Использование корундовых форм с выжигаемыми моделями для получения деталей газотурбинных установок

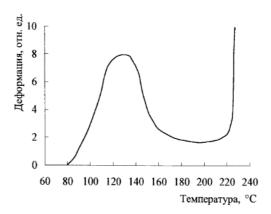
В. В. Лашнева, И. И. Максюта * , Ю. Г. Квасницкая * , Е. В. Михнян * , А. В. Нейма *

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев, e-mail: lashneva@ipms.kiev.ua *Физико-технологический институт металлов и сплавов НАН Украины, Киев, e-mail: teleportik123@ukr.net

Для получения деталей газотурбинных установок использованы корундовые формы с моделями из пенополистирола. Модели и продукты деструкции из форм удаляли методом двухэтапного выжигания. Приведены оптимальные температурно-временные параметры данного процесса. Показано, что разработанная технология позволяет получить качественные отливки из жаропрочного сплава ЧС 104 и стали 18Х2Н4МА без поверхностного и объемного науглероживания.

Ключевые слова: жаропрочный сплав, корундовая форма, термодеструкция, пенополистирол, модель, выжигание.

Введение


Проблема производства газотурбинных установок (ГТУ) большой мощности и длительного ресурса работы, например изготовление энергетических агрегатов газоперекачивающих станций, требует решения материаловедческих и технологических задач, связанных с процессами литья, в том числе формообразования при получении габаритных отливок.

На предприятиях энергомашиностроения как в Украине, так и за рубежом в течение последних десятилетий традиционной технологией, используемой для получения литых фасонных деталей, в частности сложнопрофильных лопаток, является литье в многослойные оболочковые формы с выплавляемыми воскосодержащими моделями (метод ЛВМ). Этот процесс достаточно трудоемок и экологически неблагоприятен. Кроме того, из-за низкой (около 30 °C) температуры размягчения воскосодержащей модельной массы, ее значительной объемной и линейной усадки и высокого коэффициента расширения при нагревании этот метод имеет ограниченные возможности при возрастании массы отливок. Повышение точности геометрических размеров отливок, снижение трудозатрат, в том числе на оборудование и материалы, сокращение отходов производства обеспечивает способ литья с использованием газифицированных моделей из полимеров (ЛГМ), в том числе пенополистирола (ППС). Однако опасность появления специфических дефектов поверхности отливок, в частности науглероживания, коксогазовых раковин, пленов углерода, образующихся вследствие взаимодействия

© В. В. Лашнева, И. И. Максюта, Ю. Г. Квасницкая, Е. В. Михнян, А. В. Нейма, 2015

Рис. 1. Деформация полистирола в зависимости от температуры.

металла, заполняющего форму, с продуктами неполной деструкции модели, стала причиной того, что этот процесс практически не применяется для жаропрочных сплавов со строго контролируемым содержанием углерода [1—4].

В связи с актуальностью указанных проблем отечественного газотурбостроения целью проводимых исследований является оптимизация процесса литья и изготовления форм по удаляемым способом выжигания моделям из ППС при получении рабочих лопаток первых ступеней силовой турбины серийного агрегата ДГ80 из жаропрочного сплава типа ЧС 104-ВИ с повышенным содержанием активных тугоплавких элементов. Это требует, в свою очередь, повышения термической и химической стойкости керамической оболочки формы, что является предметом многолетних совместных исследовательских разработок НПКГ "Зоря"—"Машпроект", Физико-технологического института металлов и сплавов (ФТИМС) НАНУ и Института проблем материаловедения им. И. Н. Францевича НАН Украины.

Анализ научной литературы показал, что механизм структурнофазовых изменений для разных температурно-временных режимов, происходящих в полистироле под воздействием высоких температур, можно представить следующим образом [1, 5, 6]. Подвод тепла к ППС в процессе тепловой обработки приводит к критическому или близкому к нему состоянию и дальнейший обогрев его вызывает усадку материала и перевод его в вязко-текучий гель [1, 6] (рис. 1).

В работе ППС-модели и продукты деструкции из оболочковых форм удаляли двухэтапным выжиганием, решая при этом задачу сохранения основных этапов технологического процесса изготовления форм, принятых для конкретной номенклатуры отливок на предприятиях машиностроения.

Экспериментальная часть

Известно, что в практике литейного производства встречаются три основных способа выжигания модели из формы, а именно: нагревом в сушильной печи, ацетиленокислородным пламенем и струей кислорода.

В работе [6] установлено, что при нагревании формы в сушильной печи время удаления модели определяется температурой: например, при 300 °С время полного удаления модели из формы составляет 4 ч, а при 500 °С — только 1 ч. Противопригарное покрытие, содержащее в качестве связующей основы гидролизованный раствор этилсиликата или жидкое стекло, может отслаиваться от формы и растрескиваться. Поэтому указанный способ удаления модели рекомендуется только для получения отливок среднего развеса, формы которых можно выполнять повышенной плотности без противопригарного покрытия.

Выжигание ацетиленокислородным пламенем до настоящего времени широко не применялось [6]. Наилучшие результаты были получены при выжигании моделей направленной струей кислорода. Стояк (выпор) из пенополистирола поджигают и в очаг горения при помощи резака или трубки направляют струю кислорода. Модель быстро выгорает. Продолжительность удаления модели зависит от ее объема и составляет обычно 1—5 мин. Выжигание сопровождается обильным выделением дыма, поэтому его необходимо проводить под вытяжным зонтом.

работе [7] запатентован достаточно рациональный способ использования повышенных температур для удаления ППС-моделей, а именно термоизвлечение ППС-модели с помощью нагретой проволоки. При этом процесс выжигания ППС-модели применяется не полностью, а рационально используется низкотемпературный этап, приводящий к термокомпактированию, то есть к усадке модели, что дает возможность ее дальнейшего механического извлечения на стадии частичного оплавления. Таким образом, удается избежать накопления зольного остатка от сжигания ППС-модели в облицовочных слоях формы и возможного насыщения углеродом приповерхностной зоны отливки. Авторами работы [8] возможность случае необходимости опробована В применения дополнительной операции, включающей предварительное растворение зольных остатков ППС в полости формы органическими растворителями с последующим сливом через специальное устройство, но это отрицательно влияет на трудоемкость и экономичность процесса.

В нашей работе температура полного выжигания выбрана с учетом результатов, упомянутых в монографии Шуляка В. С. [1] как "способ Replicast-CS (Shellmouldingrefractory)".

Для изготовления экспериментальной партии оболочковых форм использовали жидкостекольное связующее ТУ У 24.1-02970062-004:2011 [5]. Применение жидкого стекла вместо этилсиликата значительно удешевляет процесс и сокращает до 60 мин цикл изготовления оболочки. В используемой нами методике в жидкостекольное связующее при постоянном перемешивании вводили в качестве огнеупорного наполнителя маршалит ТУ 5717-017-07623170-98 до получения суспензии в псевдосжиженном состоянии. В суспензию окунали ППС-модели, которые после извлечения обсыпали кварцевым песком ДСТУ Б В.2.7-131:2007 с добавлением в качестве закрепителя сухого порошка хлористого аммония ГОСТ 3773-72 в количестве 3,5—4,0% от массы песка. С нанесенной обсыпкой модели выдерживали на воздухе в течение 6—8 мин. Подобным образом наносили 5—6 слоев.

Для проведения исследований использовали образцы ППС 2 типов, применяемых в литейном производстве для изготовления моделей. Модели первого типа изготавливали двух размеров: объемом 34 и 103 см³ из пенополистирола марки ПСБ-25 (EPS-EN13163) по ДСТУ Б EN 13163-2013 плотностью 25 кг/м³. Второй тип образцов аналогичных размеров получали из значительно более прочного экструдированного ППС марки 4000 CS (XPS СТО 72746455-3.3.1–2012) плотностью 35 кг/м³, имеющего однородную структуру из закрытых герметичных ячеек, которые содержали воздух. Этот тип ППС благодаря плотной структуре, как показал предыдущий опыт, обеспечивает большую жесткость и понижен-

ную шероховатость элементов модели, при этом является экологически чистым, поскольку при его производстве не используются фреоны.

Перед испытанием образцы измеряли в трех точках с погрешностью не более 0,1 мм. Для взвешивания образцов с целью определения плотности р по стандартной методике использовали весы лабораторные электронные 4-го класса модели ВЛ Э134 завода "Госметр" (г. Санкт-Петербург).

В качестве опытного сплава при разработке температурновременных режимов выбрана сталь марки 18Х2Н4МА, экономически более целесообразно. Для проведения лабораторных испытаний при получении деталей ГТУ взяты разрабатываемые во ФТИМС НАНУ совместно с ГП НПКГ "Зоря—Машпроект" Николаев) высокохромистые модельные сплавы на основе никеля марки ЧС 104 (XH57КТВЮМБЛ) (% (мас.)): Ni (основа) + 0,10C + 20,0Cr + 2,5Al + 3,5Ti + 10,2Co + 0,05Zr + 0,5Fe, в которые с целью эксплуатационных характеристик вводили повышения дополнительного легирующего комплекса (0,20—0,60)Мо—(2,0—5,0)W— (0,10-0,40)Nb-(1,0-3,0)Та-(1,0-3,0)Re [9]. Выбор сплава обусловлен широкой востребованностью этой марки на предприятиях газотурбостроения Украины и России.

В качестве формовочной композиции применяли огнеупорную смесь на основе микропорошка М10 электрокорунда белого марки 24А ГОСТ 28818-90, модифицированную порошками алюминия АСД-4 ТУ 48-5-226-82 и кремния Кр-1 ГОСТ 2169-69, а в качестве связующего — этилсиликат 40 ТУ 2435-427-05763441-2004 [10]. При изготовлении формы в качестве базовой технологии использовали регламент ТИ 260-424-91, принятый к серийному производству форм на предприятиях машиностроения, которые производят фасонные отливки по выплавляемым молелям для леталей ГТУ.

Согласно температурной зависимости фазовых превращений в пенополистироле [1], усадка ППС становится заметной при температуре выше 100 °C и усиливается к 160 °C (рис. 1). Поэтому первый этап выжигания из готовых форм выполняли в камере лабораторного сушильного электрошкафа СНОЛ 67/350 с диапазоном автоматического регулирования температуры в интервале 50—350 °C. Формы в течение 1 ч подвергали тепловому воздействию при постепенном повышении температуры от 20 до 150 °C с целью инициации первичного газовыделения и начального этапа деструктивных изменений. При нагревании фиксировали резкое уменьшение объема ППС-моделей с первых минут и, соответственно, увеличение их плотности. Температуру постоянно дополнительно контролировали с помощью хромель-алюмелевой термопары. Спай термопары снабдили специальным приспособлением, позволяющим фиксировать его в любой точке пространства, как в объеме формы, так и в рабочей зоне сушильного шкафа. Наблюдали, что при нагреве ППС обеих марок до температур 80—85 °C он переходит в высокоэластичное состояние и увеличивается в объеме за счет внутреннего давления паров парообразователя, при дальнейшем нагреве до $150\,^{\circ}\mathrm{C}$ постепенно переходит в вязкотекучее состояние.

Второй высокотемпературный этап выжигания проводили в электрической печи сопротивления марки СНОЛ 7,2/900 одновременно с отжигом оболочки формы по режиму: нагрев до температур 700—750 °C со скоростью 120—130 °C/ч и последующей выдержкой в течение 2 ч. В интервале температур 500—550 °C происходит особенно интенсивное газовыделение, сопровождающееся растрескиванием модели. Предположительно, состав выделившихся газов может соответствовать полученному в работах [1, 6].

Наблюдаемым авторами экзотермическим эффектом деструкции высокоплотного ППС с усиленным газоотделением, приводящим к объемному расширению модели, объясняется то, что оболочки с моделями повышенной плотности в наших опытах растрескивались в интервале температур 130—150 °С. Действительно, как отмечается в работе [1], при плотности модели 35 кг/м³ более четко фиксируются фазовые переходы термодеструкции модели: усадка и переход полистирола в эластичное состояние, плавление и начало деполимеризации (300 °C), образование и накопление жидкой фазы и ее термодеструкции до паровой и газовой фаз со значительным поглощением тепла. Кроме того, уцелевшие оболочки после выжигания имели на внутренней поверхности следы выгоревшего геля в виде зольного остатка (сажи). Подобный эффект образования зольного скопления наблюдали в работе [11]. Химический анализ показал, что эти скопления более чем на 98% состоят из двуоксида кремния, а содержание углерода в них и в форме — ~0,12%, то есть такое же, как и в формах, получаемых по выплавляемым моделям. Одной из причин возникновения дефектов может являться адсорбционное поглощение гидролизованного раствора этилсиликата (ГРЭ) микропорами пенополистироловой модели. Так, установлено, что ППС-модели лучше, чем восковые, смачиваются суспензиями, а высохшие покрытия с трудом отделяются от моделей. На основании этого выдвинуто предположение о механизме образования скоплений пылевидного материала. При нанесении покрытия микровпадины на поверхности моделей заполняются жидкой фазой суспензии ГРЭ. После сушки покрытий микровпадины остаются заполненными высохшим связующим, состоящим в основном из SiO₂. При выжигании моделей суспензия ГРЭ смывается расплавом пенополистирола и скапливается в тех местах формы, где сосредотачиваются остатки модели при выжигании. Для устранения этого явления

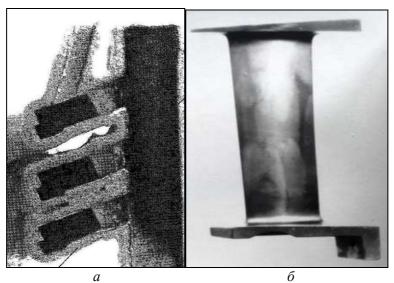


Рис. 2. Опытные образцы, полученные при литье по выжигаемым моделям: a — разрез формы после выжигания ППС-модели; δ — лопатка ГТУ.

модели покрывали маслосодержащими веществами, например водомасляными эмульсиями, которые уменьшают адгезионное взаимодействие ГРЭ.

В наших опытах оболочки с моделью из блочного низкоплотного ППС все уцелели после выжигания и практически не содержали продуктов сгорания углеводородов во внутренних слоях формы. Визуальный осмотр оболочек (10 шт.) и последующее использование форм для получения сопловых лопаток (рис. 2) из жаропрочного сплава марки ЧС 104 и стали 18Х2Н4МА показали высокую трещиностойкость: из залитых десяти форм разного объема растрескивание обнаружили у одной в области перехода стояк—чаша. В последующем выявленный недостаток предполагается устранить, увеличив количество облицовочных слоев или введя модификаторы в формовочную смесь [10].

Проведенные металлографический и микрорентгеноспектральный анализы поперечного шлифа отливки из жаропрочного сплава показали

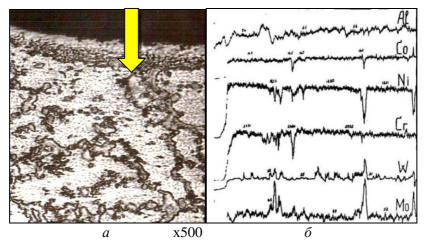


Рис. 3. Фрагмент микроструктуры литой детали из жаропрочного сплава ЧС 104 (a) и кривые распределения легирующих элементов (δ) вдоль зоны сканирования отливки (MPCA, микроанализатор JXA8600 фирмы "JEOL").

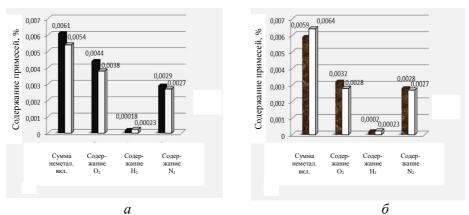


Рис. 4. Содержание газов в приповерхностной зоне в отливках, полученных способами ЛВМ (\blacksquare) и ЛГМ (\square), для жаропрочного сплава ЧС 104 (a) и стали 18Х2Н4МА (δ).

значительное уменьшение (с 60 до 20 мкм) глубины контактной зоны металл—форма. Не обнаружено обеднения основными легирующими элементами — алюминием, кобальтом, никелем, хромом, вольфрамом, молибденом. Практически не наблюдается дефектов приповерхностного слоя в виде зоны раковин (рис. 3, 4). Анализ поверхности отливки с помощью профилографа-профилометра показал улучшение шероховатости детали.

Выводы

Показано, что возможно достаточно полно удалить продукты деструкции ППС-модели, а именно зольный остаток (сажу), предложенным способом литья по удаляемым моделям — выжиганием и получить отливку с более низкими показателями шероховатости в сравнении с данными по аналогичным отливкам, изготовленным принятым на предприятиях отрасли методом ЛВМ.

- Шуляк В. С. Литье по газифицируемым моделям. С.-Пб. : НПО "Профессионал", 2007. — 408 с.
- Шинский О. И. Газогидродинамика и технологии литья железоуглеродистых и цветных сплавов по газифицируемым моделям: Дис. ... д-ра техн. наук. — Киев, 1997. — 481 с.
- 3. *Тупчиенко В. И.* Разработка и внедрение новых направлений процесса литья по растворяемым пенополистироловым моделям: Дис. ... канд. техн. наук. Краматорск, 1984. 224 с.
- 4. *Петров В. В.* Теоретические и технологические основы управления свойствами моделей и форм в литье по удаляемым моделям для получения качественных отливок : Автореф. дис. . . . д-ра техн. наук. Комсомольск-на-Амуре, 2002. 394 с.
- 5. *Мандрик Е. А.* Совершенствование метода точного литья по растворяемым пенополистироловым моделям / Е. А. Мандрик, В. И. Тупчиенко, Е. А. Апанасенко // Прогрессивные методы получения отливок. Нижний Новгород, 1983. С. 33—35.
- 6. Литье по выжигаемым моделям: (Уч. пособие для студентов по специальности 110400 литейное производство черных и цветных металлов) / Сост. В. М. Григорьев. Хабаровск: Изд-во Хабар. гос. техн. ун-та., 2002. 58 с.
- Пат. 91224 UA. Способ формовки по разовым моделям / О. И. Шинский, В. С. Дорошенко, А. В. Нейма. Опубл. 25.06.2014. Бюл. № 12.
- 8. *Шинский О. И.* Кинетика растворения пенополистироловых моделей при способе литья в оболочковые формы / [О. И. Шинский, И. И. Максюта, Ю. Г. Квасницкая и др.] // Процессы литья. 2014. № 4. С. 40—48.
- 9. *Инструкция И ЖАКИ*. 105,509-2001: Сплавы жаропрочные литейные для лопаток газовых турбин (Паспорт сплава ЧС 104ВИ).
- Пат. 82603 України. Суміш для виготовлення ливарних керамічних стрижнів / [В. М. Сімановський, Ю. Г. Квасницька, О. Й. Шинський та ін.]. Опубл. 25.04.2008 р. Бюл. № 8.
- 11. *Конотопов В. С.* Улучшение качества отливок, получаемых по пенополистироловым моделям в керамических формах / В. С. Конотопов, С. И. Кулагина, А. Ф. Бойко // Литейное производство. 1988. № 9. С. 34—37.

Використання корундових форм з моделями, що випалюються, для одержання деталей газотурбінних установок

В. В. Лашнева, І. І. Максюта, Ю. Г. Квасницька, О. В. Михнян, О. В. Нейма

Для одержання деталей газотурбінних установок використовували корундові форми з моделями з пінополістиролу. Моделі та продукти деструкції з форм видаляли методом двохетапного випалу. Наведено оптимальні температурно-часові параметри цього процесу. Показано, что розроблена технологія дозволяє одержати якісні виливки з жароміцного сплаву ЧС 104 і сталі 18Х2Н4МА без поверхневого та об'ємного навуглецювання.

Ключові слова: жароміцний сплав, корундова форма, термодеструкція, пінополістирол, модель, випал.

Using of corundum forms with burns models to produce parts of the gas-turbine plants

V. V. Lashneva, I. I. Maksiuta, Yu. G. Kvasnitskaya, E. V. Mihnyan, A. V. Neima

Corundum forms with polystyrene models were used to produce parts of the gas-turbine plants. Polystyrene models and products of destruction from forms were removed by the two-stage burn method. Optimal temperature and time parameters of this process are presented. It is shown that the developed technology allows to obtain high-quality castings from YC 104 heat-resistant alloy and 18X2H4MA steel without surface and volumetric carburizing.

Keywords: heat-resistant alloy, corundum form, thermal destruction, polystyrene, model, burning.