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A general approach to Monte Carlo methods for Coulomb collisions is proposed. Its key idea is an 

approximation of Landau-Fokker-Planck (LFP) equations by Boltzmann equations of quasi-Maxwellian kind. High-
frequency fields are included into consideration and comparison with the well-known results are given. 
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INTRODUCTION  
Numerical simulation of plasma dynamics on kinetic 

level is a difficult problem. It is natural to use standard 
splitting methods, i.e. to consider separately (a) 
continuous motion of electrons and ions in external and 
self-consistent electro-magnetic fields and (b) Coulomb 
collisions. The splitting procedure is formally quite 
similar to what we do in simulation of neutral gases by 
Monte Carlo methods [1]. There is, however, a big 
difference in the simulation of the first stage (a), which 
is almost trivial (free molecular flow) for neutral gases. 
The corresponding motion of charged particles, 
described by Vlasov-Poisson or Vlasov-Maxwell kinetic 
equations [2], is much more sophisticated. The particle 
methods for solving these equations of "collisionless" 
plasma are very well developed and discussed in 
literature. We shall consider below only the second 
stage (b), related to Coulomb collisions. 

The spatially homogeneous kinetic equation for 
Coulomb interaction were first published by 
L.D. Landau in 1936 [3]. Beginning with its re-
discovery in the Fokker-Planck form in [4] a lot of work 
is done on numerical methods for the LFP equations 
based on finite difference schemes. Recent review on 
that subject can be found in [5], it contains many 
references. We are interested in this paper in methods, 
which are very close to Discrete Simulation Monte 
Carlo (DSMC) methods in rarefied gas dynamics [1]. 

The two well-known methods should be mentioned 
first in that field [6] and [7]. The general approach to 
DSMC methods for Boltzmann equation with long 
range potentials and for Landau equation was proposed 
in [8]. In the present paper we use another approach of 
the method (see, for example, [9]), which looks simpler 
for computer implementation. It looks quite natural to 
approximate the Landau equation by the Boltzmann 
equation with small-angle scattering and then to use any 
known DSMC scheme [1] for simulation. This 
approximation can be chosen in the quasi-Maxwellian 
way, such that the collision frequency for the auxiliary 
Boltzmann equation is constant. In the present paper we 
choose the simplest, in our view, scattering law in that 
class. 

1. APPROXIMATION OF LANDAU 
EQUATIONS BY BOLTZMANN 

EQUATIONS 
We consider an arbitrary spatially homogeneous 

mixture of rarefied gases. Let { ( , ), = 1, ..., }if t i nv  be 
distribution functions of particles with masses 
{ , = 1, ..., }im i n , respectively. The independent 

variables 3R∈v  and 0≥t  stand for velocity and time, 
respectively. Spatial densities { ( ), = 1, ..., }i t i nρ  are 
given by integrals 
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Functions ),( μuijg  are expressed by formulas 

( , ) = ( , ) = ( , ),ij ji ijg u g u u uμ μ σ μ  where ( , )ij uσ μ  is 

the differential cross section (in the center of mass 
system of colliding particles of sort i and sort j) of 
scattering at the angle 1.||),(arccos= ≤μμθ  

The system of Boltzmann equations (2) is interesting 
for us merely as a starting point to pass to the Landau 
equations. For such transition one needs to choose a 
special kind of functions ( , ).ijg u μ  This choice is based 

on the fact which has been proved many years ago [11]. 
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Suppose that distribution functions are infinitely 
differentiable and rapidly decreasing with all their 
derivatives at infinity. Following the original idea of 
Landau [3] and carrying on the Taylor expansion of 
integrand in (3) (with respect to vv −'  and ww −' ), we 
obtain a formal series 

 ( )
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The first term corresponds to the Landau collisional 
integral (for arbitrary ),( μuijg    in (3)): 
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here the summation over repeated Greek indices 
1,2,3=, βα  is assumed, 
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The other terms of (4) can be symbolically written in 
the form 
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where ),()( wvk
ijA  is a smooth integrable functions. 

Then it becomes clear under which conditions the 
system of Boltzmann equations (2) approximates (at the 
formal level) the corresponding system of given Landau 
equations, in which )(=)((1) ubug ijij , where )(ubij  are 
some given functions. It is formally sufficient to this 
aim to choose the non-negative functions ),( μugij  in 
equations  (2), (3) in the form );,( εμugij , where 0>ε  
is a small parameter, and to demand that 
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As a simple example of such an approximation one 
can consider functions 
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where )(=)( ubua ijij , if 2( )ijb uε ≤ , otherwise 
12ij ua ε( ) −= . The function ijg  means that the 

scattering always occurs at fixed angle 

[ ])(1arccos uaijε−  for collision of particles of sorts i 

and j. This scattering law is convenient for the Monte 
Carlo method. Another advantage of this approximation 
is that the total collision frequency is constant: 
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Such an approximation can be called quasi-
Maxwellian, since the total collision frequency (for any 
pair of sorts i and j, including the case i = j) is 
independent of velocities. Note that ε has dimensionality 

3]][[ −lt , we ignore this fact considering ε simply as a 
small parameter. From now on we consider the most 
important case of Landau equations for the classical 
plasma consisting of n sorts of charged particles with 
charges }1,...,=,{ niei . Assuming the Coulomb 
logarithm L  is the same constant for all interactions, we 
obtain (see, for example, [2]) equations (5) - (8), where  
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It is clear that Boltzmann equations (2), (3), where 
the functions );,( εμugij  are computed by formulas 
(7), (9), approximate (at least formally) as 0→ε  the 
system of Landau equations (4) for n -component 
plasma. Note, that the formal error of above described 
approximation of the Landau integral (1) ( , )i jQ f f  by 

the Boltzmann integral ),( ji ffQ  has the first order 

)(εO . More rigorous estimate gives the error not lager 

than ( )O ε . 

2. IMPLEMENTATION OF MONTE CARLO 
METHOD FOR TWO COMPONENT 

PLASMAS 
The idea of the Monte Carlo method belongs to 

G. Bird [1], who suggested it in 1960s, independently of 
earlier works of M. Kac [12] on the probabilistic nature 
of the Boltzmann equation. We choose as a basis the 
approach of Kac. The idea is to associate nonlinear 
equations (2) with some linear equation (Master 
equation), describing relatively simple stochastic 
process. 

We consider in this section an example of electro-
neutral hydrogen plasma. The Landau equations have 
the form (2) with collisional integral (5) and 

2 2 2

1 2= 2, = =n e e e . We change indices 1 and 2 to e  
(electrons) and i  (ions), correspondingly, and denote 

= , =e im m m M  with = m Mγ . We perform a 
normalization with units of 0ρ , the full density of 

number of plasma particles; a characteristic velocity 0v  
(for instance, the thermal electron velocity at the 
equilibrium temperature 0T ); the electron-electron 

collision time 0t : 4 2 3

0 0 02 / = 1Le t m vπ ρ . Equations (2), 
(4) will be solved with initial conditions. 
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For the approximate solution of the problem we 
choose a small real number > 0ε  and a large integer 

1N . We model the solution of this problem through the 
evolution of the random vector 

( ) ( ) ( ) ( ) 3

1 11 1
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N N Nt t t t t R∈V v v v v (12) 

where 1= 2N N . 

At = 0t  all electron velocities ( ) (0)e

kv  are 

distributed in 3R  independently in accordance with the 
distribution function (0) ( )ef v  and ion velocities ( ) (0)i

kv  

are distributed in similar way with (0)

if , 1= 1, ...,k N . 
Let us consider the scheme with the maximal time 

step 1= , = 2 ,2N N NNτ ε  then the time t  takes 

discrete values = , = 0,1, ...k Nt k kτ . Exactly one 

collision happens at each interval 1[ , )k kt t + . 
Probabilities of collisions of three possible kinds are 
defined by = = , = .1 4 1 2ee ii eip p p  After it is 
decided, which of the three collisions, really happens, 
we choose a random pair of velocities of particles of 
corresponding sorts and "perform the collision". The 
velocities after collision of two electrons and two ions 
read 
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where the unit vector ω  is defined in Cartesian 
coordinates with the axis Oz  along the vector 

−u = v w  in the following way: 
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where φ  is a random angle distributed uniformly within 
the interval [0, 2 )π . For the electron-ion collision we 

choose velocities ( ) ( )

1= , = , 1 , ,e i
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Thus, starting from the initial vector (0)NV , we 

obtain a new vector ( )N NτV  after the first collision. 
After that the whole simulation process is repeated 
many times and the time counter is increased at each 
collision by the quantity Nτ . 

We choose initial isotropic distributions 
0 2

, = 1 / 2 ( 1), =| |, = ( , , ).e i x y zf v v v v vπδ − v v  These 
distributions mean that the initial thermal speeds of 
electrons and ions are equal to one in our units. Note 
that average velocities of the components are equal to 
zero then 0 0= , =1 3 1 3e iT T γ . We compute some 
moments 
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and then make an average over K  computational runs. 
The resulting values for various values of parameters 
are compared with practically exact values of integrals  
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obtained by using difference scheme from [5]. 

3. THE EFFECT OF INVERSE 
BREMSSTRAHLUNG OF LASER 

RADIATION 
Let us consider the plasma dynamics in the high-

frequency weak electrical field ( ) = i tt e ω−E E , when 

eiω ν  and = eE Tev veE m ω  (magnetic field 

influence is neglectable). We suppose that Tev T l  or 

/Tev lω , where = 2T π ω , l  is a characteristic 
spacial scale, then  
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in this case the system of LFP equations reads 
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As it was shown in [13], that even for weak fields 

E Tev v  and 1Z , when Langdon parameter α  is 

big: 2 2= 1E TeZv vα , or, equivalently 
2 2 2> >E T EZv v v  the electron distribution function is far 

from the Maxwellian one. It was shown in [14] for 
arbitrary α , that the symmetrical part of an electron 
distribution function (EDF) can be written in the 
following form: 
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It can continuously vary from Maxwellian 
( 2, 1m α= ) to a super-Gaussian form with 5m =  
for 1α . Such nonequilibrium states can exist in a 
plasma for 1α >  because the inverse bremsstrahlung 
heating rate is sufficiently fast for slow particles so that 
electron-electron collisions cannot restore a Maxwellian 
EDF. Also in [14] was obtained an equation for the time 
evolution of the electron temperature 
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where 4 24 eY n e L mπ= . Equation (16) demonstrates 
that the heating rate is entirely defined by behavior of 
very slow electrons.   

Now let us consider our particle simulation results. 
First, we have calculated an electron heating rate. Fig. 1 
shows an electron temperature normalized to its initial 
value versus time for α=6.75 . We have also plotted in 
Fig. 1 the heating rate which is predicted by Eq. (16) 
with 0f  given by (15) with 5m =  (dashed line) and the 
Maxwellian distribution 2m =  (dotted line). As one 
can expect the heating rate corresponds to the non-
Maxwellian EDF. 

 
Fig. 1. Temporal dependence of the electron 

temperature for DSMC method (solid line), the 
distribution (15) (dashed line) and the Maxwellian 

distribution (dotted line) for γ=1 1800 , N=2000,K=20,  
-4=5 10 , Z=10,ε ⋅  α=6.75 , eiω=10ν  

In Fig. 2 we plot the temporal dependence of the 6th 
EDF moment for α=6.75 . The relativly small difference 
between the DSMC method results and temporal 

dependence expected for the distribution (15) is quite 
understandable since, as it was mentioned in [14], the 
laser energy absorbed by the fast electrons is much 
smaller than energy absorbed by the slow electrons and 
the EDF at high velocities (tail of distribution) should 
remain close to the Maxwellian due to the e – e 
collisions between fast and slow particles.   

 
Fig. 2. Temporal dependence of the 6th electron 
distribution function moment for DSMC method  
(solid line), the distribution (15) (dashed line) 

and the Maxwellian (dotted line).  
The parameters are the same as in Fig. 1   

 
Fig. 3. Temporal dependence of the 6th electron 

distribution function moment for DSMC method (solid 
line), the distribution (15) at m = 5  (dashed line) and 
the Maxwellian (dotted line) for γ=1 1800 , N=2000,  

,-4=5 10 , K=20 Z=3,ε ⋅  α=0.01 , eiω=10ν  

The temporal dependence of the same 6th EDF 
moment but for another α=0.01 is presented in Fig. 3. In 
this case the EDF is Maxwellian one both for slow and 
fast particles. 

CONCLUSIONS 
In conclusion, let us summarized the main results of 

the paper. General approach to Monte Carlo methods 
for Coulomb collisions is discussed. The approach is 
based on a special quasi-Maxwellian way of approxima-
tion of the LFP equations by Boltzmann equations. The 
DSMC numerical scheme is derived for the general case 
of multicomponent plasmas. The order of approxima-
tion is not worse than ( )O ε , where ε   is a parameter 

of approximation being equivalent to the time step tΔ . 
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DSMC method is tested for the plasma dynamics in 
the external high-frequency weak electrical field. The 
numerical simulation confirmed that the non-
Maxwellian distribution function is composed of a su-
per-Gaussian bulk of slow electrons and a Maxwellian 
tail of energetic particles. So there is a good agreement 
between DSMC method results and the theory devel-
oped in Refs. [13, 14]. 
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СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНОГО КИНЕТИЧЕСКОГО УРАВНЕНИЯ  

С ВЫСОКОЧАСТОТНЫМ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ 
А.В. Андрияш, А.В. Бобылев, А.В. Брантов, В.Ю. Быченков, С.А. Карпов, И.Ф. Потапенко 

Предложен общий подход к моделированию кулоновских столкновений методом Монте-Карло. Основ-
ная идея заключается в аппроксимации системы уравнений Ландау-Фоккера-Планка (ЛФП) уравнениями 
Больцмана квазимаксвелловского вида. Также рассматриваются высокочастотные поля, и приводится срав-
нение с полученными ранее результатами. 

 
СТОХАСТИЧНЕ МОДЕЛЮВАННЯ НЕЛІНІЙНИХ КІНЕТИЧНИХ РІВНЯНЬ  

С ВИСОКОЧАСТОТНИМ ЕЛЕКТРОМАГНІТНИМ ПОЛЕМ 
А.В. Андрияш, А.В. Бобилєв, А.В. Брантов, В.Ю. Биченков, С.А. Карпов, І.Ф. Потапенко  

Запропоновано загальний підхід до моделювання кулонівських зіткнень методом Монте-Карло. Основна 
ідея полягає в апроксимації системи рівнянь Ландау-Фоккера-Планка (ОФП) рівняннями Больцмана квазі-
максвеллiвського виду. Також розглядаються високочастотні поля, і наводиться порівняння з отриманими 
раніше результатами. 


