ИЗУЧЕНИЕ ДИНАМИЧЕСКИХ И СТРУКТУРНЫХ ХАРАКТЕРИСТИК В ОБЛУЧЕННЫХ КРИСТАЛЛАХ LiF

Г.А. Петченко

Харьковская национальная академия городского хозяйства, Харьков, Украина E-mail: gdaeron@ukr.net

Импульсным эхо-методом в частотном диапазоне 37,5...232,5 МГц исследован задемпфированный дислокационный резонанс в кристаллах LiF с остаточной деформацией 0,65 % при T = 300 К в интервале доз облучения 0...1000 Р. Определены зависимости коэффициента вязкости В и средней эффективной длины дислокационного сегмента L от времени облучения.

введение

Данная статья относится к серии работ [1-5], в которых изучается процесс взаимодействия подвижных дислокаций с дефектами радиационного происхождения в кристаллах LiF. Выбор кристаллов LiF в качестве объектов исследований был неслучайным. С точки зрения научных исследований, эти кристаллы благодаря своей простой структуре и типу химической связи являются модельными и поэтому весьма удобны для проверки различных теорий, в частности, теории фононного торможения дислокаций [6]. В них из-за отсутствия электронной подсистемы можно исследовать эффекты фонондислокационного взаимодействия в чистом виде. В опытах по изучению радиационного воздействия на твердое тело кристаллам LiF также следует отдать предпочтение. Благодаря высокой температуре Дебая ($\theta = 732$ K) [7] с их помощью можно при T = 300 К достаточно корректно исследовать тонкие эффекты закрепления дислокаций радиационными дефектами, поскольку другие процессы при указанной температуре не протекают.

Опыты на кристаллах LiF интересны и в прикладном аспекте, в связи с широким применением последних в качестве элементной базы в различных акустооптических устройствах. В частности, их используют в акустических линиях задержки, в лазерной технике [8], радиобиологии и медицине [9] в качестве дозиметров излучения. Кроме того, кристаллы LiF используются в рентгеноспектральной оптике в качестве кристалл-монохроматоров [10]. Выступая в роли диспергирующих элементов, кристаллы фтористого лития позволяют с высокой разрешающей способностью изучать тонкие структуры спектров исследуемых веществ.

Следует сказать, что служебные характеристики указанных устройств в значительной мере определяются состоянием дислокационной структуры используемых в них кристаллов. Если в результате внешнего воздействия в кристаллах появятся «легкоподвижные» дислокации, устройство может полностью потерять свои служебные свойства. В связи с этим представляется важным изучение процессов гашения дислокационных эффектов, происходящих при закреплении подвижных дислокаций радиационными дефектами.

В работах [1-5] импульсным эхо-методом исследовалось влияние малых доз рентгеновского облучения на частотную и амплитудную локализации дислокационного резонанса в интервале доз облучения 0...400 Р. На основе анализа частотных спектров дислокационного декремента $\Delta_d(f)$ было установлено, что с увеличением дозы облучения указанные частотные кривые смещаются в сторону более высоких частот и меньших амплитуд. При этих условиях свободная длина дислокационного сегмента L монотонно уменьшается, а коэффициент динамического торможения дислокаций В сохраняет неизменным свое абсолютное значение.

Из-за высокой чувствительности дислокационного поглощения к изменению длины дислокационного сегмента, обусловленному увеличением концентрации радиационных дефектов в кристалле, можно было четко фиксировать смещение кривых Δ_d (f) уже при облучении образца дозой в 100 P.

В целом, работы [1-5] ярко продемонстрировали эффективность применения ультразвуковых методов внутреннего трения [7] для надежной регистрации начала появления на дислокациях точек закрепления радиационного происхождения.

Кроме акустических методов диагностики радиационного повреждения материала давно применяются и оптические методы, связанные с изучением зависимостей коэффициента пропускания от длины волны излучения, проходящего через кристалл. По спектральным зависимостям коэффициента пропускания излучения τ (λ) можно делать выводы не только о присутствии центров окраски в облучаемых кристаллах, но и определять их тип и количество [11]. Однако, несмотря на высокую информативность оптических методов, их эффективное применение становится возможным лишь начиная с определенной дозы радиации (обычно ~10³ P), введенной в кристалл, что исключает изучение процесса накопления дефектов радиационного происхождения на ранних стадиях.

Учитывая сказанное, представляется весьма интересным расширить диапазон облучений, что применялся в исследованиях [5], до 10³ Р с той целью, чтобы недоступный для оптического изучения интервал доз облучений (400...1000 Р) был полностью перекрыт эффективно действующим в этой области акустическим методом. Полученные в этом направлении результаты имели бы не только чисто научную, но и определенную практическую и методологическую ценность. Указанные соображения и определили цель настоящей работы.

МАТЕРИАЛЫ И МЕТОДИКА ИССЛЕДОВАНИЯ

В данной работе импульсным эхо-методом в области частот 37,5...232,5 МГц и интервале доз рентгеновского облучения 0...1000 Р была исследована частотная зависимость дислокационных потерь ультразвука в монокристаллах LiF при температуре T = 300 К. Для опытов использовались образцы с геометрическими размерами 17×17×29 мм и чистотой 10⁻⁴ вес.%, полученные путем выкалывания по плоскостям спайности <100>. После выкалывания образцы подвергались тонкой шлифовке и последующей полировке, так, чтобы непараллельность их рабочих поверхностей составляла приблизительно ± 1 мкм/см, что контролировалось с помощью оптиметра типа ИКВ. Для снятия внутренних напряжений, которые могли возникнуть в результате механической обработки, образцы отжигали на протяжении ~ 12 ч в муфельной печи МП-2УМ при температуре ~ 0,8 $T_{\pi\pi}$ ($T_{\pi\pi}$ = 870 °C) с последующим медленным охлаждением до комнатной температуры. Для введения в кристаллы «легкоподвижных» дислокаций их предварительно деформировали до получения остаточной деформации є = 0,65 %. Выход на требуемую величину остаточной деформации обеспечивался точной регистрацией предела текучести кристаллов на ленте самописца КСП-4. Дополнительно изменение длины образца также контролировалось с помощью компаратора ИЗА-2. Деформирование образцов производилось сжатием на разрывной машине типа «Инстрон» при скорости деформации ~ 10^{-5} c⁻¹. При таком режиме деформирования, как было установлено в [12], полосы скольжения не возникают, а ямки травления равномерно покрывают протравленную поверхность кристалла. Это дает возможность с помощью программы Photoshop подсчитать число ямок травления и достаточно точно определить плотность дислокаций Л. Облучение кристаллов LiF рентгеновскими лучами выполнялось на стандартной установке УРС-55 (40 кВ, 10 мА). Мощность дозы в месте расположения исследуемого кристалла, определенная с помощью дозиметра КИД-2, составляла ~ 0,11 Р/с. Суммарное время облучения составило 160 мин, а суммарная доза облучения - 1055 Р.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты исследования частотных зависимостей дислокационного декремента затухания ультразвука Δ_d (f) в кристаллах LiF с величиной остаточной деформации 0,65 % для суммарного времени облучения 120 и 160 мин при T = 300 К приведены на рис. 1 (кривая 1 и 2 соответственно).

Можно отметить, что ход резонансных кривых $\Delta_d(f)$ качественно не отличается от соответствующих зависимостей, приведенных в работе [5] для малых доз облучений. Экспериментальные точки так же хорошо, как и в работах [1-5], описываются теоретическим частотным профилем [13], рассчитанным для случая экспоненциального распределения дислокационных петель по длинам. Из рис. 1 видно, что под действием рентгеновского облучения

резонансные кривые монотонно смещаются в область высоких частот и малых амплитуд, а их высокочастотные асимптоты практически совпадают между собой.

Рис. 1. Частотные зависимости дислокационного декремента затухания ультразвука от времени облучения: точки •, ▼ – данные эксперимента для 120 и 160 мин облучения соответственно;

1, 2 – теоретические кривые [13], прямые линии – их высокочастотные асимптоты

При анализе зависимостей параметров резонансного максимума от времени облучения среднюю эффективную длину дислокационного сегмента удобно выразить через время облучения. В соответствии с [14] выражения для резонансной частоты f_m, декремента в максимуме Δ_m и средней эффективной длины дислокационной петли L как функций времени записываются в виде:

$$f_{m}^{t} = f_{m}^{t=0} (1 + \beta t)^{2};$$

$$\Delta_{m}^{t} = \frac{\Delta_{m}^{t=0}}{(1 + \beta t)^{2}};$$

$$L_{t} = \frac{L_{t=0}}{1 + \beta t},$$
(1)

где f_m^t , Δ_m^t , L_t – соответственно резонансная частота, декремент в максимуме и средняя эффективная длина дислокационной петли для кристалла, облученного за промежуток времени t, $f_m^{t=0}$, $\Delta_m^{t=0}$; L_{t=0} - те же самые параметры, только для необлученного кристалла, а $\beta = \frac{P \cdot L_{t=0}}{\Lambda}$, где P – общее количество центров блокировки, которые достигают дислокационной сетки в единицу времени; Л – плотность дислокаций (неизменная в ходе эксперимента). В обзоре [7] также широко используются вышеуказанные формулы, хотя и отмечается, что концентрация $c(t) = \beta t$ центров закрепления, которые добавляются за время облучения к петле длиной $L_{t=0}$, в общем, не является строго линейной функцией времени, и упомянутые выкладки можно использовать только в качестве первого приближения. Дж.М. Сивертсен [15] на основе обработки своих экспериментальных данных по NaCl предположил, что более точным приближением может являться $c(t) = \beta t^{2/3}$, однако сам он не приводит никакого объяснения этому факту.

Таким образом, с использованием данных настоящей работы, приведенных на рис.1, а также аналогичных зависимостей, взятых из [5] и формул (1), были построены зависимости $\Delta_m(t)$ и $f_m(t)$ (рис. 2).

Рис. 2. Зависимости параметров резонансного максимума Д_т (кривая 1) и f_m (кривая 2) от времени облучения: точки •, 0 – экспериментальные данные; сплошные линии – теоретические кривые, рассчитанные по формулам (1)

Из рис. 2 видно, что увеличение времени облучения приводит к уменьшению величины дислокационного декремента Δ_m и увеличению резонансной частоты fm. Качественно это можно объяснить тем, что увеличение дозы облучения приводит к сокращению средней эффективной длины дислокационной петли, колеблющейся в поле УЗ-волны. При этом петли заметают меньшие площади, и дислокационное поглощение ультразвука снижается, а их резонансный отклик на ультразвуковое возбуждение приходится на более высокие частоты. Из рис. 2 также видно, что экспериментальные точки хорошо описываются теоретическими кривыми, каждая из которых согласована с экспериментальными данными в одной точке. Для более наглядной иллюстрации эффекта смещения резонансного максимума с облучением необходимо построить зависимость L(t).

Для получения информации по зависимостям средней эффективной длины дислокационного сегмента L и коэффициента динамического торможения дислокаций B от дозы облучения в диапазоне 0...1000 Р данные, приведенные на рис. 1-2, были обработаны в рамках дислокационной теории [16] с использованием уравнений, описывающих положение резонансного максимума и нисходящей ветви зависимости Δ_d (f):

$$\Delta_m = 2,2\Omega \Delta_0 \Lambda L^2; \qquad (2)$$

$$f_m = \frac{0,084\pi C}{2BL^2};$$
 (3)

$$\Delta_{\infty} = \frac{4\Omega G b^2 \Lambda}{\pi^2 B f},\qquad(4)$$

где Δ_{∞} – значение декремента для частот f >> f_m; Ω – ориентационный фактор, учитывающий, что приведенное сдвиговое напряжение в плоскости скольжения меньше приложенного напряжения; Lсредняя эффективная длина дислокационного сегмента, $\Delta_0 = (8 \text{Gb}^2) / (\pi^3 \text{C}); \text{ C} - эффективное натяже$ ние изогнутой дислокации (C = $2 \cdot Gb^2/\pi(1-\nu)$); Λ – плотность дислокаций; $v = C_{12}/(C_{11}+C_{12}) - \kappa o \Rightarrow \phi \phi u$ циент Пуассона; G – модуль сдвига действующей системы скольжения; b - величина вектора Бюргерса. Используя вычисленные автором [5] значения величин: $\Omega = 0.311$; $C = 2.5 \cdot 10^9$ H; $\Lambda = 1.74 \cdot 10^{10} \text{ m}^{-2}$; v = 0,27; G = 3,533·10¹⁰ Па; b = 2,85·10⁻¹⁰ м и $Gb^2 = 28,7 \cdot 10^{-10} \Pi a \cdot M^2$, в настоящей работе по формулам (2)-(4) были определены значения величин L и В при изменении доз рентгеновского облучения.

Ход экспериментальных кривых для средней эффективной длины дислокационного сегмента L и абсолютных значений величины B, полученных при монотонном увеличении времени облучения, представлены на рис. 3 кривыми 1 и 2 соответственно.

Из этого рисунка видно, что кривая 1, характеризующая изменение со временем облучения средней эффективной длины дислокационного сегмента, плавно убывает по закону $L_t = L_{t=0}/(1 + \beta t)$. Точки для L(t), полученные путем расчета по формулам (2) и (3) с учетом результатов, приведенных на рис. 2, хорошо согласуются как между собой, так и с теоретической кривой 1. Поведение кривой L(t) вполне объясняет причину смещения резонансного максимума с облучением, наблюдаемого в экспериментах.

Для дополнительной проверки возможностей теории [16] расчет коэффициента динамического торможения дислокаций В также проводился двумя

независимыми способами: по нисходящей ветви по формуле (4) и по параметрам резонанса – по формулам (2) и (3). Результаты проведенных расчетов указанными методами продемонстрированы кривой 2 на рис. 3. Простой анализ приведенных данных позволяет сделать вывод, что оба способа обработки данных позволяют получать в рамках теории [16] практически одинаковые результаты. Из рис. 3 также видно, что коэффициент демпфирования дислокаций В не зависит от времени облучения в интервале применяемых доз 0...1000 Р. А это означает, что уровень динамического торможения дислокаций в кристаллах LiF обусловлен лишь их взаимодействием с фононами [6] и не зависит от структурного состояния образца. В данных исследованиях, проводимых при постоянной температуре, плотность фононного газа в кристалле не менялась и, следовательно, величина В должна оставаться неизменной. Ранее полученные результаты на ряде кристаллов [12, 17-20], подтверждающие независимость параметра В от механической обработки образца, а также при варьировании плотности дислокаций в кристалле, свидетельствуют о том же.

выводы

Импульсным эхо-методом в частотном диапазоне 37,5...232,5 МГц на кристаллах LiF с величиной остаточной деформации 0,65% при T = 300 K в условиях изменения дозы рентгеновского облучения в интервале 0...1000 Р изучено поведение частотных спектров дислокационного поглощения ультразвука Δ_d (f).

Показано, что с увеличением дозы облучения резонансный максимум кривой Δ_d (f), уменьшаясь по амплитуде, смещается в область более высоких частот. Полученные результаты подтвердили справедливость теоретических предсказаний относительно того, что частота f_m и максимальный декремент Δ_m изменяются со временем облучения как $(1 + \beta t)^2$ и

$(1 + \beta t)^{-2}$ соответственно.

В рамках дислокационной теории рассчитаны зависимости длины дислокационного сегмента L и коэффициента динамического торможения дислокаций В от времени облучения. Показано, что длина дислокационного сегмента монотонно убывает с дозой облучения по закону $L_t = L_{t=0} / (1 + \beta t)$, что отражает процессы закрепления подвижных дислокаций в кристаллах радиационными дефектами.

Кроме этого было установлено, что абсолютное значение коэффициента торможения дислокаций В не зависит от времени облучения кристаллов LiF.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Г.А. Петченко. Исследование дислокационных потерь ультразвука в облученных монокристаллах LiF в интервале доз облучения 0...400 Р // ВАНТ. Серия «Физика радиационных повреждений и радиационное материаловедение». 2012, №2, с. 36-39.

2. G.A. Petchenko, A.M. Petchenko. The study of the dislocation resonance in LiF crystals under the in-

fluence of the law-dose X-irradiation // Functional Materials. 2010, No4 (17), p. 421-424.

3. G.O. Petchenko. Acoustic Studies of the Effect of X-ray Irradiation on the Dynamic Drag of Dislocation in LiF Crystals // Ukr. Journ. Phys. 2011, № 4 (56), p. 339-343.

4.G.A. Petchenko. Dynamic damping of dislocations in the irradiated LiF crystals // *Functional Materials*. 2012, №4 (19), p. 473-477.

5. Г.А. Петченко. Влияние малых доз рентгеновского облучения на параметры дислокационного резонанса и величину коэффициента вязкости В в монокристаллах LiF // Вісник ХНУ. Серія «Фізика». 2012, №1019, в. 16, с. 57-60.

6. В.И. Альшиц, В.Л. Инденбом. Динамическое торможение дислокаций // УФН. 1975, т. 115, №1, с. 3-39.

7. Р. Труэлл, Ч. Эльбаум, Б.Чик. Ультразвуковые методы в физике твердого тела. М.: «Мир», 1972, 307 с.

8. В.В. Анциферов. Мощные одночастотные перестраиваемые твердотельные лазеры // Журнал *технической физики.* 1998, т. 68, №10, с. 74-79.

9. И.М. Неклюдов, А.К. Малик, А.А. Пархоменко, А.В. Рудницкий. Ионизационные механизмы генерации радиационных дефектов в кристаллах LiF при облучении высокоэнергетическими электронами // *ВАНТ. Серия «Физика радиационных поврежсдений и радиационное материаловедение».* 2009, №2 (93), с. 52-56.

10. М.И. Мазурицкий. Рентгеноспектральная оптика. Ростов-на-Дону: РГУ, 2005, 91 с.

11. A. Smakula. Uber Erregung und Entfarbung lichtelektrisch leitender Alkalihalogenide // Z. Physik. 1930, v. 59, №9-10, p. 603-614.

12. А.М. Петченко, Г.А. Петченко. Особенности поглощения ультразвука в кристаллах LiF при варьировании плотности дислокаций // Вісник ХНУ. Серія «Фізика». 2009, №865, в. 12, с. 39-44.

13. O.S. Oen, D.K. Holmes, M.T. Robinson. US AEC Report NORNL-3017, 3, 1960.

14. Р.М. Штерн, А.В. Гранато. Задемпфированный дислокационный резонанс в меди // Внутреннее трение и дефекты в металлах. М.: «Металлургия», 1965, с. 149-191.

15. Дж.М. Сивертсен. Внутреннее трение и модуль упругости кристаллов NaCl после гаммаоблучения // Внутреннее трение и дефекты в металлах. М.: «Металлургия», 1965, с. 222-229.

16. А. Гранато, К. Люкке. Струнная модель дислокации и дислокационное поглощение ультразвука // Физическая акустика. М.: «Мир», 1969, т. 4, ч. А, с. 261-321.

17. Н.П. Кобелев, Я.М. Сойфер, В.И. Альшиц. О соотношении между вязкой и релаксационной компонентами дислокационного затухания высокочастотного ультразвука в меди // ФТТ. 1979, №4 (21), с. 1172-1179.

18. G.A. Petchenko. Phonon damping of dislocations in potassium bromide crystals at different dislocation density values // *Functional Materials*. 2000, N^o4 (7), p. 785-789.

19. O.M. Petchenko, G.O. Petchenko. Phonon Drag of Dislocations in KCl crystals with Various Dislocation Structure States // Ukr. Journ. Phys. 2010, №6 (55), p. 716-721.

20. А.М. Петченко, В.И. Мозговой, А.А. Урусовская. Вязкое торможение дислокаций в монокристаллах NaCl при температурах 77-300 К // ФТТ. 1988, №10 (30), с. 2992-2995.

Статья поступила в редакцию 14.12.2012 г.

ВИВЧЕННЯ ДИНАМІЧНИХ І СТРУКТУРНИХ ХАРАКТЕРИСТИК В ОПРОМІНЕНИХ КРИСТАЛАХ LIF

Г.О. Петченко

Імпульсним луна-методом у частотному діапазоні 37,5...232,5 МГц досліджено задемпфований дислокаційний резонанс у кристалах LiF із залишковою деформацією 0,65 % при T = 300 К в інтервалі доз опромінення 0...1000 Р. Визначено залежності коефіцієнта в'язкості В і середньої ефективної довжини дислокаційного сегмента L від часу опромінення.

THE STUDY OF THE DYNAMIC AND STRUCTYRE CHARACTERISTICS IN IRRADIATED LIF CRYSTALS

G.A. Petchenko

The damped dislocation resonance has been studied in LiF crystals deformed to the value of the residual deformation 0,65 % at T = 300 K in the interval of irradiation doses 0...1000 R using the pulsed echo technique in the frequencies range 37,5...232,5 MHz. The time irradiation dependences of dislocation damping factor B and the average effective length of the dislocation segment L were determined.