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1. Introduction

The exclusive successfulness of the phenomenological

Landau normal Fermi liquid theory [1] in predicting and

describing a set of new phenomena, among them the zero

sound in liquid He 3 and spin waves in nonferromagnetic

metals, made this theory a subject of investigation on the

basis of strict microscopic theory. Most attention was de-

voted to the derivation of the kinetic equation for the

quasiparticle distribution function. The initial derivation

of this equation was produced by Kadanoff and Byam [2]

on the basis of the quasiparticle (QP) approximation for

the spectral function and was continued by some follow-

ers who used so called extended quasiparticle (EQP) ap-

proximation [3–7]. However, in all these cases the second

Poisson bracket in the left side of Kadanoff–Baym (KB)

generalized kinetic equation could not be eliminated in a

lawful mathematical way (see below). This fact made the

temperature range of validity of the kinetic equation for

quasiparticle distribution very narrow, strictly speaking

the theory was proved to be valid only in the vicinity of

absolute zero.

Experimental discovery of the superfluidity of He 3 at

the temperature lower than the temperature at which the

zero-sound in the normal Fermi liquid was discovered,

and theoretical works devoted to the description of the

superfluid state [8,9], left no room for the temperature

range of validity of the equation for normal Fermi liquid.

At the same time theoretical predictions of this theory

turned to be in a perfect numerical agreement with the ex-

perimental data. This fact stimulated a second wave of

attempts to deriving the kinetic equation for normal Fermi

liquid, but as it was mentioned above, the result was not

achieved to a satisfactory extent. Further development of

KB theory went in the direction of the constructing of a

nonlocal quasiparticle kinetic equations [10,11], a devel-

opment of a detailed selfconsistent microscopic treatment

of arbitrary initial correlations in the system [12], etc., but

the question of the temperature range of validity of the

Landau’s kinetic equation remained open.

2. Spectral function and kinetic equation

for normal Fermi liquid

The problem consisted in a mathematically lawful elim-

ination of the second generalized Poisson bracket (a «puz-

zling term» in the terminology accepted in [5]) in the gen-

eralized Kadanoff–Byam kinetic equation written in the

collisionless approximation in the case of slowly varying

in space and time disturbances when only the first deriva-

tives with respect to T and R are taken into account [2]:

[ ( ; ), ( ; )]� � �� ��e T g Tp R p R

� ��[Re ( ; ), ( ; )]g T Tp R p R� � � 0 , (1)

here [A,B] — the generalized Poisson bracket, defined

by the expression:
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e T( ; )p R� — the energy of a particle, defined by the equality:

e T E T THF( ; ) ( ; ) Re ( ; )p R p R p R� � �� � , (3)

E HF is a one-particle energy in the Hartree–Fock approxi-

mation, Re� is a real part of the correlation energy of a par-

ticle related to the imaginary part through the Hilbert trans-

form,
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Here, P refers to a principle value integration.

It was shown in [2] that the function g entering the Eq.

(1) can be taken in the form

g Z T Z E T Z THF( ; ) [ ( ; ) Re ( ; )] .p R p R p R� � � �� 1 (5)

Equations (4) and (5) lead to the following general form

for a spectral function of one-particle states in the system:
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The spectral function satisfies the exact sum rule:

d
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Correlation function g � is related to a spectral function by

the equality [2]:

g T a T f T� �( ; ) ( ; ) ( ; )p R p R p R� � � . (8)

The complexity of the expression (6) makes to search for a

certain approximations for the spectral function which

could be successfully used in calculations.

Quasiparticle approximation for the spectral function

(6) corresponds to the case  �� , when the quasiparticles

are stable:

a Z T E TQP � �2
 � �( ; ) [ ( ; )]p R p R , (9)

where E T( ; )p R is the solution of the equation:

E T E T THF
E T( ; ) ( ; ) Re ( ; )| ,( ; )p R p R p R p R� � �� � � (10)

and the renormalizing factor Z T( ; )p R is given by the ex-

pression:

Z T
T

E T
�

�� �
�

1 1( ; )
Re ( ; )

( ; )p R
p R

p R

� � �

� � . (11)

Using the approximation (9) one follows the KB way to de-

riving the Landau’s kinetic equation when the second Pois-

son bracket in Eq. (1) is dropped considering �� � f  to

be negligibly small what is valid only at � �� at zero

temperature.

The extended quasiparticle (EQP) [3–7] and improved

extended quasiparticle (iEQP) [4] approximations for

the spectral function are written in the form:

a Z E P
E
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�

2
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where E and Z are determined by the Eqs. (10) and (11)

correspondingly.

It is easy to verify that the approximations (12) and

(13) do not satisfy the KB equation for a nonequilibrium

spectral function:

[ ( ; ), ( ; )]� � �� �e T a Tp R p R

� �[Re ( ; ), ( ; )]g T Tp R p R� � 0 , (14)

and do not lead to the elimination of the second Poisson

bracket in Eq. (1) in the case of finite . Only such a

mathematically lawful elimination of this term for finite

values of  would testify the validity of the Landau’s

equation at a finite range of temperature.

The expressions (12) and (13) both were obtained on

the basis of the general expression (6) by means of the

Taylor expansion in powers of  in the frame of different

approximations [3–7]. As a result, some important fac-

tors were lost. In reality there does not exist a mathemat-

ically strict correct form for the expansion of (6) in

power series of  which starts with the delta function

when  � 0.

Another expression for the spectral function can be

offered on the basis of the following consideration. We

utilize a well known relation of the Fourier transform in

the case of a constant value of c:

e e�

��

�

� �
�

�| | ,t c itxdt
c

c x
c

2
0

2 2
. (15)

Expanding the first exponent in the left side of (15) in

Taylor series, we get:

2
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dtitx
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� ( | |
!

... ) e . (16)

Now we use the formulas equivalent to those represented

in [13,14]:

t dt i xn itx n n( ) ( )( ) ( )2 2 22

��

�

� � �e 
 � , n � 0 1 2, , , ... , (17)
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If the quantity  in Eq. (6) was not a function of �, then

the expressions (17), (18) would lead to a strict correct

expansion of the spectral function (6) in terms of the

power series of . In the case of  depending on �, one can

rely only on the first two terms of the expansion: the delta

function independent of  and the term proportional to .

Then, taking into account that

� � �� � ��e T Z T E T( ; ) ( ; )[ ( ; )]p R p R p R
1 , (19)

we come to the following approximation for the spectral

function (6)

a Z E Z P
E

� � �
�

2 2

2

 � �

�
( )

( )


. (20)

It is not difficult to verify that the approximation (20)

satisfies the sum rule (7), with the same precision as ap-

proximations (12) and (13) do, but contrary to them the

approximation (20) satisfies the Eq. (14) for the spectral

function and eliminates the second Poisson bracket in the

left side of Eq. (1). Indeed, when we substitute Eq. (20)

into Eq. (14), the first term in the right of this expression

gives:

[ , ( )] [( ) , ( )]� 
 � � 
 � � �� � � � � ��e Z E Z E Z E2 2 01 , (21)

due to the property of the generalized Poisson bracket

[ , ( )]A f A � 0 .

The second term in the right side of Eq. (20) leads to the

expression:
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the second poisson bracket in Eq. (14) due to Eq. (5) gives

the expression:
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Thus, the ansatz (20) satisfies the Eq. (14) exactly. Now

we consider the Eq. (1). Using Eq. (8), we get:

[ , ] [Re , ] .�� � �e af g f 0 (24)

The substitution of the first term in Eq. (20) into Eq.

(24) leads directly to the kinetic equation for the qua-

siparticle distribution function n T( ; )p R [2]:

�
�
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n

T
E n E nP R R p 0 , (25)

n T f T E T( ; ) ( ; )| ( ; )p R p R p R� �� � .

The second term in Eq. (20), being substituted to Eq. (24),

gives the expression:
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which is eliminated by the second poisson bracket in

Eq (24):
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Thus, the kinetic Eq. (25) is valid for finite values of  and

correspondingly, for nonzero temperatures. For qualitative

estimation of the precision, we can use the third term in the

expansion (16) which is proportional to  2. Substituting

this term into Eq. (24), it is not difficult to show that this

equation is valid up to the terms of order  2.

3. Kinetic equation for normal Fermi liquid

in a magnetic field

The kinetic equation for the normal Fermi liquid con-

sisting of charged particles in the presence of compen-

sating background was considered in [15] in the quasi-

particle approximation for the spectral function. It was

shown that the spin splitting of the energy levels being

neglected, the spectral function for a system in a non-

quantizing magnetic field can be written in the form:
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, (28)

where p is the canonical momentum and u T T( ), ( )R A R are

scalar and vector potentials of the electromagnetic field,

A R( )T being chosen in the Coloumb gauge div A R( )T � 0.

The kinetic equation for quasiparticle distribution is writ-

ten in the form (25) [15] and acquires a usual form after the

transition to kinetic momentum P = p A R�( ) ( )e/c T [1].
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We would like to stress that the kinetic equations for nor-

mal Fermi liquid were written in [16] right in the form, cor-

responding the expression (28) for the spectral function,

concerning the dependence of all the quantities on vector

potential A and canonical momentum p and then were

transformed into gauge-invariant form [17]. More details

about the development of transport theory of interacting

fermions in an electromagnetic field can be found in

[18–20].

The derivation of the phenomenological Landau–Silin

kinetic equations in the case when spin splitting of energy

levels is taken into account was produced in [21] also in

the quasiparticle approximation. In this case all quantities

become matrices in spin space, in particular the quantity

e T( ; )p R� has the form:

e T
e T /c

m
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( ( ) )
( )p R
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�
2

2

� 	 �
e

mc
curl T T� ( ) ~( ; )S A R p R� � (29)

where I and �S are the unit matrix and the set of three spin

matrices [1], ~� is a Hermitian part of the self-energy matrix

�. The spectral function is still given by Eq. (28). The spec-

tral function a and the inverse life-time of a particle’s state

 are Hermitian matrices in the case under consideration.

When  is considered to be finite (nonzero), the next

possibilities can occur. If the magnetic field is not strong,

so that  exceeds the spin splitting of the energy levels,

the last is not essential and e T( ; )p R� can be written in the

form:

e T
e T /c

m
( ; )

( ( ) )
p R

p A R
� �

�
�

2

2

� � �u T T THF( ) ( ; ) Re ( ; )R p R p R� � � . (30)

The approximation for the spectral function in this case

can be written in a way analogous to Eq. (20):

a T Z T E T Z P
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(31)

where E is a solution of Eq. (10) with e given by Eq. (30).

The situation turns to be more complicated when spin

splitting of the energy levels should be taken into ac-

count. More convenient form of the theory suitable for the

generalization of the quasiparticle approximation for the

spectral function, than that presented in [21], was devel-

oped in [22]. First of all , we should stress, that even in the

quasiparticle approximation for the spectral function the

kinetic equation of the phenomenological theory are valid

only with the precision to the squared ratio of spin split-

ting of the energy levels to the chemical potential of the

system [22]. Thus, producing the derivation of the kinetic

equation with the improved approximation for the spec-

tral function we should take into account only the terms

that do not exceed this precision.

We start with the expansion of the matrices g � and e

over the full set of matrices in spin space,

g g I� � � 	
1

2
0

�
�S g , (32)

e e I� � 	1 2 �
�S e 2 . (33)

These expansions should be substituted into the gener-

alized KB kinetic equations which under consideration

are written in the form [22]:
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0 , (35)

where ~g is a Hermitian part of the matrix g Z T( ; )p R .

Separating in Eqs. (34) and (35) the terms corresponding

to the collisionless case, we get in the quasiparticle ap-

proximation   � 0) the equations:

[ , ] [ , ]�� � �e g e gi i1 0 2 0 , (36)

[ , ] [ , ]�� � � ! �e e g1 2 0 2 0g e g2 , (37)

( )�� � 	 �e g1 0 0e g2 , (38)

( )�� � �e g e gi i1 2 0 0 . (39)

Here, the quantities with Latin indexes are the cartesian

projections of the corresponding vectors: Summation

over the repeated indexes is supposed to be done. The

Eqs. (36)–(39) lead to the kinetic equations of the phe-

nomenological Landau–Silin theory [22] in the limit

 � 0: the Eqs. (38) and (39) give the expressions for the

spectral functions, while the Eqs. (36) and (37) give ki-

netic equations on the basis of the determined spectral

functions.

With the help of Eqs. (38) and (39) we get the follow-

ing expressions for the functions g0 and g in the qua-

siparticle approximations [22]:

g f e f e0 � � � �" " # #� � � �( ) ( ) , (40)

g f f f� � � � � �" " # #� � � � � �( ) ( ) ( )e e e1 , (41)
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where

e e e e" #� � � �1 1| | ; | |e e2 2 . (42)

Vector f" is antiparallel to e f2, # is parallel to e 2, and f is

perpendicular to e 2.

The argument of all the delta functions in (40), (41) ex-

cept one of them, are not equal to �� e1 . Thus, the substi-

tution of expressions (40), (41) into the Eqs. (36) and (37)

will generate the terms with the derivatives of the �-func-

tions. As a result, after rather tedious transformations of

Eq. (36) we get the Eq. (19.41) from [22]. The analysis of

the distinction between different renormalizing factors

entering this equation, leads to the mentioned above con-

clusion about the precision of the validity of the

phenomenological kinetic equation in the case  � 0 , i.e.

at zero temperature. In the case of finite , (but  being

less then the spin splitting) it is necessary to put down the

system of Eqs. (36)–(39) in the collisionless approxima-

tion, but saving the terms with , which do not enter the

collision integrals. It can be done, tracing carefully what

terms with  in the equations in the absence of magnetic

field do not enter collision integrals. Thus, we come to the

system of equations:

( ) [ , ] ~ [ , ~]�
�

� �
�

�I e g I e g g g� � � � � �� � � �

2 2
0 , (43)

g I e g I e g g� � �� � � � � �( ) [ , ] ~ [~, ]�
�

� �
�

� �

2 2
0 , (44)

where the expansions of the type (32), (33) should be

done for the functions ~g and �� � f :

~ ~
�
~g g I� �

1

2
0 Sg , (45)

� �� � �� � 	1 22I �S � . (46)

Finally, taking into account the comment about the terms,

exceeding the precision of the equation’s validity, we get

the system of equations that will lead to the kinetic equa-

tions:

[ , ] [ , ] [~ , ]� �� � � ��e g e g gi i1 0 2 0 1 0 , (47)

[ , ] [ , ] ~ , ]�� � � ! ��e g g1 2 0 0 22 0g e e g2 + [ � , (48)

and the system of equations that will give the expressions

for spectral functions:

( ) ~ ,� ��� � 	 � �e g g1 0 0 1 0e g2 (49)

( ) ~� �� � � ��e g e g gi i i1 2 0 0 2 0 . (50)

Now we consider the case e e" � �1 | |e 2 and choose the

approximations for g0 and g in the form:

g Z f E Z
E

0
2

2
� � �

�
" " "� �

�

�

$
�

( )
( )

, (51)

g f� � �
�

" " "Z E Z
E
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2 2

2

�
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where E" and E are the solutions of the equations:

E T e T E( ; ) ( ; )| ,p R p R� �1 � (53)

E T e T e T E" �� �( ; ) [ ( ; ) | ( ; )| | ,p R p R p R1 2� �] (54)

and renormalizing factors Z" and Z are defined by the ex-

pressions:

Z T
e T

E"
� "

�� �
�

� "

1 1( ; )
( ; )

p R
p R�

� � , (55)

Z T
e T

E
�

�� �
�

�
1 11( ; )

( ; )
p R

p R�

� � . (56)

If we substitute the expressions (51), (52) into Eqs. (49)

and (50), these equations would be satisfied with the pre-

cision to the terms of the order  2 2, | |e 2 and | |e 2 . The

substitution of expressions (51), (52) into Eqs. (47) and

(48) lead to the Landau–Silin kinetic equations with the

precision to the terms of the indicated order. The same is

valid, if we consider the case e e# � �1 | |e 2 . Thus, the ki-

netic equations of the phenomenological theory, (the Eqs.

(7.21) and (7.23) in [22]) are valid in the case of finite

temperature up to the terms linear in , provided  does

not exceed the spin splitting of the energy levels.
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