sec-

tion of the cylinder, its oscillation period being equal to

the flux quantum of the normal metal hc e/ . The effect is

generated by quantization of the electron motion along

the perimeter of the cylinder and is due to the sensitivity

of the states of the system to the vector potential field

(Aharonov–Bohm effect [8]). Bogachek and Gogadze

[16] investigated the coherent quantum effect in singly

connected normal cylindrical conductors in a weak mag-

netic field. The authors proved the existence of an oscil-

lating component with a flux period hc e/ in the magnetic

moment The oscillation amplitude is small due to the

smallness of the quasiclassical parameter of the problem

1/ k RF . The amplitude of the effect decreases exponen-

tially as the radius R increases. As a result, the persistent

current disappears in macroscopic systems. The effect of

flux quantization in pure Bi whiskers was first detected

experimentally by Brandt et al. ([19,20]). That was the

first observation of the interference effect of the flux

quantization in nonsupercondncting condensed matter.

Mota et al. [2,3] investigated a mesoscopic NS struc-

ture in a magnetic field. If the electric contact between the

N and S elements is good, the electrons penetrate easily

from the superconductor to the normal layer and thus sig-

nificantly affect the properties of the NS system. There

are two types of electron collisions in a normal film — a

specular reflection from one boundary and the Andreev

reflection from the another. Along with the quasiparticle

trajectories closed around the circular perimeter of the

cylinder, new trajectories appear in a weak field, which

screen the normal metal. The new trajectories of the «par-

ticles» and «holes» confine the area of a triangle whose

base in a part of the NS boundary between the points at

which the quasiparticle collides with this boundary. This

area is maximum for the trajectories touching the super-

conductor. At certain values of the magnetic flux through

the triangle area, the electron density of states experi-

ences resonance spikes [9,10]. Their existence was

proved in the standard calculation of the density of states

N qn( ) [ ( , , )]� � � � �
 � �� . Here we demonstrate this

using the Greens functions of Gorkov.

Thus, the quantum proximity effect transforms the pe-

riodic flux-induced oscillations of the thermodynamic va-

lue with a period hc e/ into periodic resonance spikes with

a period equal to a superconducting flux quantum hc e/ 2 .

The response to a weak magnetic field (H �10 Oe) is

paramagnetic and the susceptibility amplitude becomes

anomalously large. The resonance features disappear

when the magnetic flux increases and its value divided by

hc e/ 2 starts the exceed the highest Andreev «subband»

numbei (see Eq. (4)). Only the quasiparticle trajectories

that do not collide with the superconducting boundary

contribute to the susceptibility, but their amplitudes are

rather small (see above). Under this condition, the experi-

ment only registers a large diamagnetic response

(Meissner effect) We can therefore conclude that, the res-

onance contribution to the paramagnetic susceptibility

can only appear in comparatively weak magnetic fields.

In this case the experiment shows the reentrant effect

[2,3].
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