ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ НАРАБОТКИ МЕДИЦИНСКИХ ИЗОТОПОВ В СПЕКТРАХ SPALLATION-НЕЙТРОНОВ, ГЕНЕРИРУЕМЫХ В МАССИВНОЙ УРАНОВОЙ МИШЕНИ

В.В. Сотников¹, И. Адам², М.Ю. Артюшенко¹, В.А. Воронко¹, А.А. Жадан¹, П. Живков³, Л. Заворка^{2,4}, А.А. Солнышкин², С.И. Тютюнников² ¹Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина;

²Объединенный институт ядерных исследований, Дубна, Россия; ³Институт ядерных исследований и ядерной энергии, София, Болгария; ⁴Чешский технический университет, Прага, Чешская Республика (коллаборация «Энергия и трансмутация РАО») E-mail: sotnik@kipt.kharkov.ua

Исследована возможность наработки медицинских радионуклидов ^{64,67}Си в спектре spallation-нейтронов в реакциях ^{nat}Zn(n, x). Эксперименты выполнены с использованием массивной урановой мишени (масса природного урана 512 кг) на ускорителях "Нуклотрон" и "Фазотрон" в ОИЯИ, г. Дубна. Получены оценки сечений ядерных реакций ^{nat}Zn(n, x)^{67,64}Си в спектре spallation-нейтронов – 0.42(6) мбарн для выхода ⁶⁷Си и 8.1(12) мбарн для ⁶⁴Си. Проведены модельные (МСNPX 2.7) расчеты наработки ^{67,64}Си и определен теоретический предел удельной активности нарабатываемых ядер ^{67,64}Си при облучении природного цинка и цинка, обогащенного по 68 изотопу.

Таблииа 1

введение

В настоящее время в связи с уменьшением в мире количества реакторов, используемых для наработки изотопов, наблюдается повышенный интерес к альтернативным не реакторным методам наработки изотопов. В частности, рассматривается возможность получения радиоизотопов на мощных spallation-источниках нейтронов и проектируемых подкритических (ADS) реакторах [1]. Наиболее мощные источники spallation-нейтронов представлены в таблице 1.

Параметры	SNS,	SINQ, PSI	MYRRHA	
источника	ORNL	Швейцария	Бельгия	
	CIIIA [2]	[3]	[4]	
Е _р , МэВ	939,5	530	600	
I, мА	1,4	1,3	2,44	
Р(пучка),				
МВт	1,3	0,75	1,442.4	
Статус	2006 г.	2007 г.	2025 г.	

Мощные источники spallation-нейтронов

В этих источниках потоки тепловых нейтронов после замедления составляют от 10^{14} нейтр./см²/с для SINQ до более 10^{15} нейтр./см²/с для SNS и MYRRHA. Следовательно, подобные источники spallation-нейтронов могут выступать разумной альтернативой обычным реакторам.

Вблизи первичной мишени в таких установках есть также зона быстрых spallation-нейтронов со спектром более жестким, чем делительный. В спектрах быстрых нейтронов можно нарабатывать более широкий, чем реакторный, круг медицинских радиоизотопов, используя пороговые реакции.

В экспериментах, проводимых в рамках коллаборации «Энергия и трансмутация РАО» на установке «КВИНТА» [5], генерируются примерно такие же спектры spallation- и быстрых нейтронов при облучении релятивистскими протонами и дейтронами массивной урановой мишени. Поэтому, цели работы были следующими:

• показать возможность наработки медицинских радиоизотопов в спектре быстрых (spallation) нейтронов, генерируемых в spallation-нейтронных источниках и ADS реакторах на примере терапевтического радиоизотопа ⁶⁷Си и ПЭТ изотопа ⁶⁴Си;

• провести модельные расчеты наработки ^{67,64}Cu и определить теоретический предел удельной активности нарабатываемых ядер ^{67,64}Cu;

• сравнить полученные экспериментальные результаты и модельные расчеты.

1. ЭКСПЕРИМЕНТ

Исследовалась возможность наработки терапевтического радионуклида ⁶⁷Cu и ПЭТ-изотопа ⁶⁴Cu в реакциях ^{nat}Zn(n, x) в спектрах быстрых spallationнейтронов, генерируемых пучками дейтронов с энергиями 1, 2, 4, 8 ГэВ и протонов с энергией 660 МэВ.

Эксперименты были проведены с использованием массивной урановой мишени (масса природного урана 512 кг) сборки «КВИНТА» [5] на ускорителях «Нуклотрон» и «Фазотрон», ОИЯИ, г. Дубна.

Мониторирование пучков дейтронов и протонов осуществлялось путем активации алюминиевых и медных фольг [6]. В различных сеансах облучения полная интенсивность первичных дейтронов составляла ~ 10^{13} , протонов ~ 10^{15} .

В генерируемом в урановой мишени нейтронном спектре облучались образцы химически чистого цинка – диски толщиной ≈ 2 мм, радиусом $\approx 1,25$ см, массой $\approx 2,3$ г.

Образцы закреплялись в фиксированных положениях на детекторных пластинах (Рис. 1) на различном расстоянии от оси пучка первичных частиц -4, 8 и 12 см.

Рис. 1. Урановая мишень «КВИНТА» и детекторные пластины. Масса природного урана в каждой секции 104,92 кг. Длина урановой сборки 65 см. Поперечные размеры ~30 см

Определение числа наработанных при облучении ядер (активностей) изотопов ⁶⁷Cu ($T_{1/2} = 2,6$ д), ⁶⁴Cu ($T_{1/2} = 12,7$ ч) проводилось по гамма-линиям (184,6 кэВ ⁶⁷Си, 1345,8 кэВ ⁶⁴Си) облученных образцов Zn естественного изотопного состава.

Измерение гамма-спектров проводили с помощью полупроводникового детектора из особо чистого германия, начиная сразу после окончания облучения (короткоживущие изотопы), и в течение месяца проводились длительные измерения (долгоживущие изотопы).

2. МОДЕЛИРОВАНИЕ

Методика моделирования наработки радиоизотопов в генерируемых нейтронных спектрах была следующей: спектр нейтронов в месте расположения облучаемых образцов цинка рассчитывался с помощью программы MCNPX 2.7 [7], а затем проводилась свертка рассчитанного спектра с энергетическими зависимостями сечений ядерных реакций с выходом изотопов меди. Использовались сечения реакций, рассчитанные по программе TALYS [8] (база данных TENDL-2014 [9]).

В параметрах MCNPX 2.7 задавалась модель внутриядерного каскада ISABEL, испарительная модель ABLA и транспорт высокоэнергетичных частиц по коду FLUKA. При моделировании использовались детальная геометрическая модель мишени «КВИНТА» и экспериментальные данные о форме и положении пучка на мишени.

Пример спектра нейтронов, рассчитанного по MCNPX 2.7 для первичного дейтронного пучка с энергией 4 ГэВ, приведен на Рис. 2.

Ядерные реакции, которые учитывались при расчете выхода изотопов меди в реакциях на природном цинке (64 Zn 48,63%, 66 Zn 27,9%, 67 Zn 4,1%, 68 Zn 18,75%, ⁶⁴Zn 0,62%):

 ${}^{67}\text{Cu:}$ ${}^{67}\text{Zn}(n, p), {}^{68}\text{Zn}(n, np), {}^{70}\text{Zn}(n, 3np);$ ${}^{64}\text{Cu:}$ ${}^{64}\text{Zn}(n, p), {}^{66}\text{Zn}(n, 2np), {}^{67}\text{Zn}(n, 3np),$ $^{68}Zn(n, 4np), ^{70}Zn(n, 6np).$

Рис. 2. Спектр нейтронов на третьей детекторной пластине на расстоянии 4 см от оси пучка дейтронов. Энергия дейтронов 4 ГэВ. Расчет по МСNPX 2.7

Образование в ядерных реакциях под действием быстрых нейтронов стабильных изотопов меди ⁶³Cu и ⁶⁵Си влияет на величину максимально достижимой удельной активности получаемых после радиохимического выделения рабочих изотопов ⁶⁷Cu и ⁶⁴Cu.

⁶³Си образуется в реакциях: ⁶⁴Zn(n, pn), ⁶⁶Zn(n, p3n), ⁶⁷Zn(n, p4n), ⁶⁸Zn(n, p5n), ⁷⁰Zn(n, p7n), а также через реакции с образованием ⁶³Zn: $^{54}Zn(n, 2n), {}^{66}Zn(n, 4n), {}^{67}Zn(n, 5n), {}^{68}Zn(n, 6n), {}^{70}Zn(n, 8n)$ 63 Zn (38,5 мин) EC $\rightarrow ^{63}$ Cu. ⁶⁵Си образуется в реакциях: ⁶⁶Zn(n, pn), ⁶⁷Zn(n, p2n), ⁶⁸Zn(n, p5n), ⁷⁰Zn(n, p7n),

и в реакциях с образованием ⁶⁵Zn и ⁶⁵Ni:

 ${}^{6}Zn(n, 2n), {}^{67}Zn(n, 3n), {}^{68}Zn(n, 4n), {}^{70}Zn(n, 6n),$ 65 Zn (244,3 дня) EC $\rightarrow ^{65}$ Cu, ⁶⁶7

Zn(n, 2p),
67
Zn(n, 2pn), 68 Zn(n, 2p2n), 70 Zn(n, 2p4n).
 65 Ni (2,5 ч) β⁻ → 65 Cu.

Одновременно с изотопами ⁶⁷Cu и ⁶⁴Cu в спектре нейтронов нарабатываются и более коротко живущие изотопы меди:

⁶¹Си (3,35 ч), ⁶⁰Си (23,7 мин), ⁶²Си (9,74 мин), в основном в реакциях типа ^AZn(n, pxn). При этом изотопы ⁶²Си и ⁶⁰Си из-за короткого времени жизни практически не влияют на радиохимическую чистоту изотопов ⁶⁷Си и ⁶⁴Си.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 3.1. СКОРОСТИ РЕАКЦИЙ С ВЫХОДОМ ИЗОТОПОВ МЕДИ

В результате проведенных измерений было показано, что в спектрах spallation-нейтронов, генерируемых в массивной урановой мишени, скорости реакций ^AZn(n, xpyn) с выходом изотопов меди и других радионуклидов остаются примерно постоянными для всех энергий дейтронов в диапазоне от 1 до 8 ГэВ в расчете на единицу мошности пучка дейтронов. Для протонов с энергией 660 МэВ соответствующие скорости реакций на ~40% меньше. Экспериментальные погрешности измерения скоростей реакций лежат в пределах 10...20%.

В таблице 2 представлены экспериментальные и расчетные значения полного числа ядер различных изотопов, наработанных за все время облучения. Приведены результаты для образца ^{nat}Zn, расположенного на третьей детекторной пластине на расстоянии 4 см от оси урановой мишени (см. Рис. 1). Данные нормированы на 1 г цинка, на 1 дейтрон и на 1 ГэВ энергии пучка дейтронов.

Таблица 2

Сравнение экспериментальных и расчетных значений числа наработанных ядер различных изотопов Си на 1 грамм природного цинка, на 1 дейтрон и на 1 ГэВ энергии пучка дейтронов

Изотоп	Изотоп Расчет		Расч./Эксп.	
⁶⁷ Cu	4,5E-07	4,1E-07	1,10	
⁶⁴ Cu	9,2E-06	7,9E-06	1,16	
⁶¹ Cu	5,7E-07	4,6E-07	1,24	
$^{63}Zn \rightarrow ^{63}Cu$	3,1E-06	2,8E-06	1,11	
$^{65}Zn \rightarrow ^{65}Cu$	1,6E-05	1,6E-05	1,00	

Получено достаточно хорошее согласие для такого типа расчетов. Расхождение экспериментальных и расчетных значений составило максимум 25%. Т.е., данная методика расчетов (моделирование нейтронных спектров по MCNPX 2.7 с использованием базы данных TENDL), позволяет с хорошей точностью проводить предварительные оценки наработки различных изотопов в сложных нейтронных полях.

Данные в Табл. 2 представлены для случая, когда образцы природного цинка при облучении находились на расстоянии 4 см от оси пучка дейтронов. При облучении образцов на расстояниях 8 и 12 см значения скоростей реакций уменьшаются примерно в 2 и 3 раза. Это соответствует уменьшению плотности потока нейтронов с увеличением расстояния от оси первичного пучка дейтронов.

3.2. СЕЧЕНИЯ РЕАКЦИЙ ^{nat}Zn(n, x)^{67,64}Cu В СПЕКТРЕ SPALLATION-НЕЙТРОНОВ

Модельный спектр (см. Рис. 2) в месте расположения образца цинка имеет флюенс нейтронов $\approx 0,105$ нейтр./см² на 1 дейтрон с энергией 1 ГэВ. Зная эту величину и экспериментальные значения числа наработанных ядер (Табл. 2), можно оценить сечения ядерных реакций ^{nat}Zn(n, *x*) для спектра spallation-нейтронов.

Для средних по спектру нейтронов сечений выхода изотопов 67,64 Си в реакциях ${}^{nat}Zn(n, x){}^{67,64}$ Си получены следующие оценки:

^{nat}Zn(n, x)⁶⁷Cu – 0,42(6) мбарн;

^{nat}Zn(n, x)⁶⁴Cu - 8,1(12) мбарн.

Значения этих сечений определяются формой нейтронного спектра, генерируемого дейтронами в массивной урановой мишени, и в пределах 15% экспериментальных ошибок не зависят от энергии пучка первичных частиц и от места расположения облучаемого образца цинка относительно оси первичного пучка дейтронов.

Расчет средних по нейтронному спектру сечений реакций на изотопах цинка (с учетом сечений из TENDL-2014) дает следующие значения:

⁶⁷Zn(n, p)⁶⁷Cu – 1,70 мбарн;
⁶⁸Zn(n, np)⁶⁷Cu – 1,85 мбарн;
⁶⁴Zn(n, p)⁶⁴Cu – 15,1 мбарн;
⁶⁷Zn(n, 3np)⁶⁴Cu – 1,14 мбарн;
⁶⁸Zn(n, 4np)⁶⁴Cu – 0,85 мбарн.

Для сравнения приведем сечения реакций, измеренные в работе [10] для спектра быстрых нейтронов реактора TRIGA Mark-II: 0,84(7) мбарн для реакции 67 Zn(n, p) 67 Cu и 28,9(20) мбарн для реакции 64 Zn(n, p) 64 Cu.

3.3. ОЦЕНКИ ВЫХОДА И РАДИОХИМИЧЕСКОЙ ЧИСТОТЫ ^{67,64}Си

Пересчет экспериментальных значений числа наработанных ядер изотопов 64,67 Си в активности показывает, что максимально можно получить 2,6 ГБк 67 Си и 49 ГБк 64 Си на 1 г природного цинка и на 1 МВт мощности пучка дейтронов (в режиме насыщения на конец облучения). Расчетная плотность потока нейтронов на 1 МВт мощности пучка в месте расположения облучаемого образца цинка составила 6,6·10¹⁴ нейтр./см²/с.

В табл. 3 приведены выход ⁶⁷Cu, удельная активность ⁶⁷Cu и отношение активностей ⁶⁴Cu/⁶⁷Cu на конец облучения (ЕОВ) и через 144 часа после ЕОВ для различных значений времени активации. Значения выхода ⁶⁷Cu приведены в расчете на 1 г цинка и на плотность потока нейтронов $5 \cdot 10^{14}$ нейтр./см²/с.

Таблица З

Выход ⁶⁷Си и отношение активностей ⁶⁴Си⁶⁷Си при облучении природного Zn

πρα σολγ τεπαα πραροσπόεο Σπ					
t _a ,	Выход ⁶⁷ Си, ГБк/ (г × 5·10 ¹⁴ нейтр./см ² /с)		Отношение выхо- дов ⁶⁴ Cu/ ⁶⁷ Cu		
суг	EOB	$t_{c} = 144$	EOB	t _c = 144	
		Ч		Ч	
1	0,46	0,09	60	0,12	
2	0,81	0,16	43	0,08	
4	1,28	0,26	29	0,05	
6	1,56	0,31	24	0,05	
10	1,82	0,36	21	0,04	

В результате облучения природного цинка одновременно нарабатываются изотопы 67 Cu и 64 Cu. Причем, на конец облучения активность 67 Cu много меньше активности 64 Cu. Следовательно, такой препарат 67 Cu не может быть использован, так как он не удовлетворяет требованиям радиохимической чистоты. Частично решает эту проблему длительное охлаждение образцов после облучения. Так, при 10-дневном охлаждении можно ожидать 96% радиохимической чистоты 67 Cu. При этом уменьшение величины выхода 67 Cu можно компенсировать увеличением массы облучаемого цинка.

При более коротких временах облучения с приемлемой радиохимической чистотой на природном цинке можно нарабатывать ПЭТ изотоп ⁶⁴Cu (Табл. 4).

⁶⁴Си может нарабатываться в большом количестве > 1 Ки на 2 г природного цинка на конец облучения. Если время облучения образцов цинка не превышает 24 ч, то радиохимическая чистота препарата ⁶⁴Си после распада ⁶¹Си ($T_{1/2} = 3,35$ ч) в течение 12 ч, достигает 96%.

Изотоп ⁶⁷Си можно нарабатывать на цинке, обогащенном по 68 или 67 изотопу, с высокой радиохимической чистотой и с большим, чем на природном цинке, выходом.

Таблица 4

Оценки выхода и радиохимической чистоты ⁶⁴Си при облучении природного Zn

t _a ,	Выход ⁶⁴ Си, ГБк/ (г×5·10 ¹⁴ нейтр./см ² /с)		Радиохимическая чистота ⁶⁴ Cu, %		
ч	EOB	t _c = 12 ч	EOB	t _c = 12 ч	
3	5,7	2,9	84,0	95,4	
6	10,5	5,4	86,2	95,8	
12	18,0	9,3	88,9	96,1	
24	27,3	14,2	91,2	96,1	
36	32,2	16,7	91,9	95,7	
48	34,7	18,0	92,1	95,3	
60	36,0	18,7	92,0	94,9	

Результаты расчетов для цинка, обогащенного по 68 изотопу, приведены в Табл. 5.

Таблица 5

Оценки выхода и радиохимической чистоты ⁶⁷Си при облучении Zn, обогащенного по изотопу ⁶⁸Zn

t _а , сут	Выход ⁶⁷ Си, ГБк/ (г×5·10 ¹⁴ нейтр./см ² /с)		Радиохимическая чистота ⁶⁷ Cu, %	
	EOB	t _c = 72 ч	EOB	t _c = 72 ч
1	2,0	0,9	41	94,0
2	3,5	1,6	49	95,6
4	5,6	2,5	58	97,0
6	6,8	3,0	63	97,5
10	7,9	3,5	66	97,8

В случае 10-дневного облучения цинка выход 67 Си на конец облучения (ЕОВ) равен 7,9 ГБк/г. Отношение активностей 64 Си/ 67 Си уменьшается с течением времени после конца облучения, что позволяет достичь радиохимической чистоты 67 Си на уровне 98% через 72 ч после ЕОВ. Расчет проводился для обогащенного цинка с изотопным составом: 64 Zn–0,12%, 66 Zn–0,11%, 67 Zn–0,05%, 68 Zn–99,71%, 70 Zn–0,01% [11]. К сожалению, обогащенный цинк очень дорогостоящий.

Для цинка, обогащенного по 67 изотопу, значения выхода и радиохимической чистоты 67 Cu примерно такие же, как и для цинка, обогащенного по 68 изотопу. Для 100% обогащения по 67 Zn выход на конец 10-дневного облучения равен 7,3 ГБк/г, радиохимическая чистота – 97% через 72 ч после ЕОВ.

3.4. РАСЧЕТ МАКСИМАЛЬНОЙ УДЕЛЬНОЙ АКТИВНОСТИ ^{67,64}Си

Величина удельной активности конечного радионуклидного препарата имеет большое значение в целевой радиоимунной терапии и в in-vivo дозиметрии, т.е. при доставке радиоизотопов к раковым клеткам с помощью антител. В частности, для терапевтического изотопа ⁶⁷Си подходящий диапазон удельной активности должен быть не менее 200...500 ГБк/мг [13].

Расчет максимальной удельной активности ^{67,64}Cu, которая может быть получена при успешном радиохимическом выделении меди из облученного цинка, проводился с учетом числа нарабатываемых

во время облучения стабильных изотопов меди. После радиохимического выделения масса пре-

парата в основном определяется:

- 1. Массой изотопов меди, наработанных во время облучения.
- 2. Массой примесей меди в цинке. Согласно ГОСТ 3640-79 составляет от 10 мкг на 1 г природного цинка (химическая чистота 99.96%) до 0,1 мкг на 1 г природного цинка (химическая чистота 99.997%).
- 3. Массой следов цинка, остающихся после радиохимического выделения меди из облученного образца цинка. Для радиохимического метода выделения меди из цинка, примененного в работе [12], было определено содержание следов Zn на уровне менее 1 мкг на 1 г.
- 4. Массой меди неясного происхождения, например, из окружающей среды во время радиохимических процессов и облучения [11].

Результаты расчета масс наработанных изотопов меди при облучении природного цинка в спектре spallation-нейтронов приведены в Табл. 6. Значения масс изотопов даны в расчете на 1 ГБк нарабатываемой активности ⁶⁷Си (на конец облучения) в зависимости от времени облучения.

Таблица б

Массы изотопов меди, наработанных при облучении ^{nat}Zn в спектре spallation-нейтронов, и удельная активность ⁶⁷Cu

	масса, мкг/1 ГБк ⁶⁷ Си				
Изотоп	ta	ta	ta	ta	ta
	1 d	3 d	6 d	8 d	10 d
⁶⁷ Cu	0,036	0,036	0,036	0,036	0,036
⁶⁴ Cu	0,417	0,238	0,168	0,152	0,144
⁶¹ Cu	0,008	0,004	0,002	0,002	0,002
$^{63}Zn \rightarrow ^{63}Cu$	0,253	0,332	0,462	0.559	0,663
⁶³ Cu	0,775	0,991	1,370	1,656	1,962
$^{65}Zn \rightarrow ^{65}Cu$	0,002	0,008	0,023	0,037	0,054
$^{65}Ni \rightarrow ^{65}Cu$	0,007	0,010	0,014	0,017	0,020
⁶⁵ Cu	0,145	0,185	0,257	0,310	0,367
Bceгo ⁶³ Cu	1,04	1,33	1,85	2,23	2,65
Bcero ⁶⁵ Cu	0,15	0,19	0,28	0,35	0,42
Всего Си	1,6	1,8	2,3	2,8	3,2
SA, ГБк/мг					
EOB	608	554	429	361	308
SA, ГБк/мг					
t _c =144 ч	163	127	92	76	64

В Табл. 6 приведены также значения (SA) удельной активности ⁶⁷Cu на конец облучения и через 144 ч после конца облучения. Удельная активность рассчитана с учетом только массы изотопов меди, наработанных в ядерных реакциях во время облучения цинка. Эти значения SA не зависят от величины наработанной активности ⁶⁷Cu, а также от плотности потока нейтронов и массы облучаемого цинка.

Приемлемое отношение активностей ⁶⁴Cu/⁶⁷Cu (Табл. 3) достигается только через длительный период распада ⁶⁴Cu. Поэтому, при облучении природного цинка в спектре spallation-нейтронов принципиально невозможно получить радионуклидный препарат ⁶⁷Cu с высокой удельной активностью (> 200 ГБк/мг) и одновременно с малым отношением ⁶⁴Cu/⁶⁷Cu, подходящими для применения в радиоимунной терапии с моноклональными антителами.

ПЭТ-изотоп ⁶⁴Си, нарабатываемый при облучении нейтронами природного цинка, может иметь высокую удельную активность. Так, при 12-часовом облучении 1 г природного цинка потоком нейтронов $5 \cdot 10^{14}$ нейтр./см²/с расчет дает значение удельной активности SA \approx 44000 ГБк/мг (по отношению к массе меди, наработанной только в ядерных реакциях). Если в конечном продукте будет дополнительно 10 мкг меди, вводимой из окружающей среды во время радиохимических процессов, то SA \approx 1700 ГБк/мг.

Облучение цинка, обогащенного по 68 изотопу, позволяет достичь относительно больших значений удельной активности ⁶⁷Си. Масса нарабатываемых в процессе облучения стабильных изотопов меди будет существенно меньше, чем при облучении природного цинка: 0,15 мкг на 1 ГБк активности ⁶⁷Си при 10-дневном облучении 1 г обогащенного цинка (3.1 мкг для природного цинка).

В этом случае, удельная активность ⁶⁷Си будет зависеть в основном от массы меди и других возможных примесей в конечном продукте, вводимых из окружающей среды, а также от величины наработанной активности ⁶⁷Си. Наработанная активность ⁶⁷Си определяется средним по спектру нейтронов сечением реакции ⁶⁸Zn(n, np)⁶⁷Си и плотностью потока нейтронов (см. график на Рис. 3).

Рис. 3. Минимальная плотность потока нейтронов, необходимая для получения удельной активности ⁶⁷Си выше 200 (500) ГБк/мг. Облучение 1 г цинка, обогащенного по 68 изотопу. Время облучения 10 суток

Минимальная плотность потока spallationнейтронов, требуемая для получения удельной активности ⁶⁷Cu более 200 ГБк/мг составляет ~ $5\cdot10^{13}$ нейтр./см²/с при 10-дневном облучении 1 г обогащенного цинка и при содержании меди в конечном продукте ~ 4 мкг. Для 30 мкг меди в конечном продукте поток нейтронов должен быть не менее $3\cdot10^{14}$ нейтр./см²/с.

выводы

В ходе проведенных экспериментальных исследований было показано, что выходы радиоизотопов, нарабатываемых в спектрах spallation-нейтронов, в пределах наших экспериментальных погрешностей (~15%) пропорциональны мощности первичного пучка дейтронов и не зависят от энергии дейтронов в диапазоне 1...8 ГэВ. Скорости реакций в спектрах spallation-нейтронов, генерируемых протонами с энергией 660 МэВ в массивной урановой мишени, примерно на 40% меньше, чем для дейтронов с энергией от 1 ГэВ при одной и той же мощности первичного пучка.

Облучение природного цинка в спектре spallation-нейтронов позволяет нарабатывать радиоизотоп 64 Cu с радиохимической чистотой ~96% (4% содержание 67 Cu) и высокой удельной активностью – более 1500 ГБк/мг (расчет).

Показано, что невозможно получить радионуклидный препарат ⁶⁷Cu с высокой удельной активностью (> 200 ГБк/мг) и одновременно с малым отношением ⁶⁴Cu/⁶⁷Cu при облучении природного цинка в спектре spallation-нейтронов. Это связано с большой величиной массы стабильных изотопов меди, наработанных во время облучения.

Наработка радиоизотопа ⁶⁷Cu с приемлемой радиохимической чистотой (~98%) и с относительно высокой удельной активностью возможна только при облучении цинка, обогащенного по 68 или 67 изотопу. При этом требуется охлаждение облученных образцов в течение 3-х суток для уменьшения отношения активностей ⁶⁴Cu/⁶⁷Cu. Плотность потока нейтронов, необходимая для достижения высокой удельной активности ⁶⁷Cu (>200 ГБк/мг), должна быть не менее 5·10¹³ нейтр./см²/с.

Получено также хорошее согласие экспериментальных значений выходов радиоизотопов и теоретических оценок. Таким образом, методика расчетов моделирования спектров по MCNPX 2.7 с использованием базы данных TENDL позволяет с достаточно высокой точностью проводить модельные оценки наработки различных изотопов в сложных нейтронных полях.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- H. Aït Abderrahim. Multi-purpose hYbrid Research Reactor for High-tech Applications a multipurpose fast spectrum research reactor // International Journal of Energy Research. 2012, v. 36, iss. 15, p. 1331-1337.
- 2. https://neutrons.ornl.gov/sns
- 3. https://www.psi.ch/sinq/
- 4. http://myrrha.sckcen.be/
- I. Adam et al. The Study of Spatial Distributions of Neutron Capture and Fission Reactions in Massive Uranium Target Irradiated by Deuterons with Energies of 1...8 GeV ("Quinta" Setup): Preprint JINR P1-2012-147, 2012.
- M.Yu. Artiushenko et al. Monitoring of high energy deuteron beams in the experiments with massive targets // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations». 2014, v. 91, № 3, p. 186-189.
- D.B. Pelowitz. MCNPX Version 2.7.0. Los Alamos National Laboratory report LA-CP-11-00438, 2011.
- 8. A. Koning et al. *TALYS-1.6. A nuclear reaction program.* NRG Petten, The Netherlands, 2013.

- A. Koning et al. "TENDL-2014: TALYS-based evaluated nuclear data library", www.talys.eu/tendl-2014.html
- 10. Md.S. Uddin, Md. Rumman-uz-Zaman, S.M. Hossain, S. M. Qaim. Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of ⁶⁴Cu and ⁶⁷Cu via the (n,p) reaction at a TRIGA Mark-II reactor: Feasibility of simultaneous production of the theragnostic pair ⁶⁴Cu/⁶⁷Cu // Radiochimica Acta. 2014, v. 102, iss. 6, p. 473-480.
- 11. D.G. Medvedev et al. Development of a large scale production of ⁶⁷Cu from ⁶⁸Zn at the high energy pro-

ton accelerator: Closing the ⁶⁸Zn cycle // Applied Radiation and Isotopes. 2012, v. 70, p. 423-429.

- S. Mirzadeh, L.F. Mausner and S.C. Srivastava. Production of No-Carrier Added ⁶⁷Cu // Applied Radiation and Isotopes. 1986, v. 37, № 1, p. 29-36.
- 13. S. C. Srivastava. Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven National Laboratory // Radiochimica Acta. 2011, v. 99, iss. 10, p. 635-640.

Статья поступила в редакцию 18.11.2015

EXPERIMENTAL STUDIES OF THE MEDICAL ISOTOPES PRODUCTION USING SPALLATION NEUTRONS GENERATED IN MASSIVE URANIUM TARGET

V.V. Sotnikov, J. Adam, M.Yu. Artiushenko, V.A. Voronko, A.A. Zhadan, P. Zhivkov, L. Zavorka, A.A. Solnyshkin, S.I. Tyutyunnikov

The possibility of medical radionuclides 64,67 Cu production in spallation-neutron spectrum in nat Zn (n, x) reactions has been studied. Experiments were performed on a massive uranium target (mass of natural uranium 512 kg) at the accelerators "Nuclotron" and "Phasotron" JINR, Dubna. Spallation neutron spectrum averaged cross sections for the nat Zn(n, x) 67 Cu and nat Zn(n, x) 64 Cu reactions were estimated: 0.42 (6) mb and 8.1 (12) mb, respectively. The MCNPX simulation of 67,64 Cu production and definition of the theoretical limit of the specific activity of 67,64 Cu by irradiation of zinc and zinc enriched by the 68 isotope were performed.

ЕКСПЕРИМЕНТАЛЬНЕ ВИВЧЕННЯ НАПРАЦЮВАННЯ МЕДИЧНИХ ІЗОТОПІВ У СПЕКТРАХ SPALLATION-НЕЙТРОНІВ, ЯКІ ГЕНЕРУЮТЬСЯ В МАСИВНІЙ УРАНОВІЙ МІШЕНІ

В.В. Сотников, І. Адам, М.Ю. Артюшенко, В.О. Воронко, А.О. Жадан, П. Живков, Л. Заворка, А.О. Солнишкін, С.І. Тютюнников

Досліджено можливість напрацювання медичних радіонуклідів ^{64,67}Cu у спектрі spallation-нейтронів у реакціях ^{nat}Zn(n,x). Експерименти виконані з використанням масивної уранової мішені (маса природного урану 512 кг) на прискорювачах «Нуклотрон» та «Фазотрон» в ОІЯД, м. Дубна. Отримано оцінки перетинів ядерних реакцій ^{nat}Zn(n, x) ^{67,64}Cu у спектрі spallation-нейтронів – 0,42 (6) мбарн для виходу ⁶⁷Cu, 8,1 (12) мбарн для ⁶⁴Cu. Проведено модельні (MCNPX) розрахунки напрацювання ^{67,64}Cu та визначена теоретична межа питомої активності напрацьованих ядер ^{67,64}Cu при опроміненні природного цинку і цинку, збагаченого по 68 ізотопу.