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BEAMDULAC-BL 3D code is designed last years to study the beam dynamics in linac taking into account both 

Coulomb and RF self field. The code versions for traveling and standing wave linacs are ready for operation. The 

especially designed numerical methods and algorithms used for the code design are discussed. Specific computing 

problems, abilities of the code and future design plans are presented. 
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INTRODUCTION 

One of the most serious problems of beam dynamics 
simulation is to correctly treat the beam own space 
charge influence. Coulomb field, beam radiation and 
beam loading effect are the main factors of the own 
space charge. Typically, only the Coulomb field are 
taken into account for low energy LINACs and radiation 
for higher energies. But both factors should be treated in 
modern low and high energy high intensity LINACs and 
both effects can sufficiently influence the beam dynam-
ics in bunchers. The mathematical model taking into 
account both Coulomb field and beam loading influence 
in stationary case and transient mode should be devel-
oped for self-consistent beam dynamics study. That is 
why three-dimensional self-consistent computer simula-
tion of high current beam is very urgent. 

Codes to study the beam dynamics taking into account 
beam loading effect are been designed at the MEPhI De-
partment of Electrophysical facilities for many years. First 
was the 2D axial-symmetrical DINUS code [1] designed 
by V.I. Rashchikov. The 3D BEAMDULAC-BL codes 
are been under development last few years [2 - 5]. The 
theory of beam dynamics influence developed by E.S. 
Masunov [6] is used in such code. Known Cloud-in-Cell 
(CIC) technique is used to Coulomb field treatment.  

Let us describe the beam loading effect briefly. The 
beam dynamics in an accelerator should be studied self-
consistently taking into account both external field and 
beam own space charge field. The RF field induced by 
the beam in the accelerating structure depends on the 
beam velocity as well as the current pulse shape and 
duration. The influence of the beam loading can reduce 
the external field amplitude and induce the irradiation in 
the wide eigen frequency modes. Therefore we should 
solve the motion equations simultaneously with Max-
well’s equations for accurate simulation of beam dy-
namics. 

The method of kinetic equation and the method of 
large particles are most useful methods for self-
consistent problem solving.  

The beam dynamics can be calculated for only one 

beam part that has the phase length equal to one period 

of the external RF field in the stationary case. It is nec-

essary to calculate the dynamics for all beam particles 

for the transient case. We have to take into account all 

particles of short current pulse which are inside of the 
accelerating structure in the moment of time. In this 

case the analyzed beam can be represented in 2D or 3D 

phase space as a number of the large particles. These 

large particles would have the torus form (a ring with 

finite-size) with a rectangular cross-section for 2D 

simulation due to the axial symmetry of the task. The 

parallelepiped large particles forms are conveniently 
used in 3D case. 

Let us consider the algorithm of beam dynamics 

simulations taking into account the beam loading effect 

in accelerators working on a traveling wave in the tran-

sient mode. 

1. THEORETICAL BASIS OF THE BEAM 

LOADING TREATMENT 

The charge of any large particle is: 

 Q=Jpulse τpulse/N,  (1) 
where Jpulse – the pulse beam current, τpulse – the duration 

of the current pulse, N – the number of large particles. 

The dynamics of every large particle should be sim-

ulated in the external field and in the own space charge 

field self-consistently. 

The RF field distribution in the periodic structures is 

independent of the time when the beam time-of-flight is 

much smaller than the pulse duration. Only RF field 

amplitude is varied in this case and we can intend that 

such amplitude is varied slowly this time. The beam 
excited RF field can be represented a series of the har-

monics (eigen modes) for all resonant structure frequen-

cies: 
tiett ,Re, rErE .  (2) 

We can intend that the coefficients in the sum (2) are 

slow functions versus the time in case when the fre-

quency νω is close to the own frequency of resonant 

structure 'r  and 

rErE r)(, )( tCt r ,    (3) 

where rEr  is the own resonator function of r mode, 

)()( tCr  can be defined in the frequency domain. The 

Eq. (2) can be rewritten this case as 
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where Nr – normalizing coefficient, V – volume of reso-

nant structure, 'r  is the eigen frequency of r mode, 

Lrrrr Qii 2/1''''~  is the complex frequency, 

''2/' rrLQ  is loaded Q-factor. Loaded Q-factor 

for high quality structures QL>>1 and 
2||/2 rrr CWN , 

here Wr is the storage energy of r mode. 

Function )(rC  should satisfy an equation 
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and can be defined easily with this equation. The current 

harmonic ,, trj  will be expanded to the Fourier 

series 

tett ti d,
1
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when it is slow function of the time. 

The RF field in the resonator can be presented as a 

sum of direct and backward waves (the backward wave is 

absent for travelling wave case) and the field components 

are zhEE lr

l

zrzr ,

)(

,, cos2 r , DlNnh lr /2/, , 

0,1,... 1n N  and here is intended that the L resonator 

length consist of N periods, D=L/N. 

Let we introduce the nonlinear phase 

000 )(,, tttzhttz r , where t0 is the time of 

particle input into the resonator. Because of total beam 

charge if the constant 000 dd ttjtj  we can define 

the v-th beam current harmonic as 
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where t00  is the initial beam phase distribu-

tion. Now the Eq. (5) can be solved: 
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Here Rsh is the shunt impedance. Such equation is 

the non-stationary excitation equation. It is written 
without any assumptions and can be used to simulate 

the self-consistent beam dynamics in resonator or 

waveguide accelerating structure taking into account 

beam loading effect. 

It is easy to generalize this equation taking into ac-

count the field attenuation in the structure and the struc-

ture dispersion [5]. It should be remembered that for the 

fixed time t and for the length Δz the field value is addi-

tionally reduced by the small amount of 

E
z

R

R

sh

sh

~

2

1
. Here  is the RF power attenua-

tion. As the result we will finally have the equation of 

beam motion in the point of bunch placement taken into 

account the beam loading effect [6]: 
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For system having positive dispersion sign “+” 

should be used and “-” for structure with negative one. 

There are no limitations on the value of the group 

velocity in the derivation of non-stationary equations of 

excitation (9), (10). So they will be used just like for 

highly dispersed systems and for the weak dispersion of 

waveguide systems. The transient mode field excited by 

the beam with fpulse T  can be calculated using 

Eq. (9) and (10). Indeed the transient mode beam load-

ing problem can be solved for the resonant system for 

different matching conditions at the waveguide section 

ends and without any limitations to the beam current 

values and the group velocities grv . 

The time dependence in Eq. (10) disappears for the 

long pulse duration fpulse T  and we can acquire the 

equation: 
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The stationary field distribution and the current har-

monics magnitudes along of the longitudinal coordinate 
z could be calculated using this equation. 

2. THE EQUATION OF MOTION IN SELF 

CONSISTENT FIELD 

FOR THE TRAVELLING WAVE 

The motion equation can be written in 3D Cauchy 

form and in addition equation defines the RF field am-

plitude variation during the beam loading. The Coulomb 

field and the external focusing solenoid magnetic field 

should be taken into account. We will consider the sta-

tionary case and only base RF field and beam current 

harmonic for simplicity. Finally the motion equations are: 
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here τ=ωt is the normalized time; 

0 0 0
ˆ / 2e eE z W  is the amplitude of RF field 

taking into account it’s modification during initial dis-

tribution, beam loading and attenuation; 

0, 0, 0
ˆ / 2z zb eB z c W  and 

0, 0, 0
ˆ / 2b eB z c W  

are normalized amplitudes of magnetic components of 
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RF field; cv zz / , cvxx / , cvyy /  and 

cvphph /  is the phase velocity of the wave; 

21/1 z ; /2 z , /2 x , /2 y  

are normalized coordinates; ˆ / 2sol solb eB c W  is nor-

malized amplitude of solenoid magnetic field; 
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modified Bessel functions; 
, , , , 0
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normalized components of Coulomb field; 

ph

d
 is the particle phase; 2/w  is the 

normalized attenuation; 0

2
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is the beam-wave coupling coefficient, J1(z,t) is the first 

harmonic of the beam current; 
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large particles representing the bunch; part 
0,
ˆd / dme  in 

the last equation defines the dependence of RF field 

amplitude in cold system; ω and λ are frequency and 

wave length of the main RF field harmonics; W0=mc2. 

For system having positive dispersion sign “+” should 

be used for Eq. for phase and “-“ for Eq. for amplitude 

and opposite signs should be used for structure having 

negative dispersion. 

3. THE EQUATION OF MOTION IN SELF 

CONSISTENT FIELD FOR THE STANDING 

WAVE 

The motion equations for standing wave operating 

structure the motion equation are the similar to the trav-

eling wave ones: 
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other variables are the same as for traveling wave. 

The algorithm of simulation for the transient mode is 

mainly similar to the algorithm developed for the sta-

tionary case [1 - 2]. The method of Coulomb field 

treatment used for BAMDULAC-BL and 

BEAMDULAC-BLNS code was discussed in [3]. 

4. ALGORITHMS OF SIMULATION 

The BEAMDULAC code is developed for self-
consistent beam dynamics investigation in RF LINACs 

and transport channels as it is noted above [4, 7, 8]. The 

2D (axial-symmetrical) and 3D (Cartesian) dynamics 

beams can be studied by means of this code. 

The BEAMDULAC code utilizes the cloud-in-cell 

(CIC) method to accurate treat the quasi-statically space 

charge effects (Coulomb field) that are especially im-

portant in the case of a high-intensity beam. The motion 

equation for each particle is solved in the external fields 

and the inter-particle Coulomb field simultaneously. 

The charge density is deposited on the grid points using 
the CIC technique. To determine the potential of the 

Coulomb field, the Poisson equation is solved on the 

grid with periodic boundary conditions at both ends of 

the domain in the longitudinal direction. The aperture of 

the channel is represented as an ideally conducting sur-

face of rectangular or circular cross-section. Therefore 

the Dirichlet boundary conditions are applied at trans-

verse boundaries of the simulation domain. In such an 

approach, the interaction of the bunch space charge with 

the accelerating channel boundaries is taken into ac-

count. This allows consideration of the shielding effect, 

which is sufficiently important for transverse focusing 
in the narrow channel. The fast Fourier transform (FFT) 

algorithm is used to solve the Poisson equation on a 3D 

grid. The Fourier series for the space charge potential 

obtained can be analytically differentiated, and thus 

each component of the Coulomb electrical field can be 

found as a series with known coefficients and the RF 

field distribution on the grid can be calculated having 

the same accuracy as the potential. 

Standard fourth-order Runge-Kutta method is ap-

plied for integration of the motion equation. The exter-

nal fields in BEAMDULAC code can be represented 
three different methods: analytically, as a series of space 

harmonics (the field amplitude is represented as a poly-

nomial coefficient series) and in “real field” which is 

defined on 2D or 3D grid by electrodynamics simulation 

codes or experimental measurement [8]. 

A number of initial particles distributions (uniform-

ly, gauss and water bag) can be defined by user by 
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means of Twiss-parameters or phase ellipses sizes and 

initial emittances. 

Two ways to define the structure parameters were 

utilized at BEAMDULAC-BL code. The first is to de-

fine the structure as a number of slow varying variables 

(versus longitudinal coordinate) as: RF field amplitude, 

phase velocity, aperture size, RF field attenuation, shunt 

(or series) impedance. Functions as shown at Fig. 1 are 

used and they are represented by the series as 

n
n

n

naf
max

0

 at the varying stage. The step function 

with user defined number of the series is used to simu-

late the solenoid field distribution. 

 
Fig. 1. General view of the function used to define struc-

ture parameters, f(0) and fmax are minimal and maximal 

function values, Lm and Lb are the matching and bunch-

ing parts of channel lengths respectively 

The cell-to-cell parameters definition is the other 

way to describe the structure. The view of the “struc-

ture” file is shown in Fig. 2. Main geometrical and field 

parameters should be defined by user for all structure 

cells. Such way allows easy describing the structures 
operating in π or π/2 modes. 

 
Fig. 2. General view of the “structure” file 

 But cell-to-cell structure definition way has one se-

rious difficulty. The merging of piecewise defined pa-

rameters should be done accurately. The two steps 

merging algorithm is used in BEAMDULAC-BL. The 

user defines the part of cell in which the structure pa-

rameter is constant and after that the parabolic interpola-

tion is used. An example of merging algorithm applica-

tion is illustrated in Fig. 3. The RF field amplitude dis-
tribution in biperiodic (π/2 mode) DLW structure with 

small drift tubes on diaphragms is shown. 

Note that the time is used as the independent value 

to solve motion equations. But the equation of RF field 

amplitude variation taking into account beam loading, 

RF field attenuation and etc. is defined using the longi-

tudinal coordinate. It was necessary to define the longi-

tudinal grid to solve such equation and the RF ampli-

tude distribution is calculated every time step to correct 

treat its variation during the bunch motion. 

A number of standard tests were used to verify the 

code: short bunch motion in external magnetic field 

(without acceleration and with it); beam transverse size 

enlargement along the Coulomb field influence (beam 

drift test) and etc. 

 
Fig. 3. An example of merging algorithm application 

for cell-to-cell structure definition 

 The verification of the beam loading algorithm is 

much more difficult procedure. Only power balance 

calculation gives the necessary information. Indeed the 

total beam power growth is calculated step-by-step and 

compared with storage RF power loses. The storage 

power is defines as 3D integral of VE

V

z d,,
2

. 

The distribution simulated for standard disk loaded 

waveguide (DLW) was used to define the transverse 

dependence and the simulated Ez(ξ) distribution to de-

fine the longitudinal one. The comparison shows very 

good tolerance of the developed algorithm. The test in 

which the traveling wave has zero amplitude at the end 

of section (limit current test) was also used. Such test 

can be verified analytically. 

5. EXAMPLES OF SIMULATION 

 Finally results of two beam dynamics simulations 

are presented. They are the simulation of short high-

brightness bunch dynamics in regular traveling wave 

accelerating section with main parameters as: section 

length 85 cm, minimal and maximal RF field amplitude 

57 and 60 kV/cm (for not loaded structure, attenuation 

is absent), phase velocity increases in range 0.8…1.0, 

channel aperture 1 cm, series impedance 50 MOhm/m, 

λ=10 cm, initial transverse emittance 2.5 mm∙mrad, 

solenoid field 0.1 T. The results of the simulation with 
beam current 7 A are shown in Fig. 4 and with 70 A in 

Fig. 5: the dependence of RF field amplitude (a), bunch 

averaged energy (b) and beam envelope (c) versus lon-

gitudinal coordinate, phase spaces in (γ, φ) (d) and (βx, 

x) (e) phase spaces and beam cross-section (f). The ini-

tial beam parameters of Figs. 4, 5,d,e are shown by red 

color, output – by blue. Note that the RF field amplitude 

is equal to zero at the end of channel in second case 

because of the beam loading.  
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Fig. 4. Beam dynamics simulation results for beam  
current 7 A 

CONCLUSIONS 

The code BEAMDULAC-BL for the beam dynam-

ics simulation taking into account both beam loading 
and Coulomb field is discussed. The having four ver-

sions code is developed: for traveling and standing 

waves and for two ways of structure parameters defini-

tion (by function and cell-to-cell). The analytical sug-

gestions which were used to develop the code are pre-

sented. Algorithms, difficulties, code testing methods 

and results of simulation are presented. 

The further code testing and comparison with oper-

ating LINACs are the following task. The problem of 

beam dynamics simulation in case when the RF pulse 

and beam pulse lengths are approximately similar 

should also be studied. 

This work is supported in part by the Ministry of 

Science and Education of Russian Federation under 

contract № 14.516.11.0084. 

 

 

Fig. 5. Beam dynamics simulation results for beam  

current 70 A 
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ПАКЕТ ПРОГРАММ BEAMDULAC-BL ДЛЯ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ ДИНАМИКИ 

ЭЛЕКТРОННЫХ ПУЧКОВ С УЧЕТОМ СОБСТВЕННОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ 

И НАГРУЗКИ ТОКОМ 

Т.В. Бондаренко, Э.С. Масунов, С.М. Полозов 

Рассмотрены алгоритмы и численные методы, использованные в новой версии программы 

BEAMDULAC-BL для трехмерного численного моделирования динамики с учетом как квазистатического 

поля, так и нагрузки током. Обсуждаются специфические проблемы, возникшие при разработке, основные 

возможности программы и планы ее дальнейшего развития. 

ПАКЕТ ПРОГРАМ BEAMDULAC-BL ДЛЯ ТРИВИМІРНОГО МОДЕЛЮВАННЯ ДИНАМІКИ 

ЕЛЕКТРОННИХ ПУЧКІВ З УРАХУВАННЯМ ВЛАСНОГО ЕЛЕКТРОСТАТИЧНОГО ПОЛЯ 

І НАВАНТАЖЕННЯ СТРУМОМ 

Т.В. Бондаренко, Е.С. Масунов, С.М. Полозов 

Розглянуто алгоритми та чисельні методи, використані у новій версії програми BEAMDULAC-BL для 

тривимірного чисельного моделювання динаміки з урахуванням як квазістатичного поля, так і навантаження 

струмом. Обговорюються специфічні проблеми, що виникли при розробці, основні можливості програми та 

плани її подальшого розвитку.  


