С.В. Мотыжев, Е.Г. Лунев, А.П. Толстошеев

Морской гидрофизический институт НАН Украины, г. Севастополь

РАЗВИТИЕ ДРИФТЕРНЫХ ТЕХНОЛОГИЙ И ИХ ВНЕДРЕНИЕ В ПРАКТИКУ ОКЕАНОГРАФИЧЕСКИХ НАБЛЮДЕНИЙ В ЧЕРНОМ МОРЕ И МИРОВОМ ОКЕАНЕ

В 2006 – 2010 гг. в Морском гидрофизическом институте НАН Украины разработаны несколько поколений дрейфующих буев с уникальными измерительными возможностями, работающими как в традиционной среде спутниковой системы сбора данных и определения координат платформ *Argos-2*, так и в составе новых систем спутниковой связи *Iridium* и *Argos-3*. В статье приведены результаты сравнительного анализа эффективности применения разных систем спутниковой связи, обслуживающих сеть поверхностных дрейфующих буев.

КЛЮЧЕВЫЕ СЛОВА: дрифтер, морская поверхность, мониторинг, спутниковые системы связи, сотовые системы связи, Черное море.

Введение. Эффективность реализации принципов устойчивого развития в значительной степени определяется уровнем фундаментальных и прикладных исследований окружающей среды. Достоверность результатов таких исследований зависит, в свою очередь, от качества и количества информации о состоянии экосистемы и тенденциях ее развития. Для Украины одним из важнейших сегментов экосистемы является Азово-Черноморский бассейн, исследования которого с конца прошлого столетия в силу известных причин существенно сократились и в настоящее время носят фрагментарный характер. Значительная изменчивость этого региона под воздействием естественных и антропогенных факторов определила ситуацию, когда уровень наших знаний о состоянии многих ключевых компонентов экосистемы Черного и Азовского морей перестал быть адекватным. По этим причинам установление комплексного систематического мониторинга морской среды и приводной атмосферы представляется принципиально важной научной и практической задачей для Украины.

Результаты анализа современного состояния средств и методов решения этой задачи сводятся к следующему. В силу экономических причин в настоящее время оказались практически свернуты программы экспедиционных исследований, поставлявшие ранее основной объем информационную иссотоянии морской среды и приводной атмосферы. Возникшую информационную нишу в известной мере заполнили данные, получаемые дистанционными методами. Однако, при их несомненных достоинствах, эти методы позволяют получать, как правило, лишь косвенную информацию о климато-формирующих параметрах морской поверхности и приводной атмосферы. Достоверность такой информации определяется возможностями верификации результатов зондирования по данным контактных измерений гидрофизических полей, выполняемых в изучаемом регионе, а систематичность ее поступления во многом определяется погодными условиями.

В последние два десятилетия основным источником систематической оперативной комплексной информации о состоянии деятельного слоя океана и

© С.В. Мотыжев, Е.Г. Лунев, А.П. Толстошеев, 2011

приводной атмосферы стали автономные дрейфующие платформы сбора данных и передачи информации по спутниковым каналам связи – поверхностные дрифтеры. Современные измерительно-информационные возможности дрифтеров позволяют выполнять контактные измерения практически всего комплекса параметров среды в любом районе Мирового океана, обеспечивая доставку информации пользователям в режиме времени, близком к реальному. К настоящему времени в океане постоянно функционирует наблюдательная сеть, численность дрифтеров в которой с 2008 г. поддерживается на уровне не менее 1 250 поверхностных буев, обеспечивая плотность наблюдений 500 × 500 км. Дальнейшее увеличение числа дрифтеров в настоящее время ограничивается финансовыми проблемами, связанными с поддержанием работоспособности дрифтерной сети, что обусловило актуальность задачи повышения эффективности ее использования. Для решения этой задачи Межправительственной Океанографической Комиссией (МОК) ЮНЕСКО совместно с Всемирной Метеорологической Организацией (ВМО) разработана схема поэтапного развития дрифтерных наблюдений при помощи пилотных проектов. Целями пилотных проектов являются:

- расширение информационно-измерительных возможностей дрифтеров;

- повышение пространственно-временного разрешения измерений;

– внедрение новых систем связи;

– совершенствование технологии сбора, передачи, обработки и представления данных;

- увеличение времени автономной работы буев;

- создание алгоритмов для оперативного и отсроченного анализа данных.

В статье приведены некоторые результаты работ по развитию дрифтерной технологии, выполненных в 2006 – 2010 гг. в Морском гидрофизическом институте НАН Украины (МГИ НАН Украины), который является полноправным и активным участником этих проектов.

Исследования по развитию дрифтерной технологии были направлены на решение целого комплекса научно-технических проблем. Среди полученных результатов наиболее интересными для пользователей являются, по нашему мнению, следующие:

 – создание термопрофилирующих дрифтеров с термолинией до глубины около 80 м [1];

– внедрение в состав дрифтера приемника глобальной системы позиционирования (*GPS*) и системы синхронизации времени измерений с началом каждого часа;

– адаптация каналов передачи данных дрифтеров к спутниковым системам связи *Argos-3* и *Iridium* [2];

 – создание дрифтеров с передачей информации по каналам сотовой связи для мониторинга шельфовой зоны Азово-Черноморского бассейна [3];

– создание программно-методического обеспечения для экспорта дрифтерной информации в базу океанографических данных [4].

В публикациях, приведенных выше, были рассмотрены предварительные результаты, полученные на различных стадиях выполнения проектов. В настоящей статье мы представляем результаты анализа, выполненного с привлечением материалов по всему объему данных, полученных в дрифтерных экспериментах 2006 – 2010 гг. Сведения о дрейфующих буях, разработанных в МГИ НАН Украины в этот период, приведены в табл. 1.

№ п/п	Идентифика- ционный номер буя	Тип буя	Тип спутниковой связи	Координаты точки развертывания	Район дрейфа	Дата развертывания	Дата окончания работы	Продолжитель- ность работы, сутки
1	2	3	4	5	6	7	8	9
1	ID 66475/ WMO 15964			44° 30' с. ш. 33° 30' з. д.		30.05.2006	31.08.2006	93
2	ID 66477/ WMO 61505			44° 30' с. ш. 33° 30' з. д.		07.02.2008	17.05.2008	100
3	<i>ID</i> 66478/ <i>WMO</i> 62501			44° 30' с. ш. 33° 30' з. д.		25.05.2007	07.11.2007	166
4	ID 34264 WMO 61684		Argos-2	40° 18' с. ш. 51° 24' в. д.	Северная Атлантика	20.07.2008	27.09.2008	69
5	ID 34265 WMO 61685			41° 30' с. ш. 50° 18' в. д.		05.10.2006	16.02.2007	134
6	ID 34266 WMO 61686	SVP-BIC		40° 20' с. ш. 51° 24' в. д.		05.10.2006	05.05.2007	212
7	ID 34267 WMO 61770			39° 00' с. ш. 51° 18' в. д.		06.10.2006	19.02.2007	136
8	ID 34268 WMO 61771			39° 00' с. ш. 52° 00' в. д.		20.07.2008	15.12.2008	148
9	ID 40414	SVP-BT/ GPS		44° 00' с. ш. 32° 30' в. д.		02.07.2006	22.12.2006	172
10	ID 40418			43° 06' с. ш. 31° 24' в. д.	Черное море	03.07.2006	22.12.2006	172
11	ID 47621			43° 06' с. ш. 31° 24' в. д.	-	03.07.2006	01.10.2006	90

Таблица 1. Общие сведения об автономных дрейфующих буях, разработанных в МГИ НАН Украины в 2006 – 2010 гг.

261

1	2	3	4	5	6	7	8	9
12	ID 56090	SVD DTCCO		44° 00' с. ш. 32° 30' в. д.		03.07.2006	06.03.2007	246
13	ID 56091	<i>SVP-BI</i> C00		44° 00' с. ш. 32° 30' в. д.		03.07.2006	10.11.2006	130
14	ID 56091			44° 00' с. ш. 32° 30' в. д.	Черное море	03.07.2006	10.11.2006	130
15	ID 56092	SVP-BTC60		44° 00' с. ш. 32° 30' в. д.		03.07.2006	08.11.2006	128
16	ID 56093			44° 00' с. ш. 32° 30' в. д.		03.07.2006	05.11.2006	125
17	ID 67379 WMO 56532		Argos 2	45° 06' ю. ш. 110° 00' в. д.		06.12.2006	22.06.2008	564
18	ID 67380 WMO 56529		Argos-2	20° 00' ю. ш. 110° 00' в. д.		17.112006	14.09.2007	754
19	ID 67381 WMO 56531			50° 00' ю. ш. 74° 00' в. д.		11.05.2006	05.09.2008	1653
20	ID 67382 WMO 56519	SVP-B		28° 42' ю. ш. 110° 36' в. д.	Индийский океан	30.09.2009	10.11.2009	415
21	ID 34129 WMO 56541			57° 42' ю. ш. 75° 00' в. д.		18.02.2008	24.06.2008	127
22	ID 34134 WMO 56522			15° 18' ю. ш. 91° 36' в. д.		26.12.2007	+	
23	ID 34135 WMO 56515			55° 48' ю. ш. 110° 06' в. д.		04.04.2007	23.08.2009	872

1	2	3	4	5	6	7	8	9
24	<i>ID</i> 34138 <i>WMO</i> 56514			55° 48' ю. ш. 110° 00' в. д.		04.11.2007	04.09.2009	670
25	ID 34148 WMO 56512	SVP-B	Argos-2	46° 30' ю. ш. 110° 18' в. д.	Индийский	07.12.2007	16.07.2009	587
26	ID 34149 WMO 53947	SVI-D		13° 00' ю. ш. 88° 06' в. д.	океан	15.10.2007	15.06.2008	244
27	ID 34150 WMO 56506	SVP-BTC80/ RTC		21° 54' ю. ш. 112° 06' в. д.		20.09.2007	16.05.2009	604
28	ID 49678 WMO 62505			46° 12' с. ш. 16° 48' з. д.	Северная Атлантика	15.06.2008	+	
29	<i>ID</i> 513480 <i>WMO</i> 61501	SVP-B/		44° 18' с. ш. 32° 18' в. д.	Черное море	15.09.2007	12.12.2007	88
30	<i>ID</i> 517480 <i>WMO</i> 71512		Inidiana	57° 32' ю. ш. 56° 42' з. д.	Индийский океан	02.12.2007	10.08.2008	252
31	ID 512480 WMO 44612	GPS/RTC	mann	58° 00' с. ш. 33° 36' з. д.	Северная Атлантика	15.03.2008	27.05.2009	438
32	ID 434270 WMO 44745			52° 00' с. ш. 52° 00' з. д.		28.10.2008	30.04.2009	184
33	ID 84146 WMO 56939			28° 42' ю. ш. 110° 42' в. д.		25.11.2008	+	
34	ID 84147 WMO 56939	SVP B		54° 00' ю. ш. 112° 36' в. д.	Индийский	04.01.2009	+	
35	ID 84148 WMO 56944	571-0	Argos-2	21° 30' ю. ш. 110° 12' в. д.	океан	22.01.2009	20.04.2010	453
36	ID 84149 WMO 56942			49° 42' ю. ш. 114° 24' в. д.		03.01.2009	+	

1	2	3	4	5	6	7	8	9
37	ID 84150 WMO 56507			15° 00' ю. ш. 95° 00' в. д.		21.08.2009	02.01.2010	134
38	ID 84151 WMO 56503	CVD D	4	21° 00' ю. ш. 110° 06' в. д.	Индийский	31.05.2009	20.08.2009	81
39	ID 84152 WMO 56941	SVP-B	Argos-2	45° 24' ю. ш. 112° 05' в. д.	океан	13.01.2009	+	
40	ID 84153 WMO 56948			29° 12' ю. ш. 111° 12' в. д.	Ī	27.02.2009	+	
41	<i>IMEI</i> 630380/ <i>WMO</i> 61690	SVP-BTC80/ GPS/RTC		43° 34' с. ш. 31° 59' в. д.		03.08.2009	02.10.2009	60
42	<i>IMEI</i> 630410/ <i>WMO</i> 61691	SVP-BTC80/		43° 34' с. ш. 31° 59' в. д.	Черное море	03.08.2009	23.11.2009	112
43	<i>IMEI</i> 638390/ <i>WMO</i> 61689	GPS/RTC	Inidian	43° 34' с. ш. 31° 59' в. д.		03.08.2009	13.09.2009	41
44	<i>IMEI</i> 486510/ <i>WMO</i> 17526	SVP-B/ GPS/RTC	manum	53° 00' ю. ш. 36° 00' з. д.	Южная Атлантика	15.11.2010	+	
45	<i>IMEI</i> 480510/ <i>WMO</i> 16551	SVP-B/ GPS/RTC		45° 00' ю. ш. 35° 22' в. д.	Индийский океан	13.04.2010	+	
46	<i>IMEI</i> 481500/ <i>WMO</i> 17572	SVP-B/ RTC		50° 00' ю. ш. 01° 23' з. д.	Южная Атлантика	15.12.2009	+	
47	<i>ID</i> 82534 <i>WMO</i> 61503	SVP-B/	Among 2	44° 27' с. ш. 33° 12' в. д.	Черное	24.11.2009	06.10.2010	316
48	<i>ID</i> 82537 <i>WMO</i> 61504	RTC	Argos-3	44° 27' с. ш. 33° 12' в. д.	море	24.11.2009	06.03.2010	102

1	2	3	4	5	6	7	8	9
49	ID 52494 WMO 26559	Барометри- ческий ледо- вый маркер <i>GPS/RTC</i> <i>SVP-B/</i> <i>RTC</i>		89° 20' с. ш. 94° 00' в. д.	Северный полюс	15.04.2010	25.08.2010	132
50	<i>ID</i> 52496 <i>WMO</i> 47530			74° 42' с. ш. 94° 49' в. д.	Арктика	26.02.2010	31.05.2010	94
51	ID 43869 WMO 13600		Argos-2	37° 00' с. ш. 29° 00' з. д.	Северная Атлантика	19.08.2010	+	
52	ID 43877 WMO 55614			35° 00' ю. ш. 179° 00' в. д.	Море Фиджи	23.08.2010	+	
53	ID 43878 WMO 15501			27° 00' ю. ш. 02° 00' в. д.	Южная Атлантика	26.08.2010	+	
54	<i>IMEI</i> 12487510/ <i>WMO</i> 62510	SVP-BTC80/ GPS/RTC	Iridium	44° 48' с. ш. 05° 12' з. д.	Северная Атлантика	09.05.2010	+	
55	ID 41803 WMO 55962	SVP-B/ З9° 34' ю RTC 152° 00' в	39° 34' ю. ш. 152° 00' в. д.		30.09.2010	+		
56	ID 41882 WMO 55963			39° 34' ю. ш. 157° 02' в. д.		01.10.2010	+	
57	ID 42957 WMO 55961			43° 08' ю. ш. 154° 49' в. д.	Тасманово	31.10.2010	+	
58	ID 42961 WMO 55644	SVP-B/	Argos-3	36° 00' ю. ш. 158° 00' в. д.	море	02.09.2010	+	
59	ID 42964 WMO 55964	RTC		43° 33' ю. ш. 152° 01' в. д.		01.11.2010	+	
60	ID 42973 WMO 55645			37° 00' ю. ш. 162° 00' в. д.		02.09.2010	+	
61	ID 42965 WMO 61987				34° 34' с. ш. 33° 13' в. д.	Средиземное море	05.10.2010	+

265

1	2	3	4	5	6	7	8	9
62	ID 66575 WMO 63592	SVP-B/		74° 02' с. ш. 31° 49' в. д.	Северный	24.09.2010	+	
63	ID 66577 WMO 63593	GPS/RTC		72° 04' с. ш. 31° 26' в. д.	океан	24.09.2010	+	
64	ID 67619 WMO 66861		Argos-2	58° 24' с. ш. 20° 42' в. д.		15.07.2010	20.10.2010	97
65	ID 67620 WMO 66862	SVP-B/ GPS/RTC		58° 24' с. ш. 20° 42' в. д.	Балтийское море	15.07.2010	+	
66	ID 67621 WMO 66863			58° 24' с. ш. 20° 42' в. д.	_	18.08.2010	+	

Примечания:

1) *ID* – идентификационный номер дрифтера;

2) *WMO* – номер дрифтера по классификации BMO;

- 3) IMEI идентификационный номер дрифтера в системе связи Iridium (с 2009 г.);
- 4) знак «+» дрифтер в действии по состоянию на 22 ноября 2010 г.;
- 5) обозначения дрифтеров в графе «Тип буя» соответствуют классификации,

приведенной на сайте НПФ «Марлин-Юг» http://marlin-yug.com.

Статистический анализ результатов внедрения в дрифтерную технологию новых систем передачи данных и определения координат. Эффективность дрифтерной технологии, независимо от номенклатуры измеряемых параметров, определяется тем, насколько достоверно могут быть оценены пространственно-временные масштабы выполненных измерений. Поэтому основное внимание при анализе было уделено результатам внедрения в дрифтерную технологию новых систем передачи данных и определения координат, качество которых оценивалось по следующим критериям:

- количество пропусков в принятых данных;
- количество пропусков в результатах траекторных измерений;
- время запаздывания доставки данных пользователю;
- погрешность определения координат.

<u>Сопоставление дрифтеров с различными типами связи по количеству</u> <u>пропусков в принятых данных и результатах траекторных измерений.</u>

Для сопоставления выбирались временные ряды данных, разбитые на три блока. Каждый блок объединял данные по пяти дрифтерам с одинаковыми типами спутниковой связи: *Argos-2*, *Argos-3* и *Iridium*. Продолжительности рядов данных каждого дрифтера составляли не менее 100 суток. Все данные были получены в широком диапазоне влияющих факторов, в частности, поверхностных волнений.

При сравнении оценивались средние в пределах каждого блока плотности распределения интервалов времени между последовательными принятыми сообщениями. На рис. 1 приведены гистограммы распределения интервалов времени между двумя последовательными полученными сообщениями (измерениями) (см. рис. 1, *a*) и обсервациями (см. рис. 1, *б*) для каждого типа спутниковой связи.

Рис. 1. Распределение в разных системах спутниковой связи интервалов времени: *а* – между двумя последовательными полученными сообщениями; *б* – между двумя последовательными обсервациями.

Как следует из приведенных данных, для дрифтеров с каналами связи *Argos-2* около 90 % сообщений об измеряемых параметрах доставляются пользователю с номинальным интервалом 1 ч. Для дрифтеров с каналами связи *Argos-3* и *Iridium* этот показатель составляет 93,3 и 97 %, соответственно. Существенно большие различия наблюдаются в оценках потерь данных траекторных измерений. Для буев с каналами связи *Iridium* почти 90 % обсерваций следуют с часовым разрешением; около 95 % отсчетов координат дрифтеров со связью *Argos-3* следуют с интервалами не более 2 ч. В системе *Argos-2* только около 8 % данных о координатах дрифтеров следуют с интервалом 1 ч, а остальные обсервации приблизительно равномерно распределены на интервале от 2 до 6 ч.

<u>Сопоставление дрифтеров с различными типами связи по времени за-</u> паздывания доставки данных пользователю.

Начиная с 2008 г. в дрифтерах, разработанных в МГИ НАН Украины, внедрена функция синхронизации времени измерений с началом каждого часа. Это позволило корректно сравнить разные системы спутниковой связи по времени запаздывания доставки данных пользователю. На рис. 2, *a, б, в* для трех буев, работающих в системах связи *Argos-2, Argos-3* и *Iridium*, представлены первичные данные об интервалах времени, в течение которых результаты дрифтерных измерений поступают на глобальную телеметрическую систему, т.е. становятся доступны пользователю (по данным сайта http://www.meteo. shom.fr/cgi-bin/meteo). Очевидны существенные различия в оперативности получения данных в разных системах связи. Для буев, работающих в *Argos-2* и *Argos-3*, время задержки может изменяться от нескольких минут до двух часов и более. В системе *Iridium* основной объем данных доставляется пользователям с опозданием не более чем на 20 мин, а наибольшие времена запаздывания не превышают 70 мин и проявляются очень редко.

Графики, показанные на рис. 2, z, построены по осредненным долговременным данным о запаздывании доставки сообщений в системах *Argos-2* и *Iridium*. К настоящему времени буи в системе *Argos-3* проработали относительно непродолжительное время, но поскольку принцип доставки сообщений в этой системе не отличается от принципа доставки сообщений в системе *Argos-2*, то приведенные результаты могут быть обоснованно распространены и на *Argos-*3. Как следует из представленных графиков (см. рис. 2, z), в системе связи *Iridium* около 60 % дрифтерных данных поступают пользователю в течение 8 мин, а 90 % данных – не позднее чем через 15 мин после выполнения измерений. В системах *Argos-2* и *Argos-3* этот показатель на порядок хуже: 60 % данных поступают пользователю только через 90 мин.

Погрешность определения координат.

При том, что современный дрифтер представляет собой многофункциональное средство измерения параметров поверхностного слоя океана и приводной атмосферы, основное его назначение – трассировка поверхностных течений. Циркуляции водных масс воспроизводятся по результатам измерений траекторий дрифтеров, координаты которых оцениваются в системах спутниковой связи Argos-2, Argos-3 и Iridium по величине доплеровского сдвига частоты сигнала передатчика. Системы определения координат Argos-2 и Argos-3 имеют одинаковые характеристики, поэтому при их оценивании принимались к рассмотрению данные дрифтеров Argos-2.

Рис. 2. Времена запаздывания доставки данных в системах связи Argos-2, Argos-3 и Iridium.

Погрешности оценивания координат доплеровским методом в системах Argos и Iridium существенно различаются. В системе Argos в зависимости от характеристик канала связи неопределенность локализации изменяется от 150 до 1 000 м. Эллипс ошибок локализации в системе Iridium имеет большой эксцентриситет. Длина его большой оси, ориентированной в направлении «восток-запад», составляет около 10000 м, а длина малой – на порядок меньше. Такие погрешности при применении традиционных способов отбраковки и линейной интерполяции данных оказываются вполне приемлемыми при изучении крупномасштабных процессов переноса поверхностных вод. Для исследований более высокочастотных процессов в настоящее время все чаще применяются буи со встроенными приемниками GPS (см. табл. 1), что позволяет воспроизводить траектории буев с погрешностью не хуже 50 м. Тем не менее, доплеровский метод определения координат дрифтеров остается наиболее распространенным и пользователи заинтересованы в достоверных оценках его погрешности в реальных условиях эксплуатации. Получить такие оценки удалось по результатам траекторных измерений дрифтеров, координаты дрейфов которых воспроизводились как по данным встроенных приемников GPS, так и по доплеровскому методу. Оценки рассчитывались как для Argosдрифтеров, так и для буев, работающих в системе связи Iridium. Для сопоставления временные ряды GPS-координат интерполировались на отсчеты времени «доплеровских» измерений. На рис. 3 приведены фрагменты траекторий Argos-дрифтера ID 67619 (см. рис. 3, а) и Iridium-дрифтера IMEI 486510 (см. рис. 3, ϵ) и соответствующие им распределения (см. рис. 3, ϵ , ϵ) модуля вектора отклонений координат, рассчитанные по данным доплеровского метода, от координат, полученных по данным приемников GPS.

Оценки средних значений отклонений между траекториями дрейфа, определенными с помощью доплеровских систем и системы *GPS*, для *Argos*-дрифтеров *ID* 67619, *ID* 67620 и *ID* 67621 составили 450 м, 400 м и 418 м; для *Iridium*-дрифтеров *IMEI* 486510, *IMEI* 630380 и *IMEI* 480510 – 3 540 м, 3 440 м и 3 470 м, соответственно. Распределения оценок модуля вектора отклонений для *Argos*-дрифтеров оказались близкими к логарифмически нормальному (логнормальному) с уровнями значимости 0,85 – 0,95; для *Iridium*-дрифтеров – близкими к нормальному с уровнями значимости 0,6 – 0,7.

Для анализа привлекались долговременные ряды данных траекторных измерений, полученные в реальных условиях эксплуатации, в частности, при воздействии поверхностного волнения. Это позволяет обоснованно применять результаты анализа для достоверного оценивания качества разных типов спутниковой связи и методов воспроизведения траекторий поверхностных дрейфующих буев.

Заключение. В сложившейся на сегодня структуре глобальной системы оперативных наблюдений океана МГИ НАН Украины стал одним из центров, где определяются стратегические направления развития дрифтерной технологии. В течение 2006 – 2010 гг. в институте разработаны несколько поколений дрейфующих буев с уникальными измерительными возможностями, работающими как в традиционной среде спутниковой системы

Рис. 3. Фрагменты траекторий дрифтеров *ID* 67619 (*a*) и *IMEI* 486510 (*в*) по данным доплеровского метода систем связи *Argos* и *Iridium* и данным приемника *GPS* и соответствующие им распределения (б) и (г) оценок модуля вектора отклонений. Штриховыми линиям показаны графики теоретических логарифмически нормального (б) и нормального распределений (г).

новых систем – Iridium и Argos-3.

В ходе дрифтерных экспериментов, проводившихся в различных ре-

гионах Мирового океана, были пол менные ряды данных о физических : « на и приводной атмосферы. Наряду ментов позволил-еопоставить эффек спутниковой связи, обслуживающи буев. Результаты такого сопоставлен

Приведенные в статье результать нить информационно-измерительные стных дрейфующих буев со спутнико представительные долговре-

 ⁴⁰:ристиках верхнего слоя океаі анализ результатов экспери-³⁰ти применения разных систем поверхностных дрейфующих 20 ведены в табл. 2.

за позволяют объективно оце-10 кности современных поверхноізью и могут быть полезны при

0

271

выборе модификации дрифтера для оптимального решения научно-прикладных задач мониторинга морской среды и приводной атмосферы.

Таблица 2. Оценки параметров систем передачи информации и определения координат

Паналот	Спутниковая система связи				
Параметр	Argos-2	Argos-3	Iridium		
1. Количество сообщений, полученных с интервалом времени 1 ч, %	89,8	93,3	97,0		
2. Количество обсерваций, полученных с интервалом времени 1 ч, %	8,3	38,1	88,5		
 Задержка времени получения 60 % сообщений, мин 	9	0	менее 10		
 Оценка среднего значения погреш- ности определения координат по до- плеровскому методу, м 	\leq 45	50 м	≤3540 м		
5. Оценка среднего значения погреш- ности определения координат по данным приемника <i>GPS</i> , м		≤50 м			

по данным дрифтерных экспериментов 2006 – 2010 гг.

Список литературы

- Толстошеев А.П., Лунев Е.Г., Мотыжев С.В. Исследование верхнего слоя Черного моря с помощью термопрофилирующих дрейфующих буев // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. – Севастополь: НПЦ «ЭКОСИ-Гидрофизика». – 2008. – вып. 16. – С. 116-123.
- Мотыжев С.В., Лунев Е.Г., Толстошеев А.П., Литвиненко С.Р. Результаты применения спутниковой системы связи Iridium для задач дрифтерного обеспечения работ в океане // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. – Севастополь: НПЦ «ЭКОСИ-Гидрофизика». – 2010. – вып. 23. – С. 217-227.
- 3. Лунев Е.Г., Иванов В.А., Кириченко А.Г., Лемешко Е.М., Мотыжев С.В. Дрифтерная измерительно-информационная система для мониторинга течений в прибрежной зоне моря // Морской гидрофизический журнал. – 2010. – № 5. – С. 50-62.
- 4. Ратнер Ю.Б., Толстошеев А.П., Холод А.Л., Мотыжев С.В. Создание базы данных мониторинга Черного моря с использованием дрейфующих поверхностных буев // Морской гидрофизический журнал. – 2009. – № 3. – С. 50-68.

Материал поступил в редакцию 21.02.2011 г.

После переработки 21.02.2011 г.