
ÓÄÊ 004.04, 004.6

A.V. Valialkin
VertaMedia Company
(224 West 35th St., Suite 1102-5, New York, NY 10001, USA,
a.valialkin@vertamedia.com),
O.I. Konashevych, post-graduate
Pukhov Institute for Modelling in Energy Engineering
(15, General Naumov St., Kyiv, 03164, Ukraine,
a.konashevich@gmail.com)

Real-time Method of Accurate Unique IPs Counting
Across High Number of Distinct Dimensions
and distinct Time Frames for Big Data Systems

The article describes a method which allows counting unique IP addresses within 10 bln of sys-
tem events per day across high number of distinct dimensions (tuples). Log-based and probabi-
lity-based methods showed unsatisfactory results. The proposed method allows avoiding exces-
sive resource usage (RAM, CPU and persistent storage) as it appeared in a raw logs method and a
probability method of counting. The method also avoids high statistic error for low cardinality as
it appeared in a probability method. The main idea is to count unique IP addresses in distinct
tuples in real time using RAM for short data interval processing, then flushing it to persistent
storage, using merge algorithms to process and store unique IP counts in ordinary database from 5
minute, hourly, daily, weekly and monthly interval files.

Îïèñàí ìåòîä, ïîçâîëÿþùèé ïîäñ÷èòàòü ÷èñëî óíèêàëüíûõ IP àäðåñîâ èç áîëüøîãî
êîëè÷åñòâà ðàçëè÷íûõ íàáîðîâ äàííûõ (êîðòåæåé). Ìåòîäû, îñíîâàííûå íà ñêàíèðîâàíèè
ëîãîâ è âåðîÿòíîñòíîì ïîäñ÷åòå, ïðèâåëè ê íåóäîâëåòâîðèòåëüíûì ðåçóëüòàòàì. Ïðåäëî-
æåííûé ìåòîä ïîçâîëÿåò èçáåæàòü ÷ðåçìåðíîãî èñïîëüçîâàíèÿ ðåñóðñîâ (ïðîöåññîðà,
îïåðàòèâíîé è ïîñòîÿííîé ïàìÿòè), êàê ïðè èñïîëüçîâàíèè ìåòîäà ñêàíèðîâàíèÿ íåîáðà-
áîòàííûõ ëîãîâ è âåðîÿòíîñòíîãî ìåòîäà ïîäñ÷åòà, à òàêæå èçáåæàòü áîëüøîé ñòàòèñòè-
÷åñêîé ïîãðåøíîñòè, êàê ïðè èñïîëüçîâàíèè âåðîÿòíîñòíîãî ìåòîäà íà ìàëûõ êîëè÷åñò-
âàõ óíèêàëüíûõ çíà÷åíèé. Îñíîâíàÿ èäåÿ ìåòîäà ñîñòîèò â òîì, ÷òî ïîäñ÷åò óíèêàëüíûõ
IP àäðåñîâ â ðàçëè÷íûõ êîðòåæàõ â ðåàëüíîì âðåìåíè ïðîâîäèòñÿ â îïåðàòèâíîé ïàìÿòè.
Îáðàáîòêà äàííûõ âûïîëíÿåòñÿ íà êîðîòêèõ èíòåðâàëàõ è çàòåì îíè ïåðåäàþòñÿ â ïî-
ñòîÿííóþ ïàìÿòü ñ ïîìîùüþ àëãîðèòìà ñëèÿíèÿ. Îáðàáîòàííûå ñ÷åò÷èêè IP àäðåñîâ
ïîñòóïàþò â îáû÷íóþ áàçó äàííûõ èç ôàéëîâ ñ ïÿòèìèíóòíûì, ÷àñîâûì, ñóòî÷íûì,
íåäåëüíûì èëè ìåñÿ÷íûì èíòåðâàëîì.

K e y w o r d s: probability method, statistics, information technologies, queueing theory, big
data, statistical process control.

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 3 63

� A.V. Valialkin, O.I. Konashevych, 2016

The Problem. Ten billion network events across distinct dimensions per

day caused VertaMediaTM company to search for suitable methods of statistics op-

erating. As a glossary there are some words about professional sphere where the

discussed methods were applied.

VertaMediaTM is a company which provides services for Internet video ad-

vertising with its own originally developed software as a supply side platform.

Clients of the company are multiple ‘Publishers’. Demand Side Platforms (DSP)

with Advertisers (these names are professional language) are partners, who use

Publishers’ resources to promote advertisement. ‘Publishers’ are owners of ad-

vertising spaces on sites (‘spaces’ are usually called as ‘Inventory’); they can be

owners of sites or professional ad operators.

Advertisers and Demand Side Platforms are companies which promote on-

line video advertisement and are represented in VertaMediaTM system as a set of

advertisement campaigns (‘campaign_id’). Advertisers represent the interests of

initial clients, who are owners of promoted goods and services. Advertisers and

Publishers deal with intermediaries who sell and buy Advertisement/Invento-

A.V. Valialkin, O.I. Konashevych

64 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 3

Scheme of requests statistics

ries. ‘Users’ are sites visitors. They are those whom advertisements are shown,

while they are navigating web pages.

VertaMedia faced with issues of arranging arrays of data to get accurate sta-

tistics. Statistical data structure consists of unique IP addresses traffic coming to

Publishers’ sites and related with such IPs requests. The scheme of requests and

scope of structure array is shown on Figure.

Figure shows that up to 3 mln unique IP addresses generate daily up to 1 bln

requests to VertaMediaTM ad servers and cause these servers to operate up to 10

bln inquiries and replies to/from DSP.

Collecting and operating the traffic statistics of 10 bln events per day ap-

pears as a nontrivial task as it required notable resources of CPUs, RAM and per-

sistent storage. Statistics collecting was of business interest of the company

since it allowed its managers to make more accurate decisions and to control the

quality of services.

The number of unique IP addresses each publisher sends to each DSP is an

important metric used by traffic analysts in VertaMediaTM. This allows optimiz-

ing traffic flows for maximizing company’s and customers’ profits.

Body Section. Company’s researchers formulated the initial task: to create

a system algorithm that can quickly and accurately with minimum resources ex-

penditure respond to the question: “How much unique IP addresses caused the

events in the ad network with a specific period of time (the last 5 minutes, hour,

day, week and month) for given tuples: (country, publisher_id1, source_id2,

campaign_id3), (country, publisher_id, source_id), (country, publisher_id, cam-

paign_id), (country, publisher_id), (country, campaign_id); within the number

of events of 10 billion per day”.

Speed processing requirements were identified in the range of a couple of

seconds. At the first stage of developing statistics results were processed by

managers, therefore time of processing was not critical. However, company con-

siders to add automation. The developed methods show good processing time

and could be applied for further autoprocessing.

The first research activities showed that the obvious solution was less ac-

ceptable. The idea was to store logs of values (time, publisher_id, source_id,

campaign_id, ip) and count the required data ‘on the fly’. This approach required

too much recourses of disk space to store — about 1 Tb per day.

Another tested method — probabilistic counting [1] — did not fit mostly be-

cause of lack of accuracy and high requirements to RAM. The probabilistic

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 3 65

1 Publisher’s ID.
2 Publisher’s sub-ID which belongs to some web site under publisher’s control.
3 Advertiser’s ID.

method is one of fundamentals of Queueing theory. Company’s researchers con-

sidered that some of methods could give acceptable results. Ì. Harchor-Balter

emphasizes that queueing theory is built on a much broader area of mathematics

called stochastic modeling and analysis [2, 3]. Markovian assumptions [4], such

as assuming exponentially distributed service demands or a Poisson arrival

process [3], greatly simplify the analysis; hence much of the existing queueing

literature relies on such Markovian assumptions [2, 3]. However, in some cases

Markovian assumptions are very far from reality [2, 3]. After theoretical analysis it

was decided to make express experiments with HyperLogLog which is most close

to initial tasks and the program implemented in open libraries in GitHub [5].

HyperLogLog is an algorithm for the count-distinct problem, approxima-

ting the number of distinct elements in a multiset [6]. Calculating the exact cardi-

nality of a multiset requires an amount of memory proportional to the cardina-

lity, which is impractical for large data sets with high cardinality. Probabilistic

cardinality estimators, such as the HyperLogLog algorithm, use significantly

less memory than this, at the cost of obtaining only an approximation of the car-

dinality. The HyperLogLog algorithm is able to estimate cardinalities of >10^9

with a typical error rate of 2%, using 1.5 kB of memory [6].

A.V. Valialkin, O.I. Konashevych

66 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 3

stat=> select count(*) from
requests_unique_ip_day_campaign_id_publisher_id_source_id_country where time >
now() - interval ‘2 days’; count
———
587254
(1 row)

Table 1

stat=> select count(*) from
requests_unique_ip_day_campaign_id_publisher_id_source_id_country where ips_count >
1000 and time > now() - interval ‘2 days’;
count
———
51720
(1 row)

Table 2

stat=> select count(*) from
requests_unique_ip_day_campaign_id_publisher_id_source_id_country where ips_count =
1 and time > now() - interval ‘2 days’;
count
———
96180
(1 row)

Table 3

As a result of research it was found that only less than 10 % (51,720 of
587,254) of tuples had more than 1000 of unique IP addresses, which is shown in
two SQL requests examples below (Table 1 and Table 2).

It was also found that the number of tuples with one IP address exceeds 20 %
(96,180 of 587,254) (Table 3).

Experiments showed that tuples with numbers of IPs less than 1000 gave
high statistical error which was by an order of magnitude higher than that of an
accurate calculation. Another reason of failure with this approach was that this
method required too much on-line memory.

In order to estimate the number of unique IPs a separate memory object should

be kept for each tuple (time_interval, publisher_id, source_id, campaign_id). The

number of tuples exceeds one million and may increase by several orders at any time

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 3 67

stat=> select publisher_id, count(*) from requests_day_campaign_id_publisher_ id_source_ id_
country where time > now() - interval ‘2 days’ group by 1 order by 2 desc limit 10;

publisher_id | count

--------+---------
13346 | 207406
13280 | 67484
12540 | 59002
11752 | 45738
12776 | 30929
12046 | 26520
12139 | 21420
13540 | 13992
12333 | 13030
12070 | 11980
(10 rows)

Table 4

stat=> select publisher_id, source_id, count(*) from requests_day_campaign_id_publisher_id
_source_id_country where time > now() - interval ‘2 days’ group by 1,2 order by 3 desc limit 10;

publisher_id | source_id | count

-----------+-------------+--------
12540 | 1918 | 950
12540 | 1919 | 918
12540 | 1967 | 899
12540 | 1926 | 899
12540 | 1940 | 871
12540 | 1966 | 870
12540 | 1809 | 856
12540 | 1917 | 855
12540 | 1910 | 853
12540 | 1911 | 841
(10 rows)

Table 5

when ‘source_id’ cardinality increases. The size of each object starts from 1 Kb.

However the more it is, the higher is the resulting accuracy. But this solution does

not scale well for large amounts of memory for tuples.

Consequently research efforts were concentrated on searching of our own

original decision. The hypothesis to keep a list of unique addresses for each tuple

and to store it in operating memory did not work because a large amount of

memory with fast random access was required.

Another hypothesis was to keep a list of unique tuples for each IP. This solu-

tion was similar to the first hypothesis regarding the memory consumption. But

it was easier to count the number of unique IPs for incomplete tuples, for exam-

ple, (publisher_id, source_id), (publisher_id, campaign_id) etc.

Finally, it was decided to store the structure of data in a file sorted by IP,

publisher_id, source_id, campaign_id. Sorting is necessary for the subsequent

merging of a new data with the existing data in the file in streaming mode, with-

out use of additional memory and without random I/O.

This approach made it possible to reduce RAM consumption from a couple of

dozens of gigabytes to hundreds of megabytes during merging moments and mo-

ments of counters reset of unique IPs through all tuples. In this way researchers have

obtained the method which can form tuples shown in request examples below.

The number of unique IP counters for each (source_id, campaign_id, coun-

try) tuple per Publisher (‘publisher_id’) for the current day in Table 4.

The number of unique IP counters for each (campaign_id, country) tuple per

site (‘source_id’) in the context of a Publisher (‘publisher_id’) for the current

day in Table 5.

A.V. Valialkin, O.I. Konashevych

68 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 3

stat=> select publisher_id, source_id, campaign_id, count(*) from requests_day_campaign_

id_publisher_id_source_id_country where time > now() - interval ‘2 days’ group by 1,2,3 order

by 4 desc limit 10;

publisher_id | source_id | campaign_id | count

----------+---------+-----------+----

12540 | 1918 | 1024 | 181

12540 | 1918 | 968 | 181

12540 | 1918 | 1073 | 180

12540 | 1926 | 968 | 180

12540 | 1919 | 968 | 179

12540 | 1918 | 1015 | 178

12540 | 1970 | 1015 | 177

12540 | 1967 | 1024 | 175

12540 | 1919 | 1073 | 175

12540 | 1967 | 1073 | 174

(10 rows)

Table 6

The number of unique IP counters for each country per Advertiser’s Cam-

paign (‘campaign_id’) in the context of some Publisher’s site (respectively -

‘publisher_id’ and ‘source_id’) for the last day in Table 6.

The number of distinct (country, publisher_id) tuples per month in Table 7.

The number of distinct (country, publisher_id, source_id) tuples per month

in Table 8.

The number of distinct (country, publisher_id, source_id, campaign_id)

tuples per month in Table 9.

The number of distinct (country, campaign_id) tuples per month in Table 10.

Top unique IP counters (‘ips_count’) for the tuple (campaign_id, pub-

lisher_id, source_id, country) for à current day in Table 11.

A sample of the minimum number of unique IPs (‘ips_count’) for the tuple

(campaign_id, publisher_id, source_id, country) for a current day in Table 12.
Other combinations are possible, as it works as an ordinary SQL database.

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 3 69

stat=> select count(distinct country || ‘,’ || publisher_id || ‘,’ || source_id) from

requests_ unique_ip_month_campaign_id_publisher_id_source_id_country where time >

now() - interval ‘60 days’;

count

129516

(1 row)

Table 8

stat=> select count(distinct country || ‘,’ || publisher_id || ‘,’ || source_id || ‘,’ || campaign_id)

from requests_unique_ip_month_campaign_id_publisher_id_source_id_country where time >

now() - interval ‘60 days’;

count

2684197

(1 row)

Table 9

stat=> select count(distinct country || ‘,’ || publisher_id) from

requests_unique_ip_month_campaign_id_publisher_id_source_id_country where time >

now() - interval ‘60 days’;

count

1568

Table 7

The mentioned tuples are stored in RAM for the period of 5 minutes and
then merged with the file containing unique IP data for the current hour. ‘Hour’
file is merged with ‘Day’ file every hour, while ‘Day’ file is merged into ‘Week’
and ‘Month’ file every day.

A.V. Valialkin, O.I. Konashevych

70 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 3

stat=> select * from
requests_unique_ip_day_campaign_id_publisher_id_source_id_country where time >
now() - interval ‘2 days’ order by ips_count desc limit 10;

time |campaign_id| publisher_id| source_id | country |
ips_count

-----------------------+----------+---------+---------+-------------+--------------

2016-04-05 00:00:00+00 | 272 | 12392 | 11278 | US | 502561
2016-04-05 00:00:00+00 | 217 | 12392 | 11278 | US | 497580
2016-04-05 00:00:00+00 | 1209 | 12392 | 11278 | US | 494679
2016-04-05 00:00:00+00 | 552 | 12392 | 11278 | US | 491190
2016-04-05 00:00:00+00 | 992 | 12392 | 11278 | US | 485995
2016-04-05 00:00:00+00 | 1177 | 12392 | 11278 | US | 485951
2016-04-05 00:00:00+00 | 1026 | 12392 | 11278 | US | 478815
2016-04-05 00:00:00+00 | 272 | 12392 | 10604 | US | 456033
2016-04-05 00:00:00+00 | 217 | 12392 | 10604 | US | 450713
2016-04-05 00:00:00+00 | 1026 | 12392 | 10604 | US | 448131
(10 rows)

Table 11

stat=> select count(distinct country || ‘,’ || campaign_id) from
requests_unique_ip_month_campaign_id_publisher_id_source_id_country where time >
now() - interval ‘60 days’;

count

3115
(1 row)

Table 10

stat=> select * from
requests_unique_ip_day_campaign_id_publisher_id_source_id_country where time >
now() - interval ‘2 days’ order by ips_count limit 10;

time | campaign_id| publisher_id | source_id | country | ips_count

-----------------------+---------+-----------+------------+-------------+-----------

2016-04-05 00:00:00+00 | 21 | 11752 | 37718 | AU | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 30649 | AU | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 30653 | AU | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 35207 | CA | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 19011 | US | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 22799 | CA | 1
2016-04-05 00:00:00+00 | 21 | 11400 | 222831 | CA | 1
2016-04-05 00:00:00+00 | 21 | 11400 | 89986 | CA | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 44925 | CA | 1
2016-04-05 00:00:00+00 | 21 | 11752 | 38779 | CA | 1
(10 rows)

Table 12

Processing Algorithms. The basic data structure is a map keyed by IPs with

values containing a set of distinct (publisher_id, source_id, campaign_id) tuples.

Each incoming event updates the map unless the map contains data (pub-

lisher_id, source_id, campaign_id) for the corresponding IP. The map contains

data for the last 5 minutes. Limiting in-memory map to a short period of time (5

minutes in this case) allows limiting RAM usage (to 200MB in our case). The

map size is proportional to the number of distinct (ip, publisher_id, source_id,

campaign_id) tuples for the given time interval. Map update speed is O(1), i.e. it

does not depend on the map size.

Flushing in-memory map into a file. The output is sorted by IP, then by

(publisher_id, source_id, campaign_id). This opens the possibility for the next

step. Flushing requires only a small constant amount of RAM.

Merging two files (5min -> hourly, hourly -> daily, daily -> weekly, daily ->

->monthly). Merge is similar to the merge pass used in merge sort [7]. Merging

step requires only a small constant amount of RAM.

Counting unique IPs per (country, publisher_id, source_id, campaign_id),

(country, publisher_id), (country, publisher_id, source_id), (country, campaign_id)

by linear scan of the files. The counting occurs every hour for hourly statistics,

every day for daily statistics etc. Counting step requires RAM size proportional

to the number of unique (publisher_id, source_id, campaign_id) tuples (O(di-

mensions count)).

Scalability. Algorithms mentioned above have good scalability:

Per-IP in-memory maps may be populated concurrently by arbitrary number

of worker processes (threads).

Files to be merged may be split into arbitrary number of IP ranges, so ranges

may be merged concurrently.

Unique IPs’ counting may run concurrently on distinct IP ranges.

For example, in-memory maps can be divided into a few independent parts and

updated independent of each other in different threads (processes, machines). This

also makes the algorithm suitable for MapReduce-like processing [8].

Performance.

Currently the implementation processes up to 200K events per second on a

single CPU core.

RAM usage does not exceed 200MB during per-IP in-memory map upda-

ting. RAM usage does not exceed 1GB during unique IPs counting step.

Files are merged by a single thread (CPU core) at the speed of 40K unique

IPs per second.

Given the perfect scalability of the algorithm, it should be able to process up

to 200K*40=8M events per second on a single machine containing 40 CPU cores

(which is typical datacenter hardware). This results in 8M*3600*24 = ~700G

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 3 71

events per day per a single machine. The processing will require only

200MB*40 = 8GB of RAM, since unique IPs counting step (which requires 1GB

of RAM per CPU core) may be performed serially across CPU cores.

Conclusion. As a summary it is noted that the method which was developed
by VertaMediaTM researchers can be applied to similar tasks in different spheres,
that it is interesting from the methodological point of view. In particular it could
be applied for data processing in Statistical process control, which uses check-
lists to help to distinguish the “special” causes from the variations of the “usual”
reasons to provide quality control [9].

Let us name key positions research outputs:
• neither logs nor probability could not satisfy the needs for accurate statis-

tics of unique IPs in the range of 10 bln events daily because of high demands for
resources and too remarkable statistical error;

• the main point of the method is to distinct wanted tuples and to operate them
in RAM within 5 minutes and then to store the results in a persistent memory;

• processed data set is stored in files in selected periods of time (ex. 5 mi-
nutes, hourly, daily, weekly, monthly);

• DB statistics files (by periods) is updating according to the merging algorithm;
• flushing unique IP counters to db after linear scan of files.
Developed methods have shown high efficiency in daily 10 bln system

events flow in resources usage (CPUs, RAM and persistent memory) compared
to methods of logs counting and probability methods. Finally, developed me-
thods are high scalable as could be used in distributed systems and process even
more data in several independent threads with minimum resources usage.

Îïèñàíî ìåòîä, ÿêèé äîçâîëÿº ï³äðàõóâàòè ê³ëüê³ñòü óí³êàëüíèõ IP àäðåñ ³ç âåëèêî¿ ê³ëüêîñò³
ð³çíèõ íàáîð³â äàíèõ (êîðòåæ³â). Ìåòîäè, áàçîâàí³ íà ñêàíóâàíí³ ëîã³â òà ³ìîâ³ðí³ñíîìó
ï³äðàõóíêó ïðèâåëè äî íåçàäîâ³ëüíèõ ðåçóëüòàò³â. Çàïðîïîíîâàíèé ìåòîä äîçâîëÿº óíèêíóòè
íàäì³ðíîãî âèêîðèñòàííÿ ðåñóðñ³â (ïðîöåñîðà, îïåðàòèâíî¿ òà ïîñò³éíî¿ ïàì’ÿò³), ÿê öå â³äáó-
âàºòüñÿ ïðè âèêîðèñòàíí³ ìåòîäà ñêàíóâàííÿ íåîáðîáëåíèõ ëîã³â òà ³ìîâ³ðí³ñíîãî ìåòîäó
ï³äðàõóíêó, à òàêîæ óíèêíóòè âåëèêî¿ ñòàòèñòè÷íî¿ ïîõèáêè, ÿê ïðè âèêîðèñòàíí³ ³ìîâ³ðí³ñ-
íîãî ìåòîäà íà ìàëèõ ê³ëüêîñòÿõ óí³êàëüíèõ çíà÷åíü. Îñíîâíà ³äåÿ ìåòîäó ïîëÿãàº â òîìó, ùî
ï³äðàõóíîê óí³êàëüíèõ IP àäðåñ â ð³çíèõ êîðòåæàõ â ðåàëüíîìó ÷àñ³ ïðîâîäèòüñÿ â îïåðàòèâ-
í³é ïàì’ÿò³. Îáðîáêà äàíèõ âèêîíóºòüñÿ íà êîðîòêèõ ³íòåðâàëàõ ³ ïîò³ì âîíè ïåðåäàþòüñÿ ó
ïîñò³éíó ïàì’ÿòü çã³äíî ç àëãîðèòìîì çëèòòÿ. Îáðîáëåí³ ë³÷èëüíèêè IP àäðåñ íàäõîäÿòü ç
ôàéë³â ó çâè÷àéíó áàçó äàíèõ ç ï’ÿòèõâèëèííèì, ãîäèííèì, äîáîâèì, òèæíåâèì àáî ì³ñÿ÷íèì
³íòåðâàëîì.

REFERENCES

1. Erd��os, P. (1959), available at: http://cms.math.ca/10.4153/CJM- 1959-003-9 (accessed April 4,
2016).

2. Harchol-Balter, M. (2013), Performance Modeling and Design of Computer Systems.
Queueing Theory in Action, Cambridge University Press, New York, USA.

A.V. Valialkin, O.I. Konashevych

72 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 3

3. Cox, D.R. and Isham, V.I. (1980), Point Processes, Chapman & Hall, London, UK.

4. Durrett, R. (2010), Probability: Theory and Examples (4th ed.) Cambridge University Press,
Camridge, USA.

5. Available at: https://github.com/clarkduvall/hyperloglog (accessed October 21, 2015).

6. Flajolet, P., Fusy, E., Gandouet, O. and Meunier, F. (2007), HyperLogLog: the analysis of a
near-optimal cardinality estimation algorithm, Proceedings of the 2007 International Con-
ference on the Analysis of Algorithm(AOFA ’07), available at: http://algo.inria.fr/flajolet/
Publications/FlFuGaMe07.pdf (accessed April 4, 2016).

7. Knuth, D. (1998), “Section 5.2.4: Sorting by Merging”, The Art of Computer Programming
3 (2nd ed.), Addison Wesley, USA Sorting and Searching.

8. Dean, J. and Ghemawat, S. (2004), MapReduce: Simplified Data Processing on Large Clus-
ters, available at: http://static.googleusercontent.com/media/research.google.com/es/us/ar-
chive/mapreduce-osdi04.pdf (accessed April 4, 2016).

9. Shewhart, W. (1931), Economic Control of Quality of Manufactured Product, D.Van
Nostrand Company, New York, USA. ISBN 0-87389-076-0.

Received 20.04.16;
After revision 28.04.16

VALIALKIN Aliaksandr Valerievich, Backend developer, VertaMedia Company, USA. Belarussian

State University of Informatics and Radioelectronics, Automated Control in Technical Systems, 2005.

The field of research — systems design, systems performance optimization, high load systems.

KONASHEVYCH Oleksii Ihorovych is a post-graduate student of the Pukhov Institute for Modeling in

Energy Engineering of NAS of Ukraine; graduated from the National Aviation University in 2005; in

2011 he graduated from Kyiv National Trade and Economic University, Advanced Training Institute.

The field of research — blockchain technology.

Real-time method of accurate unique IPs counting across high number of distinct dimensions

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 3 73

