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The general quantum theory, that describes all types of X-and-γ-rays coherent radiations, which arise in the collision

of relativistic electrons with a crystal target, is described briefly. Such types of coherent radiations as: ordinary

coherent bremsstrahlung and channeling radiation, emitted by a relativistic electron; different types of coherent

polarization radiations, emitted by the crystal atoms and nucleus; the interference of these two types of coherent

radiations can be described within the framework of the present theoretical model.
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1. INTRODUCTION

Let us consider the total X-and-γ-rays radiation,
which arises in the collision of relativistic electron
with a single crystal target. On the whole we will
concentrate our attention upon the case of high elec-
tron energies E ≫ mc2 and photon energies h̄ω ≪ E.

For the most applications the interaction of the
relativistic electrons with the radiation field can be
treated as a small perturbation. On the other hand,
the interaction of the electron with crystal atoms, in
principle, can be handled rigorously by including it
in the unperturbed Hamiltonian. The interaction of
the electromagnetic field with crystal atoms and nu-
clei can be included in the unperturbed Hamiltonian
for electromagnetic field in the crystal media too.

So it is convenient to use the quantum electrody-
namics in Furry notation [1].

2. GENERAL CROSS SECTION

2.1. The total Hamiltonian for the system of
relativistic electron, crystal and

electromagnetic radiation

Classical Hamiltonian of the system of relativistic
electron, crystal and electromagnetic radiation has
the form:

H = He +He−c︸ ︷︷ ︸+Hr +Hr−c︸ ︷︷ ︸+He−r , (1)

where He is the Hamiltonian of free relativistic elec-
tron, He−c is the Hamiltonian of interaction between
relativistic electron and crystal, Hr is the Hamilto-
nian of free electromagnetic radiation, Hr−c is the
Hamiltonian of interaction between radiation and

crystal, He−r is the Hamiltonian of interaction be-
tween relativistic electron and radiation. The inter-
nal state of crystal is conserved, therefore the Hamil-
tonian of the crystal is not included.

Let us choose the eigenfunctions ψn(r⃗)e
−iEnt/h̄

and A⃗ω(r⃗)e
−iωt of corresponding operators:

Ĥ ′
e = Ĥe + Ĥe−c and Ĥ ′

r = Ĥr + Ĥr−c as the gen-
eralized coordinates of the fields.

Thus in our case the unperturbed states for the
relativistic electron satisfy the Dirac equation:(
−ich̄ ˆ⃗α∇⃗+mc2β̂ − ih̄

∂

∂t

)
ψ(r⃗, t) = −Ue−c(r⃗)ψ(r⃗, t) ,

(2)
where He−c = Ue−c(r⃗), and Ue−c(r⃗) is the poten-
tial energy of interaction the relativistic electron with
static crystal potential.

The unperturbed states of the electromagnetic
field in the crystal media A⃗(r⃗, t) satisfy the Maxwell
equation:[

∇2 − 1

c2
∂2

∂t2

]
A⃗(r⃗, t) = −4π

c
j⃗(r⃗, t) , (3)

where j⃗(r⃗, t) is the current density inside the crys-
tal matter in the presence of the electromagnetic
field, which means as a result of field scattering
on the crystal electrons and nuclei, i.e. j⃗(r⃗, t) =
j⃗(el)(r⃗, t)+ j⃗(nucl)(r⃗, t). Besides, the Coulomb gauge

∇⃗ · A⃗ = 0 should be used.
Finally, the Hamiltonian of interaction between

relativistic electron and radiation can be presented
in the form:

He−r =
1

c

∫
J⃗(r⃗, t) · A⃗(r⃗, t)d3r , (4)
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where: J⃗ = −ecψ+ ˆ⃗αψ is the current of the relativistic
electron; ψ(r⃗, t) =

∑
n Cne

−iEnt/h̄ψn(r) is the com-
plete wave function of the incoming relativistic elec-
tron; e−iEnt/h̄ψn(r⃗) are the electron wave functions,
which characterize relativistic electron states in the
crystal media and satisfy the equation (2); wave am-
plitudes Cn are obtained by ”sewing together” com-
plete electron wave function on the boundary crystal-
vacuum, (|Cn|2 is the probability of the population

the state ψn(r⃗, t)); A⃗(r⃗, t) is the vector-potential of
the electromagnetic field in the crystal media, which
satisfies the equation (3) with taking into account
the boundary conditions on the boundary crystal-
vacuum, as well.

Hamiltonian of interaction He−r (see Eq.4) is
treated as a small perturbation.

2.2. Cross section of all types of coherent
radiations of relativistic electrons in crystals

Quantum transitions occur between electron states
and between photon states, which are described by
the eigenfunctions of the Hamiltonian operators Ĥ ′

e

and Ĥ ′
r, for electron and electromagnetic field inside

the crystal matter.
Solution of our task can be obtained within the

framework of the first-order theory of perturbation.
The radiation process describes by the first order
term of the Ŝ-matrix. Corresponding Feynman di-
agram is shown in Fig.1.

Solid lines in Fig.1. represent the unperturbed
states of the charged particle, i.e. electron in the
initial state |i⟩ and in the final state |f⟩, which are
the solutions of the Dirac equation for electron in the
crystal potential (see Eq.2); and wavy line represents
the unperturbed photon states described by func-
tions Aλ

µ(r⃗, t), which are the solutions of the wave
equation (see Eq.3).
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A

Fig.1. Feynman diagram
describes all types of ra-
diation, which arise in
the collision of relativistic
electron with crystal

Matrix element of the radiation process has the form:

S
(1)
i→f =

e

h̄c

∫ ∞

−∞
d3r

∫ ∞

−∞
dtψ+

f (r⃗, t) ˆ⃗α · A⃗∗
k⃗λ

(r⃗, t)ψi(r⃗, t) .

(5)
Expression for electron wave function is the follow-
ing:

ψn(r⃗, t) =

√
En +mc2

2EnV

(
u⃗n

cˆ⃗σ ˆ⃗p
En+mc2

u⃗n

)
ϕn(r⃗)e

−iEnt/h̄ ,

(6)

where u⃗n are two-component unit spinors. The pho-
ton field A⃗(r⃗, t) is given in the form of the Bloch
waves:

A⃗(r⃗, t) =

√
2πh̄c

kV

∑
g⃗,λ

[
e⃗g⃗,λag⃗,λe

i[(k⃗+g⃗)r⃗−ωt] +H.c.
]
,

(7)
where vectors g⃗ are the crystal reciprocal lattice vec-
tors. In the expression (5) must be used one of the
single item of the sum (7).

After integrating matrix element (5) over the time
we obtain:

S
(1)
i→f = 2πMi→f · δ

(
Ei − Ef

h̄
− ω

)
, (8)

where matrix element Mi→f has the form:

Mi→f =
e

h̄c

√
2πh̄c

kV

∫
d3rψ+

f (r⃗)
ˆ⃗α · e⃗k⃗λe

−ik⃗r⃗ψi(r⃗) .

(9)
The number of the final states in the interval of
the particle momenta d3pf is V d3pf/(2πh̄)

3. The
number of the final states in the interval of the
photon momenta h̄3d3k is V d3k/(2π)3. Therefore
the probability of the transitions into these states,
which relates to the one particle and one photon, is

|Si→f |2 V d3pf

(2πh̄)3
V d3k
(2π)3 . The square of δ-function is:

[2πδ(Ei − Ef )]
2 = 2πTδ(Ei − Ef ) . (10)

Dividing the probability of the transitions into final
states on the time T , we obtain that the number of
transitions per unit time into the interval of momenta
d3pf h̄

3d3k is equal:

dP =
1

T
|Si→f |2

V d3pf
(2πh̄)3

V d3k

(2π)3
. (11)

The cross section is defined as a ratio of velocity
of transition dP and the flux of the initial particles
|Jinc|, which is defined as |Jinc| = |v⃗i|/V , where:
v⃗i = c2p⃗i/Ei is the velocity of the initial particle,
V is the volume which was used for normalization.
Using such calculations one can obtain the following
cross section:

d3σ = α

(
h̄

mc

)2
Eimc

pih̄ω

∣∣M ′
i→f

∣∣2 ×
×δ(Ei − Ef − h̄ω)

h̄3d3kd3pf
(2πmc)6

, (12)

where

M ′
i→f =

∫
d3rψ+

f (r⃗)
ˆ⃗α · e⃗k⃗λe

−ik⃗r⃗ψi(r⃗) . (13)

In the case h̄ω ≪ E, we can assume Ei ≈ Ef = E and
simplify the expression for matrix element M ′

i→f .
Let us calculate the product of matrices in the expres-
sion (13), using the properties of Pauli spin-matrices
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σ̂j :(
u⃗+
f

u⃗+
f

cˆ⃗σ ˆ⃗p
Ef+mc2

)
α̂j

(
u⃗i

cˆ⃗σ ˆ⃗p
Ei+mc2

u⃗i

)
=

u⃗+
f

c

Ei +mc2
σ̂j(ˆ⃗σ · ˆ⃗p)u⃗i + u⃗+

f

c

Ef +mc2
(ˆ⃗σ · ˆ⃗p)σ̂j u⃗i ≃

c

E +mc2
u⃗+
f

{
σ̂j(ˆ⃗σ · ˆ⃗p) + (ˆ⃗σ · ˆ⃗p)σ̂j

}
u⃗i ≃

2

mcγ
p̂j u⃗

+
f 1̂u⃗i .

(14)

Thus we obtain a rather simple expression for matrix
element M ′

i→f :

M ′
i→f =

u⃗+f u⃗i

mc2γ

∫
d3rϕ∗f (r⃗)

ˆ⃗p · A⃗∗(r⃗)ϕi(r⃗) . (15)

Usually we are not interested in the electron spin
states. Therefore we must perform summation in the
cross section over the final electron spin states and
averaging over the initial electron spin states, which
lead to: ⟨∑

f

|u⃗+f u⃗i|
2

⟩
i

=
1

2

∑
f,i

|u⃗+f u⃗i|
2 = 1. (16)

3. SOLUTIONS OF THE WAVE
EQUATIONS (2) AND (3)

For the simplicity it is convenient to choose a crys-
tal with cubic lattice and use the Cartesian coordi-
nate system connected with cubic edges. We sup-
pose that crystal lattice has finite numbers of periods
−N1/2 ≤ n1 ≤ N1/2 in the direction, which creates
a small angle with momentum of incoming relativis-
tic electron, and infinite numbers of periods for other
two directions −∞ ≤ ni ≤ ∞ (i = 2, 3). Within the
framework of the present model the main task is in
the searching solutions of the wave equations (2) and
(3), which satisfy boundary conditions. Outside the
crystal equations (2) and (3) describe free relativistic
electron and free electromagnetic field, respectively.
On the boundary crystal-vacuum the wave functions,
which represent solutions of (2) and (3) inside the
crystal, must be ”sewn together” with wave func-
tions, which represent solutions of (2) and (3) outside
the crystal.

3.1. Wave equations for the waves in the
media with periodical heterogeneity

3.1.1. Equation for charged particles

We can search for the solution of the Dirac equa-
tion (2) in the form of (6) and transform it into
the Pauli equation [2]. Then we can see that for
relativistic electrons, if E ≫ mc2, the wave func-
tions ϕ(r⃗) approximately satisfy Schrödinger equa-
tion for particle with mass M = E/c2 = mγ and
energy ϵ = (E2 − m2c4)/2E. The accuracy of such
approximation is order of ∼ 1/γ = mc2/E. In-
troducing variables: K2 = p⃗ 2/h̄2 = 2Mϵ/h̄2 and

Vcr(r⃗) = 2MUe−c(r⃗)/h̄
2, we can rewrite this equa-

tion in the form:[
∇2 +K2

]
ϕ(r⃗) = −Vcr(r⃗)ϕ(r⃗) . (17)

Potential function Vcr(r⃗) is the following sum of

atomic potential functions Vat(r⃗ + R⃗L⃗,j):

Vcr(r⃗) =
∑
L⃗,j

Vat(r⃗ + R⃗L⃗,j) , (18)

where R⃗L⃗,j = L⃗+ r⃗j + u⃗L⃗,j are coordinates of crys-

tal atoms; L⃗ = a⃗1n1+ a⃗2n2+ a⃗3n3 are lattice vectors
(n1,2,3 − integer numbers, a⃗1,2,3 − periods of the crys-
tal lattice); r⃗j are structure vectors; u⃗L⃗,j are thermal
displacements of crystal atoms from their equilibrium
positions.

Equation (17) describes the scattering of the plane
waves on the potential deepening. Therefore, on the
whole, the Schrödinger equation, which corresponds
to (17), can have discrete energy levels ϵn < 0 and
space-localized wave functions ϕn(r⃗), corresponding
to them.

3.1.2. Equation for electromagnetic field

Now let us consider the equation (3) in the trivial case
of the spreading the electromagnetic field in the crys-
tal matter with frequency, which is larger than the
atomic and nuclear resonance frequencies ω > ωR.
In that case the propagation of the electromagnetic
field inside the crystal can be described as a process
of purely elastic Waller scattering of electromagnetic
waves in the crystal medium with periodically dis-
tributed electron density ϱcr(r⃗) = ϕ+s (r⃗)ϕs(r⃗), where
ϕs(r⃗) is the wave function of the crystal electron sub-
system. The quantum mechanical state of the crys-
tal remains unchanged during the scattering process.
Therefore one can suppose that the current density
induced by mono-harmonic component of the electro-
magnetic field A⃗ω(r⃗) looks like:

j⃗(el)ω (r⃗) =
e2

mc
ϱcr(r⃗)A⃗ω(r⃗) , (19)

Evidently that the mono-harmonic components of the
vector-potential of the electromagnetic field in a crys-
tal matter satisfy the wave equation:[

∇⃗2 +
ω2

c2

]
A⃗ω(r⃗) =

4πe2

mc2
ϱcr(r⃗)A⃗ω(r⃗) . (20)

One can see, that components of vector-function
A⃗ω(r⃗) =

∑
λ e⃗λ · aω,λ(r⃗), which satisfy equation (20),

are independent. If we introduce the following desig-
nations: ω2/c2 = k′

2
and (4πe2/mc2)ϱcr(r⃗) = V ′

cr(r⃗),
we obtain the wave equation for scalar function
aω,λ(r⃗) which is analogous to (17).

In spite of such similarity of (17) and (20), they
have vital difference: periodical functions Vcr(r⃗) and
V ′
cr(r⃗) in these equations have different signs. Equa-

tion (17) describes the scattering of the plane waves
on the potential deepening. Equation (20) describes
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the scattering of the plane waves on the potential
barrier. Therefore equation (20) has only continuous
spectrum of frequencies ω > 0, and all wave functions
aω,λ(r⃗) are the plane waves.

Further we will concentrate our efforts to the
methods of obtaining solutions of stationary wave
equations (17) and (20) with periodical potential
functions +Vcr(r⃗) and −V ′

cr(r⃗), respectively [3].

3.2. Born approximations

If we assume Vcr(r⃗) = 0 in the equation (17) (or
V ′
cr(r⃗) = 0 in the equation (20)), then the equation

has solutions, which are plane waves eik⃗r⃗. We have
such solutions in the emptiness outside the crystal
target.

We supposed (see Eq.14), that inside the crystal

target Vcr(r⃗) ≪ K2 (or V ′
cr(r⃗) ≪ k′

2
). Then the scat-

tered wave is much less than initial incoming plane
wave, and Vcr(r⃗) in the equation (17) (or V ′

cr(r⃗) in
the equation (20)) can be considered as a perturba-
tion. So, the solution of (17) can be obtained in the
form of rather quickly convergent series:

ϕ(r⃗) = ϕ(0)(r⃗) + ϕ(1)(r⃗) + ϕ(2)(r⃗) + ... , (21)

where |ϕ(n+1)(r⃗)| < |ϕ(n)(r⃗)| (for (20) we can write
analogous series).

It is convenient to obtain such solutions using the
method of Green functions. With the help of the
Green function method the solution of differential
problem like (17) (or (20)) can be converted into the
integral problem:

ϕ(r⃗) =

∫
G(r⃗, r⃗′)Vcr(r⃗

′)ϕ(r⃗′)d3r′ , (22)

and then using (21), the iterative method can be ap-
plied.

Green function of operator (∇2 +K2) can be de-
fined as the function G(r⃗, r⃗′), that satisfies the equa-
tion:

(∇2 +K2)G(r⃗, r⃗′) = δ(r⃗ − r⃗′) . (23)

Representing Green function by its Fourier integral

G(r⃗, r⃗′) =
1

(2π)3

∫
d3k e−ik⃗·r⃗G(k⃗, r⃗′) (24)

and substituting it into equation (22), we obtain
equation for Fourier transformation of Green func-
tion:

G(k⃗, r⃗′) = − eik⃗·r⃗
′

k2 −K2
. (25)

Then using (24) and (25) we can write:

G(r⃗, r⃗′) = − 1

(2π)3

∫
d3k

e−ik⃗·(r⃗−r⃗′)

k2 −K2
=

− 1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

eik|r⃗−r⃗′| cos θ

k2 −K2
k2dk sin θdθdφ =

− 1

2π2|r⃗ − r⃗′|

∫ ∞

0

sin(k|r⃗ − r⃗′|)
k2 −K2

kdk .

(26)

3.2.1. The whole Born series

Using the explicit expressions of the Green
function (26) and initial plane wave func-
tion we can obtain the Born series:

ϕ(r⃗) = ϕ0(r⃗) +

+

∞∑
n=1

∫
...

∫
G(r⃗ − r⃗n)V (r⃗n)G(r⃗n − r⃗n−1)V (r⃗n−1)× ...

×G(r⃗3 − r⃗2)V (r⃗2)G(r⃗2 − r⃗1)V (r⃗1)ψ0(r⃗1)d
3r1...d

3rn .

(27)
In the whole Born series (27) we can use the repre-
sentation of the Green functions in the form of their
Fourier integrals (24), and after integration over the
space coordinates we can obtain the Born series in
the momentum representation:

ϕ(r⃗) → eik⃗ir⃗

{
1 +

∞∑
n=1

(−1)n

(2π)3n

∫
...

∫
e−iq⃗1r⃗ F (q⃗1)

(k⃗i − q⃗1)2 −K2
×

× e−iq⃗2r⃗ F (q⃗2)

(k⃗i − q⃗1 − q⃗2)2 −K2
...×

× e−iq⃗nr⃗ F (q⃗n)

(k⃗i − q⃗1 − ...− q⃗n)2 −K2
d3q1...d

3qn

}
,

(28)

where: F (q⃗n) ≡ Fcr(q⃗) are the Fourier transforma-
tions of the potential function V (r⃗) ≡ Vcr(r⃗) (Vcr(r⃗)
is defined by Eq.18), and vectors q⃗n denote the mo-
mentums, which are passed to the scatterer (atom or
crystal) during the n-multiple scattering, i.e. q⃗n =

k⃗n − k⃗n−1.
The Fourier transformation of the crystal poten-

tial (18) can be written as a product:

Fcr(q⃗) =
∑
L⃗,j

exp[−iq⃗(L⃗+ r⃗j + u⃗L⃗,j)]Fat(q⃗) =

= S(q⃗)e−W (q⃗)D(q⃗)Fat(q⃗) , (29)

where S(q⃗) =
∑

j e
−iq⃗r⃗j is a structure factor, e−W (q⃗)

is a Debye factor, D(q⃗) is a diffraction factor, and
Fat(q⃗) is the Fourier transformation of the atomic po-
tential. One can write the diffraction factor for the
crystal with cubic lattice, which has finite number of
periods −N1/2 ≤ n1 ≤ N1/2 and infinite numbers
of periods for other two directions −∞ < ni < ∞
(i = 2, 3) in the form:

D(q⃗) =
sin(qzaN1/2)

sin(qza/2)
(2π/a)2

∑
g⃗t

δ(q⃗ − g⃗)t , (30)

where g⃗t are the transverse components of the recip-
rocal lattice vectors.

The Fourier transformation of the atomic poten-
tial is represented by the formula:

Fat(q⃗) =
−4πe2

q2
[Z − F ′

at(q⃗)] , (31)

where F ′(q⃗) is the atomic form-factor.
Thus for obtaining wave function ϕ(r⃗), which is

the solution of wave equation (17) in the form of Born
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series, it’s necessary to substitute complete expres-
sion of Fcr(q⃗) in the form of (29) into (28) and to
integrate every term of the sum.

Completely analogous result can be obtained for
searching the amplitudes of electromagnetic waves
with definite polarization ak⃗,λ, which are solutions

of wave equation (20). For this aim we must replace
K → ω/c and Vcr(r⃗) → −V ′

cr(r⃗)·pλλ
′
in Eq.28, where

polarization factor is pλλ
′
= e⃗λh · e⃗λ′

0 .

3.3. High energy approximation of Bethe
equations

From formulae (28), (29) and (30) it follows, that
the solution of wave equation type (17) can be rep-
resented as a superposition of the plane waves with
wave vectors k⃗i + g⃗t, where g⃗t are transverse compo-
nents of the reciprocal lattice vectors, i.e.

ϕ(r⃗) =
∑
g⃗t

Ag⃗t(z)e
i(k⃗i+g⃗t)r⃗ , (32)

which is the consequence of the Bloch theorem [4].
Besides, we must take into account that the am-
plitudes of plane waves Ag⃗t(z) are slowly-changing
functions of the longitudinal coordinate z. Ampli-
tude Ag⃗t(z) has a visible changing on the lengths of
lg⃗t , which are more larger than crystal period a1, i,e,
lg⃗t ≫ a1. It means, that the wave ϕ(r⃗) spreads un-
der the small angle respectively the crystal plane and
therefore k⃗i has large z-component, which is parallel
to the crystal plane. (Such condition is the same, that
is necessary for application of the eikonal method.)

Substituting (32) into wave equation (2), multi-

plying it by e−i(k⃗i+g⃗′
t)r⃗ and averaging over the vol-

ume of the crystal cell, and then using the condition
(dAg⃗t/dz))/Ag⃗t ∼ a1/lg⃗t ≪ 1, we obtain the system
of equations:

2ikz
d

dz
Ag⃗t(z) =

[
(k⃗t + g⃗t)

2 − k⃗2t

]
Ag⃗t(z) +

+
∑
g⃗′
t

F (g⃗t − g⃗′t)Ag⃗′
t
(z) , (33)

where F (g⃗t − g⃗′t) is the Fourier transformation of
the potential function ⟨V (r⃗)⟩z averaged along z-
coordinate. This system of equations is the high
energy approximation of known Bethe equations [4].
They describe the multiple scattering of waves in the
crystal.

If crystal thickness is so small, that a single scat-
tering is predominate, then in the sum over g⃗′t in (33)
all amplitudes Ag⃗′

t
(z) are small in comparison with

A0. In this case the system of equations (33) spreads
into the system of independent equations, and their
solutions lead to the result of Born approximations.

One can search for the general solution of the sys-
tem Eq.33 in the form:

Ag⃗t(z) = Bg⃗te
−iλz. (34)

Substituting (34) into (33) we obtain the system of
algebraic equations for amplitudes Bg⃗t :[
2kzλ+ k⃗2t − (k⃗t + g⃗t)

2
]
Bg⃗t = +

∑
g⃗′
t

F (g⃗t − g⃗′t)Bg⃗′
t
,

(35)
which has solutions if parameter λ satisfies the ”sec-
ular” equation:

det
∣∣∣[2kzλ+ k⃗2t − (k⃗t + g⃗t)

2
]
δg⃗t,g⃗′

t
− F (g⃗t − g⃗′t)

∣∣∣ = 0 .

(36)
It is easy to see, that parameter λn = Et/(2h̄vzkz)
has linear correlation with so-called ”energy of trans-
verse motion” of the relativistic particle Et in the
averaged crystal potential ⟨V (r⃗)⟩z.

Equation (36) makes it possible to obtain the
functional dependence of this parameter from trans-
verse wave vector k⃗t + g⃗t, i.e. to obtain the zone
structure of the levels of the so-called ”transverse en-
ergy”. The electron states can be subdivided into
three groups:

1. strongly bound (localized) states which have the
separated narrow energy zones, i.e. discrete energy
levels;

2. feebly bound or nearly free states for which en-
ergy zones are wide and covered;

3. intermediate between 1 and 2 states which have
the separated rather wide energy zones.

Determinant (36) is the two-dimensional analogy
to the Hill determinant. For two-dimensional case
the method of obtaining the exact solutions is not
developed.

For obtaining approximate solutions we need to
replace the infinite series of equations (35) by the sys-
tem of the finite number of equations [4]. The rank
of the system of equations can be estimated by the
number of the reciprocal lattice points per square of
atomic reciprocal screening radius. Crystal potential
is changing rather rapidly and therefore this number
is order of 100. Modern computers allow us to solve
such systems of equations and this method sometimes
is applied. But it is good enough for the description
of the nearly free states so as the rank of the system
in this case is relatively small.

3.4. Bound states or channeling

The representation of the coordinate wave function
of relativistic charged particle ϕ(r⃗) as a superposi-
tion of plane waves (see Eq.32) is inconvenient for
the description of the strongly bound states, which
are called ”channeling states”. For describing such
states within the framework of Bethe equations we
forced to solve the system of equations (35) with high
rank. In order to avoid such difficulties, the wave
functions of ”channeling states” we can calculate us-
ing another, the more convenient method. The com-
plete set of basis functions, which is used for repre-
sentation searching wave functions, must be created
using the set of channeling functions supplemented by
the set of plane waves orthogonal to the set of chan-
neling functions. The similar method was developed
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by C.Herring in 1940 for calculating wave functions
of crystal electrons [5].

3.4.1. Planar channeling wave functions

Let us suppose, that the conditions of the planar
channeling are satisfied. For general case we need to
have such basis which includes the wave functions of
electron bound (or channeling) states near the crys-
tal planes. (The axial case can be considered analo-
gously).

The system of equations (33) corresponds to the
Schrödinger-type equation in the coordinate repre-
sentation:

ih̄v⃗l∇⃗lϕK⃗l
(x, r⃗l) =

=

[
− h̄2

2mγ
(∇⃗2

x + K⃗2
x) + ⟨V (x, r⃗l)⟩y,z

]
ϕK⃗l

(x, r⃗l) , (37)

where ⟨V (x, r⃗l)⟩y,z is averaged crystal potential V (r⃗)
over the square of the plane y× z. Equation (37) can
be solved by the method of variable separation. Its

solution looks like ϕK⃗l
(x, r⃗l) = eiK⃗lr⃗lfK⃗l

(n, x), where
the function fK⃗l

(n, x) satisfies the Schrödinger-type
equation:[
− h2

2mγ
∇2

x + ⟨V (x, r⃗l)⟩y,z − ϵ
(n)

K⃗l
(γ)

]
fK⃗l

(n, x) = 0 ,

(38)
where r⃗l = {y, z}, and γ is relativistic particle
Lorentz-factor. Potential function ⟨V (x, y, z)⟩y,z has
rather complicated analytical expression. It can be
approximated by the close relative function with sim-
ple analytical expression. The Pöschl-Teller poten-
tial V0/ ch

2(x/x0) [14] approximates averaged crystal
plane potential ⟨V (x, r⃗l)⟩y,z well. And it was shown
in [10],[13], that for such plane potential the energies
of the crosswise motion are:

ϵ(n) = − h̄
2c2

2E

(
2ν + n

x0

)2

, (39)

where: n is the main quantum number (n =
0, 1, 2, ...); ν = (1 −

√
1 + 16u)/4; u =

(γ/2)(V0/mc
2)(2πx0/λc)

2; V0 and x0 are constants,
which are obtained by the way of fitting model po-
tential to the real one; E and γ are energy and
Lorentz-factor of relativistic electron; λc is the Comp-
ton length.

f
(+)
1 (n, x) = Nnch

2ν(x/x0)× (40)

Gn(2ν + n/2, 1/2;−sh2(x/x0)),
f
(−)
1 (n, x) = Nnch

2ν(x/x0)sh(x/x0)×
Gn(2ν + (n− 1)/2, 3/2;−sh2(x/x0)),

where

Gn(p, q; z) ≡ 1 +
n∑

k=1

(−1)k
(
n
k

)
× (41)

(p)(p+ 1)...(p+ k − 1)

q(q + 1)...(q + k − 1)
zk,

are Jacobi polynomials with p = k + j + 1/2, q =

−(ν+2+k+j), and

(
n
k

)
are binomial coefficients.

Factors Nn in (40) are the normalizing factors:

Nn =

x0 n∑
k=0

n∑
j=0

ckcjB(p, q)

−1/2

, (42)

where ck (and cj) is the coefficient with zk (zj) Ja-
cobi polynomial (41). B(p, q) = Γ(p)Γ(q)/Γ(p + q)
are Euler B-functions.

3.5. Complete solution of Dirac equation (2)

Method of the orthogonalized plane waves (OPW )
can be applied for calculations which correspond to
the wide energy zones. Such method is described
in detail in [3], where the set of bound state wave
function, was represented by the axial channeling
functions φλ(ρ⃗), where cylindrical coordinate system
ρ⃗, z was used with Z-axis along the atomic string.
Such axial channeling functions φλ(ρ⃗) were obtained
by A.Tamura [9] for model atomic-string potential
eW (ρ⃗) = Ze2/ρ − C, where parameters Z and C
are defined by the fitting of model potential to the
real one. Here we will use the set of bound state
wave functions φλ(ρ⃗) [9] for description the (OPW )-
method. (The computations in the planar case are
analogous.)

Wave function is presented by superposition of
OPW which can be defined by the correlation:

OPWk⃗ ≡
∣∣∣⃗k⟩−

∑
n,L⃗

∣∣∣n, L⃗⟩⟨n, L⃗ ∣∣∣⃗k⟩ , (43)

where |⃗k⟩ is a plane wave, and

|n, L⃗⟩ ≡ exp(ik⃗tL⃗)φ(ρ⃗+ L⃗) is normalized function of

the bound state that corresponds to L⃗ crystal cell.
OPWk⃗ has behavior like plane wave far from the

crystal planes or strings and like localized state func-
tion |n, L⃗⟩ near the atomic strings and planes. These
properties of OPWk⃗ make them the most convenient
for calculations the middle states between strongly
bound and nearly free state functions. If integral pro-
jecting operator P̂ is introduced by the correlation

P̂ =
∑
n,L⃗

∣∣∣n, L⃗⟩⟨n, L⃗∣∣∣ , (44)

then OPWk⃗ can be represented in the form:

OPWk⃗ = (1− P̂ )
∣∣∣⃗k⟩ . (45)

Solution of the equation (37) can be represented in
the form which satisfies the Block theorem:

φk⃗ = (1− P̂ )
∑
g⃗t

Ag⃗t

∣∣∣⃗k + g⃗t

⟩
. (46)

The sum of the plane waves χk⃗ ≡
∑

g⃗t
Ag⃗t |⃗k + g⃗t⟩ is

called pseudo wave functions. Substituting (46) into
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equation (17) one can obtain the following equation
for the pseudo wave function[

− h̄2

2mγ
(∇2

t + k2t ) + eWp

]
χk⃗ = Eχk⃗ , (47)

where

eWp ≡ ⟨V (r⃗)⟩z +
∑
n,L⃗

(E − En,L⃗)|n, L⃗⟩⟨n, L⃗| , (48)

which is called pseudo potential. Equation (47) is
called the ”equation of the pseudo potential”. This
equation is analogous to the well-known Hartree
equation which can be solved by iteration method.
Pseudo potential is not local, it depends not only
on coordinates, but on determining functions. But
it has more advantages than deficiencies. The main
convenience of method is that pseudo wave functions
and pseudo potential can be multi-definited. If some
combination of the channeling functions is added to
the pseudo wave function, then the new pseudo wave
function obtained by this way leads to the same true
wave function. So we have a possibility to optimize
pseudo potential. Solving equation (47) we obtain
the system of equations like (33) for amplitudes Ag⃗

of the pseudo wave function where instead of Fourier
components of the crystal potential we have Fourier
components of the pseudo potential. Pseudo poten-
tial is always less and smoother than real crystal po-
tential. Therefore solving the system approximately
we can limit it by less number of equations. Using
the property of multi-variant OPW -definition it is
possible to add to it the linear combination of the
channeling functions which makes the minimum of
the functional ∫

d2ρ|∇⃗χ|2∫
d2ρ|χ|2

, (49)

i.e. it makes maximum smooth pseudo potential.
This method makes it possible to minimize the num-
ber of equations (like (33)) for amplitudes χk⃗ [3].

3.6. Complete solutions of Maxvell
equation (3)

3.6.1. The derivation of the set of the
dynamical equations

At first let us assume the frequency of the electromag-
netic field to be larger than the atomic and nuclear
resonance frequencies ω ≫ ωR. In that case the prop-
agation of the electromagnetic field inside the crystal
can be described as a purely elastic Waller scattering
process. So we will be interested in solution of the
equation (20).

Inside the crystal matter vector potential A⃗ω(r⃗)
we can represent in the form:

A⃗ω(r⃗) =
∑
h,λ

ah,λ(z)w⃗
λ
h(r⃗) , (50)

where ah,λ(z) are slowly varying functions of coordi-
nate z and w⃗λ

h(r⃗) are transverse plane waves

w⃗λ
h(r⃗) =

1√
V
e⃗λh exp

(
ik⃗h · r⃗

)
. (51)

Vectors e⃗λh are polarization vectors, and indexes
λ = 1, 2 correspond to the two different transverse
photon polarizations. Wave functions w⃗λ

h must sat-
isfy Bloch’s conditions. It means that the mono-
harmonic electromagnetic waves in a crystal matter
must be represented as a package of plane waves with
discrete multitude of wave vectors, and the difference
between any couple of wave vectors is equal to the
arbitrary reciprocal lattice vector:

k⃗h = k⃗ + g⃗h;
(
e⃗λh, k⃗h

)
= 0 . (52)

Let us remember that reciprocal lattice vectors are
defined as

g⃗h = g⃗h1h2h3 = b⃗1h1 + b⃗2h2 + b⃗3h3,

where integer numbers hj = 0;±1;±2; .... Wave func-
tions (51) must satisfy the condition of normalization
as well: ∫

V

w⃗∗λ
h (r⃗)w⃗λ′

h′ (r⃗)d3r = δh,h′δλ,λ′ . (53)

Substituting (50) into (20) and taking into ac-
count that amplitudes ah,λ(z) of waves w⃗λ

h(r⃗) are
slowly changing functions comparing with their
phases, one can obtain the following set of the dy-
namical equations:(

2ik⃗h∇⃗z + κ2 − k⃗2h

)
ah,λ(z) = (54)

= 4πα
∑
h′,λ′

F
(
k⃗h − k⃗h′

)(
e⃗λh, e⃗

λ′

h′

)
ah′,λ′(z) ,

where α ≈ 1/137, κ2 = ε0ω
2/c2, ε0 is the crystal per-

mittivity, and

F
(
k⃗h − k⃗h′

)
=

1

Vc

∫
Vc

ϱ(r⃗) exp
[
i
(
k⃗h − k⃗h′

)
· r⃗
]
d3r

(55)
is the Fourier inversion of the electron density distri-
bution inside the simple crystal cell. Expression (55)
can be presented as a product of the atomic form-
factor, structure-factor and thermal-factor. Equa-
tions (54) are the Bethe equations analogous to (33).

3.6.2. Solution the set of the dynamical
equations, if Born approximations can be

applied

First of all let’s obtain solution the set of dynamical
equations in the case, when the crystal thickness is
small enough. In that case a0,λ is almost constant,
and the perturbation theory may be applied. We
can suppose that we have one big amplitude a0,λ and
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small all other amplitudes ah,λ. In this case we have
the following solution:

ah,λ =
4παF

(
k⃗h − k⃗0

)(
e⃗λh, e⃗

λ′

0

)
ε0ω2/c2 − k⃗2h

a0,λ′ . (56)

Substituting (56) into (50), we obtain solution of the
wave equation (20) in the first Born approximation.

3.6.3. Solution the set of the dynamical
equations in the case of strong diffraction

Bragg scattering

Let us suppose the photon energy to be in the X-rays
region Eγ < 200keV , i.e. the photon wave vector k⃗ to

be order of the reciprocal lattice vector g⃗ but |⃗k| > |⃗g|.
Let us suppose that a strong diffraction Bragg scat-
tering can arise under a proper direction of incident
wave. If the crystal is sufficiently thick and its per-
fection is high enough, then scattering wave ampli-
tude can come up to the amplitude of the incident
wave (because we have the case of small denominator

ε0ω
2/c2 − k⃗2h in the expression (56)). Small number

of vectors g⃗ satisfies this condition, so one can sup-
pose that under a proper direction of incident wave
the denominator is small for only one vector g⃗. So
only two large amplitudes are possible, and the solu-
tion of (20) can be found in two-wave approximation.
Let us designate the wave vectors of these waves as:

k⃗1 = k⃗0 + ηn⃗ for a refractive wave,

k⃗2 = k⃗0 + g⃗h + ηn⃗ for the reflective wave,

(57)
where vector n⃗ is the unit vector perpendicular to the
crystal plane surface, which is the boundary crystal-
vacuum (i.e. r⃗n⃗ = z). It’s convenient to use such
polarization vectors:

e⃗σ1 = e⃗σ2 =
[⃗k1, k⃗2]

|[⃗k1, k⃗2]|
, (58)

which describe σ-polarized quanta and π-polarized
quanta:

e⃗π1 =
[⃗k1, e⃗

σ
1 ]

|⃗k1|
, e⃗π

′

2 =
[⃗k2, e⃗

σ
2 ]

|⃗k2|
. (59)

Each index λ and λ′ can take significance σ or π.
Solution the set of the dynamical equations one can
search in the form:

aj,λ(z) = bj,λ exp(iηz)

for both refractive and reflective waves (j = 1, 2). It’s
convenient to introduce the following designations:

∆g =
(−2k⃗0 + g⃗h) · g⃗h

4k⃗0n⃗
, F0 =

4παF (0)

4k⃗0n⃗
,

Fλλ′

g =
4παF (g⃗h)

(
e⃗λ1 , e⃗

λ′

2

)
4k⃗0n⃗

, (60)

where F (0) and F (g⃗h) are significances of Fourier in-
version of the atomic electron density distribution.
Then the system of differential equations (54) leads
to such system of algebraic equations:

(η + F0)b1,λ + Fλλ′

g b2,λ′ = 0,

Fλ′λ
g b1,λ + (η +∆g + F0)b2,λ′ = 0 . (61)

Due to Fσπ′

g = 0 and Fπσ
g = 0, the set of four equa-

tions splits up into two independent subsystems of
equations for photons with σ-polarization and π-
polarization.1 They have solutions if

det

∣∣∣∣ η + F0 Fg

Fg η +∆g + F0

∣∣∣∣ = 0 , (62)

where Fg = Fσσ
g stands for σ-polarization, and

Fg = Fππ′

g = Fπ′π
g stands for π-polarization. The

last equation has solution if parameter η satisfies the
equality

η(±) = −F0 −
∆g

2
±
√

∆2
g

4
+ F 2

g . (63)

By the way, we can note that an important feature
of result (63): due to F0 > Fg both values η(±) < 0 at
any value of ∆g. Then in two-wave approximation
one can write the solution of the wave equation (20)
in the form of wave superposition

A⃗ω(r⃗) =

4∑
s=1

Cs

[
e⃗
(s)
1 exp

(
ik⃗1r⃗

)
+

+αse⃗
(s)
2 exp

(
ik⃗2r⃗

)
+ c.c.

]
, (64)

and the amplitude of the reflected wave is

αs =
F

(s)
g

∆g/2±
√
∆2

g/4 + F
(s)
g

2
, s = (1; 2; 3; 4) .

(65)
We have four possible values of αs because of two
possible photon polarizations and two possible solu-
tions of equation (63). The solution (64) of the wave
equation (20) can be satisfied to the boundary con-
ditions by the proper selection of the constants Cs.
For the separated photon polarization the boundary
conditions look like:∑

s=1,2

Cs = 1,
∑
s=1,2

Csαs = 0 . (66)

Remember that k⃗1 = k⃗0 + ηn⃗ where: k⃗0 is a wave vec-
tor of X-ray wave (in an emptiness) outgoing from

the crystal, k⃗ is a wave vector of X-ray wave inside
the crystal and vector ηn⃗ is a small vector, which is
caused by the photon refraction on the border crystal-
emptiness. Unit vector n⃗ is directed from the crystal
to the emptiness and η(±) < 0.

1The coefficients F0 and Fλλ′
g in the set of equations (61) are in fact proportional to the coherent elastic scattering amplitudes

of gamma quanta in the crystal cell.
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In Fig.2a,b it is shown the functional connection
between wave vectors of the radiated photon wave k⃗0
and the couple of waves: refractive k⃗1 = k⃗ = k⃗0 + ηn⃗
and reflective k⃗2 = k⃗h = k⃗0 + g⃗h + ηn⃗.
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Fig.2. Boundary conditions

Such picture shows, that in the present model the
refractive index of the crystal is n < 1 (see Fig.2b).

3.6.4. The general set of dynamical equations

As it was shown in [11, 12], current density inside
the crystal matter j⃗t(r⃗, t) in the general case (see
Eq.3) has linear, local and synchronous dependence

from the vector-potential A⃗(r⃗, t). Linear dependence
stands for electromagnetic field, which is much less
than internal electric field inside the crystal matter.
Localitymeans the current density to be a response to
the action of the field A⃗(r⃗, t) in the same point of the
physical space. Locality exists if the wave length of
the external field λ≫ as, where as is the dimension
of the scattering atom (or nucleus). This condition
coincides with condition of the dipole approximation
applicability in the task of photon scattering. Linear-
ity and locality can be extended on the sufficiently
general case of the current-field dependence. But it’s
necessary to replace synchronous dependence by the
causative dependence. It means that only values of
A⃗(r⃗, t′) at the times t′ < t determine the current den-
sity j⃗t(r⃗, t) at the time t. So we can write the suffi-
ciently general expression [11, 12]:

j⃗t(r⃗, t) =

∫ t

−∞
Ĝ(r⃗, t− t′) ⋆ A⃗(r⃗, t′)dt′ , (67)

where Ĝ(r⃗, t− t′) is causative operator. Representing

A⃗(r⃗, t′) in the form of the Fourier integral

A⃗(r⃗, t′) =
1

2π

2∑
λ=1

e⃗λ
∫ ∞

0

dω aλ(r⃗, ω) e
−iωt′ , (68)

and substituting it into (67), we obtain

j⃗t(r⃗, t) =
1

2π

2∑
λ=1

∫ ∞

0

dωe−iωtaλ(r⃗, ω)×

×
∫ 0

−∞
dτe−iωτ Ĝ(r⃗, τ) ⋆ e⃗λ . (69)

Expression of the projection the Fourier component
of the current density j⃗t(r⃗, ω) on the polarization vec-
tor e⃗λ is:

jλt (r⃗, ω) =
2∑

λ′=1

Gλλ′
(r⃗, ω) · aλ′(r⃗, ω) , (70)

where

Gλλ′
(r⃗, ω) =

∫ 0

−∞
dτe−iωτ e⃗λ ⋆ Ĝ(r⃗, τ) ⋆ e⃗λ

′
.

Evidently, that the condition of the translational
symmetry must be added:

Gλλ′
(r⃗, ω) = Gλλ′

(r⃗ + L⃗, ω) ,

where L⃗ is the lattice vector. Then in the two-wave
approximation we can write the following system of
the dynamical equations:(

2ik⃗h∇⃗z + κ2 − k⃗2h

)
aλ(z, k⃗h, ω) =

4π
∑
h′,λ′

G̃λλ′
(k⃗h − k⃗h′ , ω)aλ′(z, k⃗h′ , ω) . (71)

Equation (71) coincides with equation (54) if

G̃λλ′
(k⃗h − k⃗h′ , ω) ≡ αF (k⃗h − k⃗h′)(e⃗λh, e⃗

λ′

h′) ,

where on the right we have the matrix element of
the Reyleigh elastic photon scattering by atomic elec-
trons localized in the crystal cell. It consists of four
multipliers:

S(g⃗) =
∑

j e
ig⃗r⃗j ↔ structure factor,

e−W = e−ū2g2 ↔ Debye factor,

Fat(g⃗) =
∫
d3rVat(r⃗)e

ig⃗r⃗ ↔ atomic formfactor,

pλλ
′
= (e⃗λh, e⃗

λ′

h′) ↔ polarization factor.

One can see that lattice vibrations were taken
into account in the zero-phonon approxima-
tion. Evidently that polarization factors
pσπ = pπσ = pσπ

′
= pπ

′σ = 0, and in this case the
set of dynamical equations splits up into two inde-
pendent subsets for σ- and π-polarized photons. The
product Fat(g⃗)p

λλ′
is the matrix element Mλλ′

(g⃗) of
the Thompson photon scattering on the single atom.
All other processes such as: resonance elastic scat-
tering on atoms and nuclei, photo-effect, Compton
scattering, inelastic nuclear reactions can be taken
into account by summation of corresponding matrix
elements in the expression of the causative matrix
G̃λλ′

.
Now we will consider the γ-quanta propagating in

the crystal matter in the case of γ-quanta energy close
to that of a nuclear transition. We assume that crys-
tal includes Mössbauer nuclei with resonance energy
h̄ω0 and we are interested in propagation photons
with energies close to h̄ω0.

We can write:

G̃λλ′
(k⃗h − k⃗h′ , ω) =

=
∑
j

ei(k⃗h−k⃗h′ )r⃗j

{
e−ū2(k⃗h−k⃗h′ )2

∑
p

(
Mλλ′

hh′

)(el)
p

+

+e−ū2(k⃗2
h+k⃗2

h′ )
∑
q

Cj

(
Mλλ′

hh′

)(nucl)
q

}
,

(72)
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where e−ū2(k⃗2
h+k⃗2

h′ ) is Mössbauer factor;
(
Mλλ′

hh′

)(el)
p

and
(
Mλλ′

hh′

)(nucl)
q

are amplitudes of atomic and nu-

clear photon scattering, respectively; constant Cj = 1
in the point r⃗j the Mössbauer nucleus exists and
Cj = 0, if it is absent. In the general case both
atomic electrons and nuclei will contribute to the
current (see Eq.3).
But in the compound crystal we can investigate
pure nuclear photon scattering by choosing such
proper reciprocal lattice vector with structure factor∑

j e
i(k⃗h−k⃗h′ )r⃗j = 0 for photon scattering on the elec-

tron subsystem and
∑

j Cje
i(k⃗h−k⃗h′ )r⃗j ̸= 0 for photon

scattering on the Mössbauer nuclei. Introducing new
designations for simplicity

Qλλ′

hh′ =
πG̃λλ′

hh′

(k⃗0, n⃗)
, ahλ(z) = eiηzbhλ , (73)

we obtain the general set of the dynamical equations
in two-wave approximation

−ηbσ1 = Qσσ
11 b

σ
1 +Qσσ

12 b
σ
2 +Qσπ

11 b
π
1 +Qσπ′

12 bπ
′

2 ,

−(η +∆)bσ2 = Qσσ
21 b

σ
1 +Qσσ

22 b
σ
2 +Qσπ

21 b
π
1 +Qσπ′

22 bπ
′

2 ,

−ηbπ1 = Qπσ
11 b

σ
1 +Qπσ

12 b
σ
2 +Qππ

11 b
π
1 +Qππ′

12 bπ
′

2 ,

−(η +∆)bπ
′

2 = Qπ′σ
21 bσ1 +Qπ′σ

22 bσ2 +Qπ′π
21 bπ1 +Qπ′π′

22 bπ
′

2 ,

(74)

which has solution if:

det

∣∣∣∣∣∣∣∣
η +Qσσ

11 Qσσ
12 Qσπ

11 Qσπ′

12

Qσσ
21 η +∆+Qσσ

22 Qσπ
21 Qσπ′

22

Qπσ
11 Qπσ

12 η +Qππ
11 Qππ′

12

Qπ′σ
21 Qπ′σ

22 Qπ′π
21 η +∆+Qπ′π′

22

∣∣∣∣∣∣∣∣ = 0 . (75)

Equation (75) in the general case has four solu-
tions ηm, (m = 1, 2, 3, 4). So the electromagnetic
field inside the crystal matter can be presented in
the form:

A⃗(ω, r⃗) =
4∑

m=1

2∑
s=1

C(m)
s

[
e⃗ s
1 exp

(
ik⃗

(m)
1 r⃗

)
+

+α(m)
s e⃗ s

2 exp
(
ik⃗

(m)
2 r⃗

)
+ c.c.

]
, (76)

where index s denotes the photon polarization. Fi-
nally we must take into account the boundary condi-
tion, which looks like:

4∑
m=1

C(m)
s = 1 ,

4∑
m=1

C(m)
s α(m)

s = 0 (77)

and similar to (66) (see Fig.2).

4. ALL TYPES OF COHERENT
RADIATIONS

4.1. Total coherent bremsstrahlung in Born
approximation

The total matrix element of the coherent
bremsstrahlung of relativistic charged particles in
the lowest Born approximation can be obtained in
the form:

MCR
i→f =

ie

mc2γ

[
MBS

1 +MBS
2 +MPR

]
, (78)

where two of three wave functions are chosen in the
zero Born approximation, and one of three in the
first Born approximation:

MBS
1 =

∫
d3rϕ

(1)∗
f (r⃗)ˆ⃗p · A⃗(0)∗(r⃗)ϕ

(0)
i (r⃗) , (79)

MBS
2 =

∫
d3rϕ

(0)∗
f (r⃗)ˆ⃗p · A⃗(0)∗(r⃗)ϕ

(1)
i (r⃗) , (80)

MPR =

∫
d3rϕ

(0)∗
f (r⃗)ˆ⃗p · A⃗(1)∗(r⃗)ϕ

(0)
i (r⃗) . (81)

Matrix elements MBS
1 and MBS

2 describe
bremsstrahlung emitted by a relativistic particle,
and MPR bremsstrahlung emitted by a crystal. So
as

ϕ
(1)
i,f (r⃗) =

∫
d3r′G(r⃗, r⃗′)Vcr(r⃗

′)ϕ
(0)
i,f (r⃗

′) ,

one can see: in case ofMBS
1 relativistic electron radi-

ates, and then crystal gets recoil momentum; in case
of MBS

2 crystal gets recoil momentum, and then rel-
ativistic particle radiates. So as the differential cross
section of radiation process (12) dσ ∼ δ(Ei−Ef−h̄ω),
the law of energy conservation in our case looks like
Ei = Ef + h̄ω. It means, that the crystal target has
the infinitely large massMcr → ∞, and therefore the
energy received by crystal is Ecr = q2/2Mcr → 0,
where q⃗ is the recoil momentum. Taking into ac-
count the law of energy conservation we have the
following identity: K2

i − K2
f − k2 ≡ 0. Using

this identity, we can represent the denominators in
the expressions for MBS

1 and MBS
2 in the follow-

ing form: (K⃗f + k⃗)2 − K2
i = −(2Kfk − 2K⃗f k⃗) and

(K⃗i− k⃗)2−K2
f = 2Kik−2K⃗ik⃗. Besides, the product
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e⃗k,λ · k⃗ = 0. Finally we have:

MBS
i→f =

ie

mc2γ

[
MBS

2 +MBS
1

]
=

−ieh̄
mc2γ

Fcr(q⃗)
e⃗k,λ
2k

·

{
v̂i

1− v̂i · k̂
− v̂f

1− v̂f · k̂

}
, (82)

where q⃗ = h̄(K⃗i − K⃗f − k⃗) is the recoil momentum,
Fcr(q⃗) is the Fourier transformation of the crystal

potential, and v̂i, v̂f , k̂ are unit vectors v̂i = K⃗i/Ki,

v̂f = K⃗f/Kf , k̂ = k⃗/k, respectively.

A⃗
(1)∗
k⃗,λ

(r⃗) =

∫
d3r′Ĝ∗

λ′,λ(r⃗, r⃗
′)V ′

cr(r⃗
′)A⃗

(0)∗
k⃗,λ

(r⃗′) , (83)

Ĝ∗
λ′,λ(r⃗, r⃗

′) =
1

(2π)3

∫
d3k′

(e⃗k′,λ′ · e⃗k,λ)eik⃗
′(r⃗−r⃗′)

ε0ω2/c2 − k′2
.

(84)

MPR = h̄F ′
cr(K⃗i − K⃗f − k⃗)×

×
∑
λ′

(e⃗K⃗f−K⃗i,λ′ · K⃗i)(e⃗K⃗f−K⃗i,λ′ · e⃗k,λ)

ε0ω2/c2 − (K⃗f − K⃗i)2
.

(85)

We obtain the cross section of total radiation,
which arises in the collision of relativistic electron
and crystal, using expressions (82) and (85) in the
expression for total matrix element MCR

i→f (78) and

substituting MCR
i→f into expression for cross section

(12). This expression differs from the cross section for
a single atom on the multiplier, which is well known
as a diffraction factor:∣∣∣∣∣∣

∑
L⃗

e−iq⃗R⃗L⃗

∣∣∣∣∣∣
2

, (86)

where vectors R⃗L⃗ denote the relative coordinates of

the crystal atom, and L⃗ are lattice vectors. Taking
into account expression (30) (and the following crys-
tal description), one can see, that expression (86) is
proportional to the multiplier D(q⃗), which includes
δ-function δ(q⃗ − g⃗)t. After averaging the cross sec-
tion over the thermal displacements of the crystal
atoms from their equilibrium positions, one can se-
lect the coherent part of the cross section and inte-
grate it over d3pf using 3 δ-functions. In this way we
obtain spectral-angular distribution of radiated pho-
tons, which has extremely sharp maximum (see (30)).
In the final result we transit to the limit N1 → ∞ (N1

is the number of crystal periods in the direction of the
fast electron motion). Thus the final expression for
spectral-angular distribution of radiated photons in
the system of units h̄ = c = 1 looks like:(

d3σ

dωdΩ

)
coh

=
8πω

V (1− v⃗n⃗k)
×

×
∑
g⃗,λ

|MCR|2 S2(g⃗)e−g2u2
T δ

(
ω − g⃗v⃗

1− v⃗n⃗k

)
,

(87)

where k⃗ and ω are photon momentum and photon
energy, Ω is the solid angle, n⃗k = k⃗/k, V is the vol-
ume of the crystal elementary cell, |MCR|2 is the to-
tal matrix element, S2(g⃗) is the crystal structure fac-

tor, e−g2ū2
is the Debye-Waller factor, ū2 is the mean

square of thermal vibrational amplitude of the crystal
atoms, and the summation performed over all recip-
rocal lattice vectors g⃗ of the crystal and two photon
polarization directions e⃗kλ. The module square of the
total matrix element in (87) is:

∣∣MCR
i→f

∣∣2 =
e6

ω2m2

∣∣∣∣e⃗kλ{Z − F (g⃗)

γg2
g⃗

1− v⃗n⃗k
+

+F (g⃗)
v⃗ω − g⃗

(g⃗ + k⃗)2 − k2

}∣∣∣∣∣
2

, (88)

where Z and F (g⃗) are atomic number and atomic
form-factor of the crystal atom. The first part of the
right hand side of Eq.88 corresponds to the coher-
ent bremsstrahlung of the charged particle (CBS) and
the second part corresponds to the coherent polar-
ization radiation (CPR). Expressions (87) and (88)
coincide with the result of [19] (see formulae Eq.21,
Eq.22 of [19]). In the case if angle of radiation

θk = ̸ (v⃗, k⃗) ≤ 1/γ, then the first part of Eq.88 be-
comes dominant and Eqs.87 and 88 describe exactly
CBS in the low photon energy approximation. On
the other hand, if θk ≫ 1/γ, the contribution of CBS
becomes small and can be neglected, and CPR can
be observed separately. It’s evident, that exists such
radiation angle θk, that both matrix elements of CBS
and CPR give equal contributions (see formula 88).
In this case we can observe the maximum effect of
interference of these two types coherent radiations.

4.2. Effect of the dynamical diffraction

Formulae (87) and (88), obtained for CPR in the
first Born approximation are called as ”kinemati-
cal theory” [16]. For low electron energies, i.e. if
1/(βγ)2 ≫ |χ| with χ being the electric susceptibil-
ity of the crystal, the influence of the crystal dielec-
tric properties can be neglected (i.e. we can accept
ε0 = 1). It turns out that the maximum of the in-
tensity of CPR increases proportional to ∼ γ2 (Fig.3,
function number 1).

Within the framework of the kinematical theory of
CPR the influence of the crystal dielectric properties
can be taken into account by changing the dispersion
relation for the radiated photon to k2 = ε0ω

2/c2,
where ε0 = 1 + χ. It turns out that at high electron
energies the maximum of the intensity of CPR is lim-
ited by χ and strives to the constant quantity with
increasing γ (see Eq.23 in [19] and Fig.3, function
number 2).

For taking into account so-called dynamical effect,
we must use expression of A⃗ω(r⃗) in the form of (64)
in the matrix element (13) and cross section (12). It
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turns out that in the expressions (87) and (88) in-
stead of vector g⃗ we must use the sum g⃗+ n⃗η, where
value g⃗n⃗ = 0, |n⃗| = 1, and η ≪ g. In Fig.3 it’s shown
the relative peak intensity of CPR as a function of
electron Lorentz factor γ [18]. The electron multiply
scattering and photon absorbtion are taking into ac-
count.
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Fig.3. Intensity of CPR (or PXR(B)) as a function
of electron energy calculated: 1-using kinematical
theory for the case of low electron energy and
the influence of the crystal dielectric properties
is neglected; 2-for the maximum intensity, i.e for
angle between electron velocity direction and crystal
plane ϕ = θk/2 − 1/γ, using kinematical theory;
3-the same conditions as for 2, and using dynam-
ical theory; 4-for the minimum intensity, i.e for
angle ϕ = θk/2 − 1/2θγ2, using kinematical theory
formula; 5-the same conditions as for 4,and using
dynamical theory

It is shown, that at low electron energy dynamical
effect is negligibly small. At high energy, even in
the limit γ → ∞ dynamical effect in the maximum of
CPR intensity is small too, and it is of order of several
per cents (see difference between functions number 2
and number 3 in Fig.3).

Analogous result was obtained by H. Nitta in [21]
too. Thus the kinematical theory of CPR with tak-
ing into account the influence of the crystal dielectric
properties (see [16]-[21]) is a good approach to the
reality.

Dynamical effect becomes considerable only in
minimum of CPR intensity, i.e for angle ϕ ≈ θk/2 =
θB , where θB is Bragg angle (see difference between
functions number 4 and number 5 in Fig.3) [18]. Such
considerable difference between functions 4 and 5 is
due to effective redistribution of the CPR intensity
between reflective and refractive waves at the radia-
tion angles, which satisfy the exact Bragg conditions.
However such case is not of interest for creation the
sources of coherent radiations.

4.3. Channeling radiation

Planar channeling electron wave function has the
form:

ψn(r⃗) =

√
E +mc2

2EL3

(
u⃗n

cˆ⃗σ ˆ⃗p
E+mc2 u⃗n

)
ϕn(rt)e

iK⃗lr⃗l ,

(89)
where u⃗n is two-component spinors, ϕn(rt) is
the wave function of the transverse motion,√
E +mc2/2EeiK⃗lr⃗l is wave function of longitudi-

nal motion, rt and r⃗l are transverse and longitu-
dinal components of vector r⃗, and the designation
K⃗ = p⃗/h̄ is used. The energy of the channeling radia-
tion h̄ω ≪ Ei, therefore we can assume Ei ≈ Ef = E,
and formulae (15), (12) can be applied for obtaining
cross section of channeling radiation.

Therefore matrix element is:

MCh
i→f =

ie

mc2γ

∫
e−ik⃗·r⃗ϕ∗

f (rt)e
−iK⃗

(f)
l

r⃗l ×

×e⃗k⃗,λ · ˆ⃗p ϕi(rt)e
iK⃗

(i)
l

r⃗ld3r =

=
ie

mc2γ
Mλ

i→f (2π)
2δ(k⃗l + K⃗

(f)
l − K⃗

(i)
l ) ,

(90)

where:

Mλ
i→f =

∫
e−iktrtϕ∗f (rt)e⃗k⃗,λ·(p̂t+p⃗l)ϕi(rt)drt . (91)

The square of the first δ-function is∣∣∣(2π)2δ (k⃗l + K⃗
(f)
l − K⃗

(i)
l

)∣∣∣2 =

= (2πL)2δ
(
k⃗l + K⃗

(f)
l − K⃗

(i)
l

)
, (92)

where L is the length of the box Kj = (2π/L)nj ,
which was used for normalization in the box wave
function (6).

The Dirac δ-functions in the expressions (12) and
(90) reflect the energy and the longitudinal momen-
tum conservation in the radiation process:

h̄ω + Ef − Ei = 0 ,

k⃗l + K⃗
(f)
l − K⃗

(i)
l = 0 . (93)

Designating the unit vector in the direction of photon
emission by n⃗k and the unit vector perpendicular to
the channeling plane by e⃗x, we can write the wave
vector of the charged particle in the final state in the
following form:

K⃗
(f)
l = K⃗

(i)
l − ω

c
[n⃗k − (n⃗k · e⃗x) e⃗x] ,

After integration (12) over the space of longitudinal
momentum two first δ-functions vanish. Then taking
into account, that the total electron energy E has the
following correlation with its longitudinal momentum
h̄K⃗ and transverse energy E⊥:

E2 = h̄2c2K2
l +m2c4 + 2EE⊥(E) , (94)
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let’s write the explicit expression of the argument of
δ-function, which reflects the law of energy conserva-
tion. From (94) we have:

E = E⊥ +

√
h̄2c2K2

l +m2c4 , (95)

where the square root can be interpreted as an en-
ergy of longitudinal motion. Evidently that for the
emission process the following inequality Ei ≫ h̄ω is
satisfied. So the second square root in the expression
of Ef , can be written in the form:

Ef = E(i)
l −

1

2E(i)
l
(2h̄cωp⃗i · n⃗k−

−h̄2ω2
[
1− (n⃗k · e⃗x)2

])
+ E(f)

⊥ . (96)

Introducing designations: ϵif = E(i)
⊥ − E(f)

⊥ and

β⃗l = p⃗
(i)
l c/E(i)

l and neglecting terms less than h̄ω/E,
the latest δ-function in (12) we can write in the form:

δ
(
h̄ω(1− β⃗l · n⃗k)− ϵif

)
=

=
1

1− β⃗l · n⃗k
δ

(
h̄ω − ϵif

1− β⃗l · n⃗k

)
. (97)

The probability of transitions during the unit time
interval of the emission process e→ e′ + γ is

dPλ
i→f

dzd(h̄ω)dΩ
= 2πe2

1

E2

h̄2ω

1− β⃗l · n⃗k

∣∣∣Mλ

fi

∣∣∣2 ×
×δ
(
h̄ω − ϵif

1− β⃗l · n⃗k

)
, (98)

where Mλ
i→f is defined by Eq.91.

5. CONCLUSIONS

It is shown, that within the framework of the quan-
tum electrodynamics in Furry’s notation, all known
types of coherent radiations, which arise in the col-
lision of relativistic electron with crystal, can be ob-
tained using the generalized coordinates of fields in
the form of the particular solutions of the wave equa-
tions (2) and (3).

The origin of different almost monochromatic ra-
diations are caused by the discrete spectra of the
transverse recoil momenta or the transverse recoil
energies. The transverse recoil momenta are equal
to the discrete multitude of reciprocal lattice vec-
tors because the transverse components of relativistic
electron wave functions and transverse components
of wave functions of radiation field satisfy the Bloch
theorem. Heterogeneity of the crystal matter in the
longitudinal direction obviously does not play a vi-
tal part. Such details were discussed in [16]. The
discrete spectrum of relativistic electron energies is
caused by the localization of electron function near
the separate crystal plane.

Let us pay attention to the conditions of coherent
maxima arising. In the case of the ordinary coherent

bremsstrahlung and in the case of coherent polariza-
tion radiation the condition of coherent maximum is
(see formula (87)):

δ

(
ω − g⃗v⃗

1− v⃗n⃗k

)
. (99)

In the case of the channeling radiation the condition
of coherent maximum is (see formula (97)):

δ

(
h̄ω − ϵif

1− β⃗l · n⃗

)
. (100)

These formulae differ from each other only by the
discrete values ϵif ↔ g⃗v⃗. In [22] considered the case
of CPR generated by the channeling particles, where
the condition of coherent maxima arising keeps both
these discrete values.

All these types of coherent radiations have the
bremsstrahlung nature, so as all matrix elements,
which correspond to them, are inversely proportional
to the mass of radiating particle (see Eq.(88) and
Eq.(90)), and during the radiation process relativis-
tic electron loses the discrete part of transverse mo-
mentum or the discrete part of transverse energy.

The condition of the conservation the coherency
of radiation, in the main, is the constancy of the rel-
ativistic particle velocity v⃗l (see formulae (99) and
(100)). Particle velocity changes due to the close col-
lisions with crystal atoms and electrons. The middle
length, where particle velocity does not change vital,
is the length of coherency. The length of coherency
can be limited by the: electron multiple scattering,
photon absorption, crystal defects. All these factors
can be taken into account using Monte-Carlo simula-
tions [18].

Let us emphasize, that matrix element of polar-
ization radiation, which includes a refractive photon
wave with wave vector k⃗1 = k⃗0+ηn⃗ (see formulae (57)
and (64)), is equal zero because for ordinary crystals
parameter η is always η < 0, and therefore such pro-
cess is forbidden by the laws of momentum-energy
conservation. Only matrix element of polarization ra-
diation, which includes a reflective photon wave with
wave vector k⃗1 = k⃗0 + g⃗h + ηn⃗ is not equal zero. In
Fig.2 it’s shown, that on the border of crystal vec-
tor ηn⃗ is directed from emptiness into the crystal. In
this case the refraction factor n < 1, and thus the
radiation is not a kind of C̆erenkov radiation.
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ÂÑÅ ÂÈÄÛ ÊÎÃÅÐÅÍÒÍÛÕ ÈÇËÓ×ÅÍÈÉ, ÊÎÒÎÐÛÅ ÂÎÇÍÈÊÀÞÒ ÏÐÈ
ÑÒÎËÊÍÎÂÅÍÈÈ ÐÅËßÒÈÂÈÑÒÑÊÈÕ ÝËÅÊÒÐÎÍÎÂ Ñ ÊÐÈÑÒÀËËÎÌ

Â.Ë.Ìîðîõîâñêèé

Êðàòêî èçëîæåíà îáùàÿ òåîðèÿ, êîòîðàÿ îáúÿñíÿåò âñå òèïû êîãåðåíòíûõ ðåíòãåíîâñêîãî è

γ-èçëó÷åíèé, âîçíèêàþùèõ ïðè ñòîëêíîâåíèè ðåëÿòèâèñòñêèõ ýëåêòðîíîâ ñ êðèñòàëëè÷åñêîé ìè-

øåíüþ. Òàêèå òèïû èçëó÷åíèé, êàê: îáû÷íîå êîãåðåíòíîå òîðìîçíîå èçëó÷åíèå è èçëó÷åíèå ïðè

êàíàëèðîâàíèè, èñïóñêàåìûå ðåëÿòèâèñòñêèì ýëåêòðîíîì; ðàçíûå âèäû êîãåðåíòíûõ ïîëÿðèçàöèîí-

íûõ èçëó÷åíèé, èñïóñêàåìûõ àòîìàìè è ÿäðàìè êðèñòàëëà, � ìîãóò áûòü îïèñàíû â ðàìêàõ äàííîé

òåîðåòè÷åñêîé ìîäåëè.

ÂÑI ÂÈÄÈ ÊÎÃÅÐÅÍÒÍÈÕ ÂÈÏÐÎÌIÍÞÂÀÍÜ, ßÊI ÂÈÍÈÊÀÞÒÜ ÏÐÈ
ÇIÒÊÍÅÍÍI ÐÅËßÒÈÂIÑÒÑÜÊÈÕ ÅËÅÊÒÐÎÍIÂ Ç ÊÐÈÑÒÀËÎÌ

Â.Ë.Ìîðîõîâñüêèé

Ñòèñëî âèêëàäåíà çàãàëüíà òåîðiÿ, ÿêà ïîÿñíþ¹ âñi òèïè êîãåðåíòíèõ ðåíòãåíiâñüêîãî òà

γ-âèïðîìiíþâàíü, ÿêi âèíèêàþòü ïðè âçà¹ìîäi¨ ðåëÿòèâiñòñüêèõ åëåêòðîíiâ ç êðèñòàëi÷íîþ ìi-

øåííþ. Òàêi òèïè âèïðîìiíþâàíü, ÿê: çâè÷àéíå êîãåðåíòíå ãàëüìîâå âèïðîìiíåííÿ òà âèïðîìiíåííÿ

ïðè êàíàëþâàííi, âèïðîìiíþâàíi ðåëÿòèâiñòñüêèì åëåêòðîíîì; ðiçíi âèäè êîãåðåíòíèõ ïîëÿðèçàöié-

íèõ âèïðîìiíåíü, äæåðåëàìè ÿêèõ ¹ àòîìè òà ÿäðà êðèñòàëà, � ìîæóòü áóòè îïèñàíi â ðàìêàõ äàíî¨

òåîðåòè÷íî¨ ìîäåëi.
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