В.А. Данько, І.З. Індутний, О.Ф. Коломис, В.В. Стрельчук, П.Є. Шепелявий

РЕВЕРСИВНЕ ФОТОПОТЕМНІННЯ В КОМПОЗИТНИХ НАНОСТРУКТУРАХ As₂S₃/SiO_x

З використанням оптичних методик (поглинання в İЧ- та видимій областях, КР-спектроскопія) досліджено реверсивний фотостимульований зсув краю поглинання (фотопотемніння) — ΔE_g — наночастинок As₂S₃ у матриці SiO_{1,5}. Під час формування нанокомпозитів As₂S₃/SiO_{1,5} фази халькогеніду розділяються на кластери, збагачені миш'яком або сіркою. Унаслідок експонування нанокомпозитів As₂S₃/SiO_{1,5} відбувається зменшення концентрації S—S- та збільшення концентрації As—As-зв'язків, що є можливою причиною фотопотемніння. Спостерігалось значне збільшення ΔE_g (до 4-кратного) у разі зменшення розмірів частинок халькогеніду в нано-композитних As₂S₃/SiO_{1,5} шарах порівняно з суцільними As₂S₃ плівками. Ефект збільшення ΔE_g у нанокомпозитах пояснюється просторовим обмеженням дифузійного пробігу фотозбуджених носіїв у наночастинках As₂S₃, які знаходяться в діелектричній матриці.

Ключові слова: фотопотемніння, халькогенідні стекла, наночастинки, раманівська спектроскопія.

вступ

Різноманітні фотоіндуковані явища в халькогенідних склоподібних напівпровідниках (XCH) (структурні зміни під дією світла, фотоіндукована анізотропія, кристалізація, аморфізація, оптомеханічний ефект і т.п.) продовжують інтенсивно досліджуватися з моменту відкриття фоточутливості тонких плівок ХСН [1]. Вивчення процесів, які протікають в ХСН під дією світла, стимулюється намаганнями зрозуміти фізичні механізми, що визначають їх природу, а також можливістю їх практичного використання в широкому спектрі галузей і технологій. Серед цих явищ чільне місце належить реверсивним (оборотним) змінам, зокрема реверсивним змінам оптичних властивостей. До таких ефектів належить і довгохвильовий зсув краю поглинання в ХСН (фотопотемніння), який спостерігається у разі експонування плівок світлом із області власного поглинання. Відновлення вихідних оптичних характеристик досягається відпалом експонованих зразків за температури, близької до температури склоутворення досліджуваної речовини. Цикли експонування — відпал (запис—стирання) — можна повторювати багаторазово, при цьому закономірності протікання цих процесів не змінюються. Унаслідок численних досліджень з використанням великого набору методик з'ясовано, що оборотні фотоструктурні зміни пов'язані в основному із змінами структури шарів на рівні середнього порядку з характерними розмірами 0,4-0,8 нм [2, 3]. Такі висновки вказали на необхідність вивчення впливу товщини плівок ХСН на фотоструктурні зміни їх характеристик.

Крім того, нами виявлено ефект істотного підвищення оборотного фотопотемніння в композитних As_2S_3/SiO_x -шарах, коли розміри частинок As_2S_3 у SiO_x-матриці стають порівня́нними з характерними розмірами се-

© В.А. Данько, І.З. Індутний, О.Ф. Коломис, В.В. Стрельчук, П.Є. Шепелявий, 2011

ISSN 0233-7577. Оптоэлектроника и полупроводниковая техника, 2011, вып. 46

реднього порядку в халькогенідних стеклах [4]. Нижче наведено результати досліджень реверсивного фотопотемніння ХСН у композитних наноструктурах As₂S₃/SiO_x з використанням ІЧ- і раманівської спектроскопії.

ВИГОТОВЛЕННЯ ЗРАЗКІВ ТА МЕТОДИ ДОСЛІДЖЕНЬ

Зразки для вимірювань одержували термічним випаровуванням із молібденових випаровувачів склоподібного As₂S₃ і монооксиду кремнію SiO та послідовним осадженням на кварцові та кремнієві поліровані підкладки у вакуумі 2 · 10⁻³ Па. Швидкість осадження шарів контролювалася за допомогою каліброваного кварцового вимірювача товщини і становила ~0,1 нм/с, товщини осаджених зразків вимірювались мікроінтерферометром МИИ-4. Було виготовлено багатошарові зразки з поперемінним чергуванням шарів As₂S₃ і SiO_x. Число тотожних пар шарів вибирали так, щоб сумарна товщина As₂S₃ знаходилася в межах 90—130 нм. Ефективна (усереднена) товщина шарів SiO_x у всіх зразках становила 5 нм, а ефективна товщина шарів As₂S₃ змінювалися від 0,7 до 2,5 нм. Крім того, в процесі осадження окремих шарів дві частини зразка поперемінно екранувалися, що дозволяло одержати на підкладці, крім багатошарової структури, також суцільні контрольні плівки As_2S_3 і SiO, з товщиною, що дорівнює сумі товщин відповідних шарів композитної структури.

Одержані зразки для стабілізації їх характеристик і виключення нереверсивних змін відпалювали в атмосфері азоту за температури 450 К протягом 2 год. Після цього проводилося експонування за 77 К (зразки занурювалися в рідкий азот) інтегральним випромінюванням ртутної лампи ДРШ-250 або випромінюванням аргонового лазера довжиною хвилі 514 нм (інтенсивність на поверхні зразка — 50 мВт/см²) упродовж 1 год. Для відтворення доекспозиційних характеристик досліджуваних структур відпал у наведених вище умовах повторювався. Такі цикли експонування—відпал повторювались до 20 раз. Оскільки надтонкі шари як SiO_x, так і тим більш As₂S₃ є несуцільними, острівцевими, одержані «багатошарові» зразки утворюють по суті композитне середовище As₂S₃ / SiO_x. Вміст SiO_x в цих зразках в 2—7 раз більший, ніж As₂S₃, тому їх структуру можна розглядати як острівці As₂S₃, розмір яких визначається ефективною товщиною і фактором заповнення, в матриці SiO_x.

Для характеризації одержаних зразків використовували інфрачервону (ІЧ) спектроскопію і спектроскопію комбінаційного розсіяння (мікро-КРС). ІЧ-спектри в області 800—1200 см⁻¹ записувалися за допомогою двопроменевого спектрофотометра Specord 85 IR на плівках, осаджених на кремнієві підкладки (спектри підкладок без плівок використовувалися як контрольні). Спектри мікроКРС вимірювалися за кімнатної температури за допомогою спектрометра Horiba Jobin Yvon T64000 з конфокальним мікроскопом Olympus BX41 (× 100 об'єктив, NA = 0,9) і реєструвалися охолоджуваним ССД-детектором. Збудження спектрів КРС здійснювалося Ar-Kr-лазером ($\lambda_{36} = 647$ нм) з потужністю ≤ 3 мВт. Точність визначення частоти фононної лінії становила 0,15 см⁻¹. Щоб уникнути нагрівання зразка або його деградації потужність збуджувального лазерного випромінювання варіювалася від 0,5 до 2 мВт, що відповідало щільності потужності випромінювання на поверхні зразка 50-200 кВт/см². Оптичні дослідження виконано на спектральному комплексі КСВУ-23 з приставкою для вимірювання відбивання. Вимірювали пропускання, відбивання з боку плівки і підкладки у разі нормального падіння променя для розрахунку оптичних констант досліджуваної структури [5]. Досліджувалась також релаксація фотопотемніння залежно від часу зберігання та температури. Для цього зразки після відпалу зберігали в термостаті за заданої температури, періодично вимірюючи їх оптичні характеристики.

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

На рис. 1 подано ІЧ-спектр контрольного зразка з суцільною плівкою SiO_x товщиною 450 нм (90 шарів) у діапазоні 800—1200 см⁻¹. Основна смуга поглинання (пік у діапазоні 1000—1100 см⁻¹ залежно від значення індексу стехіометрії) зумовлена валентними асиметричними коливаннями атомів кисню у «містках» Si—O—Si. Склад матриці SiO_x (індекс стехіометрії x) визначався за положенням максимуму цієї смуги поглинання з відомої залежності [6] для оксидних плівок, отриманих термічним випаровуванням. Для досліджуваних зразків значення x дорівнює 1,5. Зміна складу плівок (від вихідного SiO до SiO_x з x = 1,5) вказує на те, що під час осадження відбувалося доокислення SiO унаслідок низької швидкості осадження.

На рис. 2, *а* (крива *3*) показано спектр коефіцієнта поглинання контрольного шару SiO_{1,5}, нанесеного на кварцеву підкладку. Як бачимо, шари SiO_x вказаного складу слабо поглинають в області краю міжзонних переходів As_2S_3 , тому поглинання композитних шарів $As_2S_3/SiO_{1,5}$ буде визначатись переважно поглинанням частинок As_2S_3 . На цих самих контрольних шарах SiO_{1,5} вивчався вплив циклів експонування та відпалу на поглинання в досліджуваній області спектра (2,2—3,2 еВ). Було з'ясовано, що за таких умов експонування та відпалу ніяких фотостимульованих і термостимульованих змін в шарах SiO_{1,5} не спостерігається. Це дає змогу реєструвати фотопотемніння наночасток халькогеніду (тобто зміну коефіцієнта поглинання) в оксидній матриці SiO_{1,5}, вимірюючи коефіцієнт поглинання композитних зразків.

Оптичні дослідження, проведені на відпалених і експонованих зразках, вказують на зміщення краю поглинання всіх зразків у довгохвильову область (фотопотемніння) унаслідок опромінення. На рис. 2 наведено спектральну залежність коефіцієнта поглинання α контрольної плівки As₂S₃ товщиною 127 нм (*a*) та композитної структури As₂S₃/SiO_x з товщиною кожного шару As₂S₃ у композиті 1,4 нм (*б*) та 0,7 нм (*в*) (криві *1* та *2* — відповідно експонований та відпалений зразки). Як бачимо, у разі переходу від суцільних плівок As₂S₃ до наношарів зміщення краю поглинання істотно збільшується. Це зміщення можна описати зміною ширини оптичної щілини ΔE_g , і прослідкувати його поведінку залежно від ефективної товщини шарів. Фотостимульована зміна ширини оптичної щілини визначалась за зсувом краю поглинання ~ $\alpha = 2,5 \cdot 10^4$ см⁻¹. Встановлено, що зі зменшенням ефективної товщини шарів халькогеніду в досліджува-

них композитах (тобто у разі зменшення розмірів острівців As_2S_3) відбувається монотонне збільшення ΔE_g . Так, за ефективної товщини шару As_2S_3 , що дорівнює 2,5 нм, ΔE_g

Рис. 1. Спектр ІЧ-поглинання відпаленої плівки SiO_x з x = 1,5

Рис. 2. Спектральна залежність коефіцієнта поглинання α контрольної плівки As_2S_3 товщиною 127 нм (*a*) та композитної структури As_2S_3 /SiO_x з товщиною кожного шару As_2S_3 в композиті 1,4 (*b*) та 0,7 нм (*b*): *1*, 2 — відповідно експонований та відпалений зразки; 3 — спектральна залежність коефіцієнта поглинання SiO_x з x = 1,5

зростає на 40 % порівняно з суцільною плівкою, що перевершує похибку визначення E_g . Якщо товщина шару As₂S₃ зменшується до 0,7 нм, то ΔE_g збільшується в 4 рази. Зазначимо, що коефіцієнт поглинання наношарів As₂S₃ менший, ніж суцільних плівок.

Релаксація фотопотемніння композитних структур досліджувалась за допомогою вимірювань кінетики зміни ΔE_g у процесі зберігання експонованого зразка за заданої температури в термостаті. Одержані кінетики добре апроксимуються експоненційною залежністю з характеристичним часом релаксації τ , який зменшується зі зростанням температури зберігання. Із експериментальних залежностей ΔE_g (*t*) ми отримали значення τ для різних температури зберігання. На рис. З наведено залежність Іпт від оберненої температури, де точки — експериментальні значення, пряма — апроксимація з використанням виразу

$$1/\tau = \Omega \exp(-E_{\rm a}/kT),\tag{1}$$

де Ω — коливна частота в метастабільному стані; E_a — енергія активації переходу з метастабільного стану у вихідний [7]. Використовуючи цю апроксимацію, ми можемо отримати значення енергії активації. Для композита As₂S₃/SiO_{1,5} з ефективною товщиною шарів халькогеніду близько 0,7 нм отримано значення $E_a = 0,78 \pm 0,06$ еВ [8].

На рис. 4 і 5 зображено спектри КР суцільної (контрольної) плівки As_2S_3 товщиною 120 нм та композитної структури $As_2S_3/SiO_{1,5}$ з ефективною товщиною шару As_2S_3 0,7 нм. Криві 1 відповідають відпаленим

криві 7 відповідають відпаленим зразкам, а криві 2— експонованим. Як можна бачити з цих рисунків, у спектрах КР як суцільних (контрольних) шарів As_2S_3 , так і композитних структур виразно виявляються смуги, характерні для тонких шарів термічно осаджених плівок стекол складу As—S. Найбільш яскраво вираженою для суцільних плівок $As_2S_3 \in$ смуга поблизу 343 см⁻¹, яка відповідає си-

Рис. 3. Залежність часу релаксації фотопотемніння т від оберненої температури

Рис. 4. Спектр КР суцільної (контрольної) плівки As₂S₃ товщиною 120 нм: *1* – відпалена плівка; *2* – експонована плівка

Рис. 5. Спектр КР композитної структури $As_2S_3/SiO_{1,5}$ з ефективною товщиною шару $As_2S_30,7$: 1 — відпалена плівка; 2 — експонована плівка

метричним коливанням пірамід AsS₃. Окрім того, в КР-спектрах цих зразків чітко виділяються смуги 186 і 233 см⁻¹ та плече в області 380-382 см⁻¹, які характерні для β -As₄S₄ [9—11]. Проте в композитних шарах з нановключеннями As_2S_3 істотно підсилюються (чи з'являються) смуги, які вказують на наявність в досліджуваних плівках фрагментів β-As₄S₄ та α -As₄S₄. Так, основна смуга має максимум поблизу 354 см⁻¹ і є суперпозицією двох смуг: смуги аурипігменту поблизу 343 см⁻¹ та смуги поблизу 362 см⁻¹, яка характерна для реальгару (α-As₄S₄). Також яскраво виражені смуги поблизу 223 см⁻¹ (α-Аs₄S₄ [11]) і 235 см⁻¹ (β-Аs₄S₄ [9]), а поблизу 275 см⁻¹ з'являється смуга, яку пов'язують з наявністю в плівці фрагментів As₄S₃ [12]. Такі зміни в спектрах КРС вказують на те, що в нанокомпозитних плівках As₂S₃ спостерігається відхилення від стехіометричного складу в бік зростання в них вмісту миш'яку [12, 13]. Однак у більш високочастотній області спектра (400-500 см⁻¹) досліджуваних нанокомпозитних зразків також спостерігаються смуги, які можна пов'язати зі структурними одиницями $S = AsS_{3/2}$ (463 см⁻¹), гомополярними зв'язками S—S (494 см⁻¹) та коливаннями атомів в кільцях S₈ (475 см⁻¹). Спектр наших зразків у цій області практично збігається зі спектром КР плівок As₂S₈ [14], тобто плівок з підвищеним вмістом сірки. З цих даних можна зробити висновок, що під час формування нанокомпозитів As₂S₃/SiO₁₅ відбувається фазове розділення халькогеніду на кластери, збагачені миш'яком та сіркою [10], причому таке розділення фаз зберігається і після відпалу зразків.

Унаслідок експонування в спектрах КРС нові смуги не з'являються, проте відбувається зміна інтенсивності тих смуг, що наявні у відпалених зразках. Зокрема, збільшуються інтенсивності смуг, пов'язаних з кластерами, збагаченими миш'яком (223, 235, 362 та 275 см⁻¹) і суттєво слабшають смуги, які можна віднести до кластерів з підвищеним вмістом сірки (область 400—500 см⁻¹). Це може свідчити про таку зміну структури, яка рівноцінна перерозподілу гомополярних зв'язків: зменшенню концентрації S—S- та збільшенню концентрації As—As-зв'язків.

Реверсивне фотопотемніння в шарах As_2S_3 зумовлене двостадійним процесом: збудження електронної системи халькогеніду з наступною релаксацією атомної структури в новий, метастабільний стан. Запропоновано цілий ряд моделей, які пояснюють фотопотемніння, виходячи із

спостережуваних фотоструктурних змін. Одні автори пов'язують фотопотемніння зі змінами ближнього порядку — формуванням та перебудовою гомополярних зв'язків, заряджених дефектів та ін. [15]. Інші автори віддають перевагу моделям, які пов'язують фотопотемніння зі змінами структури в масштабі середнього порядку [16, 17]. Однак, незалежно від способу інтерпретації природи фотопотемніння, більшість авторів вважають [15—17], що електронна стадія цього процесу включає етап локалізації пари збуджених носіїв, формування самолокалізованого екситону з подальшим існуванням його як пари змінної валентності, або ж з подальшою безвипромінювальною рекомбінацією, що зумовлює метастабільну зміну середнього порядку чи утворення незаряджених гомополярних зв'язків. Модель утворення самолокалізованих екситонів узгоджується з відомими експериментальними фактами підвищення ефективності фотопотемніння за більш низьких температур та у разі експонування світлом з енергією фотона нижчою, ніж межа фотопровідності [18]. Як зниження температури, так і збудження носіїв з малою кінетичною енергією приводить до менш інтенсивної їх дифузії від місця генерації. Це підвищує імовірність парної локалізації носіїв та, як наслідок, збільшує ефективність фотопотемніння.

Наші результати можна також пояснити за допомогою моделі, яка припускає в якості одного із етапів процесу фотопотемніння парну локалізацію збуджених носіїв. У разі зменшення розмірів частинок халькогеніду, оточених діелектричною матрицею, обмежується область дифузії збуджених носіїв, що приводить до збільшення імовірності утворення самолокалізованих екситонів і посилення фотоструктурних та оптичних змін.

Фотостимульовані зміни в спектрах КР нанокомпозитів As₂S₃/SiO₁₅ (рис. 4, 5) свідчать про перебудову ближнього порядку, зокрема перерозподіл гомополярних зв'язків, як можливу причину фотоструктурних перетворень у цих зразках. Релаксацію фотопотемніння можна пояснити як обернений термостимульований перехід із метастабільного стану зі зменшеною шириною забороненої зони в основний стан. Щодо зменшення коефіцієнта поглинання нанокомпозитних структур, яке пояснювалось [4] наявністю зв'язків As-O на межі розділення фаз As₂S₃ і SiO_x, то це підтверджується КР-дослідженнями, які свідчать про зростання вмісту As в композитних структурах порівняно з суцільними, а отже, і про збільшення вірогідності формування таких зв'язків.

висновки

Ефективність реверсивного фотопотемніння в нанокомпозитних структурах As₂S₃ /SiO_x, яка визначається зміною ширини оптичної щілини ΔE_{e} , монотонно зростає зі зменшенням ефективної товщини шарів халькогеніду в досліджуваних композитах. У разі зменшення ефективної товщини шарів As_2S_3 у композиті до 0,7 нм ΔE_g збільшується в чотири рази порівняно з фотопотемнінням суцільної плівки As₂S₃. Цей ефект пояснюється просторовим обмеженням дифузійного пробігу фотозбуджених носіїв.

Дослідження спектрів КР показали, що у разі формування нанокомпозитів As₂S₃/SiO_{1.5} відбувається розділення фаз халькогеніду на кластери, збагачені миш'яком та сіркою, причому таке розділення фаз зберігається і після відпалу зразків. Зміни в спектрах КР нанокомпозитів 108

As₂S₃/SiO_{1,5} унаслідок експонування вказують на перерозподіл гомополярних зв'язків (зменшення концентрації S—S- та збільшення концентрації As—As-зв'язків) як можливу причину фотопотемніння.

V.A. Dan'ko, I.Z. Indutnyi, O.F. Kolomys, V.V. Strelchuk, P.E. Shepeliavyi

REVERSIBLE PHOTODARKENING IN COMPOSITE As_2S_3/SiO_x NANOSTRUCTURES

The reversible photostimulated absorption edge shift (photodarkening), ΔE_g , of As₂S₃ nanoparticles embedded into the SiO_{1.5} matrix is investigated with the use of optical methods (absorption in IR and visible regions, Raman spectroscopy). When forming the As₂S₃/SiO_{1.5} nanocomposites chalcogenide phases are separated into clusters enriched with arsenic or sulphur. As a result of the As₂S₃/SiO_{1.5} nanocomposites exposure the concentration of S–S bonds decreases and that of As–As bonds increases, which can give rise to photodarkening. As compared to continuous As₂S₃ films, the remarkable ΔE_g increase (up to 4 times) with a decrease of chalcogenide particle sizes in the nanocomposite As₂S₃/SiO_{1.5} layers was observed. The effect of ΔE_g increase in nanocomposites is related to a spatial confinement of a photoexcited carrier diffusion length in As₂S₃ nanoparticles embedded in a dielectric matrix.

Keywords: photodarkening, chalcogenide glasses, nanoparticles, Raman spectroscopy.

- О фотографической чувствительности тонких полупроводниковых слоев / М.Т. Костышин, Е.В. Михайловская, П.Ф. Романенко, Г.А. Сандул // Журн. науч. и прикл. фотографии и кинематографии. — 1965. — 10, вып. 6. — С. 450—451.
- 2. Yang C.Y., Paesler M.A., Sayers D.E. Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films // Phys. Rev. 1987. **B 36**, N 17. P. 9160–9167.
- Elliott S.R. A unified model for reversible photostructural effects in chalcogenide glasses // J. Non-Cryst. Solids. - 1986. - 81. - P. 71-98.
- 4. *Indutnyi I.Z., Shepeljavi P.E.* Reversible photodarkening in As₂S₃ nanolayers // Ibid. 1998. **227–230**. P. 700–704.
- Indutnyi I.Z., Stetsun A.I. Determination of the optical constants of thin absorbing films on a slightly absorbing substrate from photometric measurements // Proc. SPIE. – 1993. – 2113. – P. 55–59.
- Nakamura M., Mochizuki Y., Usami K. Infrared absorption spectra and compositions of evaporated silicon oxides (SiO_x) // Solid State Commun. – 1984. – 50, N 12. – P. 1079–1081.
- Tanaka K. Light intensity dependence of photodarkening in amorphous As₂S₃ films // Thin Solid Films. - 1988. - 157, N 1. - P. 35-41.
- 8. *Indutnyi I.Z., Shepeliavyi P.E., Indutnyi V.I.* Relaxation of photodarkening in SiO– As₂(S,Se)₃ composite layers // Semiconductor Phys., Quant. Electron. and Optoelectron. – 1999. – **2**, N 2. – P. 59–62.
- 9. *Raman* and infrared spectra of As_2S_x chalcogenide glasses with $x \le 3 / A$. Bertoluzza, C. Fagnano, P. Monti, G. Semerano // J. Non-Cryst. Solids. 1978. N 1. P. 49-60.
- Boolchand P., Chen Ping, Vempati U. Intermediate phases, structural variance and network demixing in chalcogenides: The unusual case of group V sulfides // Ibid. – 2009. – 355. – P. 1773–1785.
- Slade M.L., Zallen R. Raman spectra of As₄S₄ polymorphs: structural implications for amorphous As₂S₃ films // Solid State Commun. – 1979. – **30**, N 6. – P. 357–360.
- Structure of pulsed-laser deposited arsenic-rich As-S amorphous thin films, and effect of light and temperature / P. Nemec, J. Jedelsky, M. Frumar et al. // J. Non-Cryst. Solids. – 2005. – 351. – P. 3497–3502.
- 13. Венгер Е.Ф., Мельничук А.В., Стронский А.В. Фотостимулированные процессы в халькогенидных стеклообразных полупроводниках и их практическое применение. Киев: Академпериодика, 2007. 284 с.
- 14. Photo- and thermally induced changes in the refractive index and film thickness of amorphous As_2S_8 film / L.E. Zou, B.X. Chen, L.P. Du et al. // J. Appl. Phys. 2008. 103. P. 123523-1-5.

- Elliott S.R. A unified model for reversible photostructural effects in chalcogenide glasses // J. Non-Cryst. Solids. – 1986. – 81, N 1–2. – P. 71–98.
- 16. *Fritzsche H*. The origin of reversible and irreversible photostructural changes in chalcogenide glasses // Phil. Mag. B. 1993. 68, N 4. P. 561-572.
- Lee J.M., Paesler M.A., Sayers D.E. Kinetic X-ray absorption studies and computer structural modeling of photo-darkening in amorphous arsenic sulfide // J. Non-Cryst. Solids. - 1990. - 123, N 1-3. - P. 295-309.
- 18. *Танака К.* Фотоструктурные превращения в аморфных халькогенидных полупроводниках // Автометрия. — 1988. — № 14. — С. 12—17.

Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України Проспект Науки, 41 03028 Київ Одержано 10.03.2011