Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. © 2015 ИМФ (Институт металлофизики 2015, т. 37, № 1, сс. 13-36 им. Г. В. Курдюмова НАН Украины) Оттиски доступны непосредственно от издателя Фотокопирование разрешено только Напечатано в Украине. в соответствии с лицевзией

АМОРФНОЕ И ЖИДКОЕ СОСТОЯНИЯ

PACS numbers: 71.10.Fd, 72.10.Di, 72.15.Cz, 75.30.Kz, 75.30.Mb, 75.47.-m, 75.50.Kj

Кластерная модель жидкого или аморфного металла. Квантово-статистическая теория. Электрические и магнитные свойства

А. И. Мицек, В. Н. Пушкарь

Институт металлофизики им. Г.В.Курдюмова НАН Украины, бульв.Акад. Вернадского, 36, 03680, ГСП, Киев, Украина

Магнитоэлектрические свойства аморфных металлов (АМ) на основе Fe рассчитываются в модели кластеров К_i и в представлении многоэлектронных операторных спиноров. Флуктуации химических связей (ФХС) и микродиффузия модифицируют АМ. Волновая функция иона Fe слагается из волновых функций высокоспиновых (ВС, ξ_3), низкоспиновых (НС, ξ_1) и зонных (f_r) состояний в узле г. Их амплитуды $\xi_i(T, B)$ зависят от температуры T и магнитного поля B. На примере системы Fe–B постулируем, что ферромагнитные (ФМ) кластеры α -Fe взаимодействуют ($A_{31} > 0$) через HC-ионы в полостях h_j . Температура Кюри $T_c(\xi_j)$ понижается также за счёт A_{31} при антиферромагнитном (АФМ) обмене $A_{11} < 0$ для h_j . Обменная жёсткость $D(T, \xi_j)$ ферромагнонов зависит от ФХС через $\xi_j(T)$. При $|A_{11}| > A_{33}$ стабильна АФМ-фаза с двумя ветвями антиферромагнонов: $E_{a} \propto k, E_{0} \cong A_{31}$ для квазиимпульсов k << 1. Добавление Сr также стабилизирует АФМ-фазу за счёт обмена Cr–Cr (A_{vv} < 0). Вероятность метамагнитного (MM) перехода АФМ → ФМ повышается микродиффузией. С ростом T уменьшается число ближайших соседей Cr-Cr в полости h_i, уменьшая $\overline{A}_{_{\scriptscriptstyle UV}}(T)$ при $T o T_{_{
m MM}} - 0$. MM-переходы либо при $T_{_{
m MM}}$, либо в поле $B_{_{
m MM}}(T)$ при $T < T_{\rm MM}$ сопровождаются гигантским магнитосопротивлением (ГМС) $\Delta R(T, B)$; получено соотношение $\Delta R \propto \xi_1^2(T) s_T^2(B)$. Средний спин s_T для HCиона входит в «ФМ-дефект эффективной массы» $\Delta m^*(T, B)$ при $B \to B_{MM}$. Чётные ФМ-эффекты — ферромагнитная анизотропия (ФМА) и магнитострикция (ФМС) — обусловлены спин-орбитальной связью HC-Fe-B⁺ в условиях деформации u_{ii} . Деформация u_{ii} при получении АМ-ленты или после термообработки наводит Φ MA ($K_u \neq 0$). Ход магнитной восприимчивости $\chi(B)$ зависит от K_u и K_1 внутри кластера.

Магнетоелектричні властивості аморфних металів (АМ) на основі Fe розраховано в моделі кластерів K_j і в представленні багатоелектронних операторних спінорів. Флюктуації хемічних зв'язків (ФХЗ) і мікродифузія модифікують АМ. Хвильова функція йона Fe складається з хвильових

13

функцій високоспінових (ВС, ξ_3), низькоспінових (НС, ξ_1) та зонних (f_r) станів у вузлі **r**. Їхні амплітуди $\xi_i(T, B)$ залежать від температури T і магнетного поля В. На прикладі системи Fe-В постулюємо, що феромагнетні (ФМ) кластери α -Fe взаємодіють ($A_{31} > 0$) через HC-йони у порожнинах h_j . Температура Кюрі $T_c(\xi_i)$ понижується також через A_{31} при антиферомагнетному (АФМ) обмін
і $A_{11}<0$ для h_j . Обмінна цупкість $D(T,\xi_j)$ феромагнонів залежить від ФХЗ через $\xi_j(T)$. При $|A_{11}| > A_{33}$ стабільною є АФМ-фаза з двома гілками антиферомагнонів: $E_a \propto k$, $E_0 \cong A_{31}$ для квазиімпульсів k << 1. Додавання Cr також стабілізує АФМ-фазу через обмін Cr-Cr $(A_{vv} < 0)$. Ймовірність метамагнетного (ММ) переходу А Φ М $o \Phi$ М підвищується мікродифузією. З ростом Т зменшується число найближчих сусідів Cr-Cr у порожнині h_j , зменшуючи $\overline{A}_{vv}(T)$ при $T \to T_{MM} - 0$. MMпереходи при $T_{\rm MM}$ чи то у полі $B_{\rm MM}(T)$ при $T < T_{\rm MM}$ супроводжуються гігантським магнетоопором (ГМО) $\Delta R(T, B)$; одержано співвідношення $\Delta R \propto \xi_1^2(T) s_T^2(B)$. Середній спін s_T для НС-йона входить у «ФМ-дефект ефективної маси» $\Delta m^*(T, B)$ при $B \to B_{MM}$. Парні ФМ-ефекти — феромагнетна анізотропія (ФМА) і магнетострикція (ФМС) — зумовлено спінорбітальним зв'язком HC-Fe-B⁺ в умовах деформації u_{ii} . Деформація u_{ii} при виготовленні АМ-стрічки або після термооброблення наводить ФМА $(K_u \neq 0)$. Хід магнетної сприйнятливости $\chi(B)$ залежить від K_u і K_1 всередині кластера.

Magnetoelectric properties of Fe-based amorphous metals (AM) are calculated within both the cluster (K_i) model and the many-electron operator spinors representation. AM are modified by the chemical-bond fluctuations (CBF) and microdiffusion. The wave function of Fe ion consists of wave functions of high-spin (HS, ξ_3), low-spin (LS, ξ_1), and band (f_r) states at the lattice site **r**. Their amplitudes $\xi_i(T, B)$ depend on temperature T and magnetic field B. As postulated by the Fe–B example, the ferromagnetic clusters of α -Fe interact $(A_{31} > 0)$ through the LS ions within the h_i holes. The Curie temperature $T_c(\xi_i)$ is lowered owing to A_{31} at the AFM exchange with $A_{11} < 0$ for h_j . Ferromagnon exchange hardness, $D(T, \xi_j)$, depends on the CBF through $\xi_j(T)$. The AFM phase is stable, if $|A_{11}| > A_{33}$, and it has two antiferromagnon branches: $E_a \propto k$, $E_0 \cong A_{31}$ for quasi-momentum $k \ll 1$. Cr addition also stabilizes AFM phase owing to the Cr-Cr exchange ($A_{vv} < 0$). Probability of metamagnetic (MM) $AFM \rightarrow FM$ transition is increased by microdiffusion. The number of the nearest Cr–Cr neighbours within the h_j holes is decreasing with the T growing, decreasing $\overline{A}_{vv}(T)$ at $T \to T_{MM} - 0$. The MM transitions either at T_{MM} or in the $B_{\rm MM}(T)$ field at $T < T_{\rm MM}$ are accompanied by giant magnetoresistance with $\Delta R(T, B) \propto \xi_1^2(T) s_T^2(B)$. Mean spin for LS ion is a part of 'effective mass defect' $\Delta m^*(T, B)$ at $B \to B_{MM}$. The FM effects such as ferromagnetic anisotropy (FMA) and magnetostriction (FMS) are caused by the LS-Fe-B⁺ spinorbit coupling in condition of deformation u_{ii} . Deformation u_{ii} induces FMA $(K_u \neq 0)$ in the process of AM-ribbon fabrication or after annealing. The curve of magnetic susceptibility $\chi(B)$ depends on K_u and K_1 within the cluster.

Ключевые слова: аморфный ферро- или антиферромагнетик, кластеры, магноны, магнитная анизотропия, магнитострикция, гигантское магнитосопротивление, обмен, флуктуации химических связей, многоэлектронные операторные спиноры. (Получено 22 апреля 2014 г.; окончат. вариант — 6 ноября 2014 г.)

1.ВВЕДЕНИЕ. ВОЛНОВЫЕ ФУНКЦИИ И ВЗАИМОДЕЙСТВИЯ

Аморфные металлы (АМ) суть часть класса твёрдых тел без трансляционной инвариантности. Повышенная (сферическая) макросимметрия делает их чувствительными к наведению анизотропии свойств внешними (тепловым, упругим и др.) полями. Поэтому их техническое применение полностью определяется способами получения и обработки образцов. Плоские ленты или пленки АМ обычно подвергаются воздействиям, изменяющим их двумерные свойства в плоскости x0z образца. Важным предметом исследования магнитомягких АМ оказывается степень магнитной жёсткости феррометаллов; см. [1, 2]. Конкретно это проявляется в изменении наведённой ферромагнитной анизотропии (ФМА). В процессе необходимой для этого обработки идёт микродиффузия примесных ионов [2]. Создаётся локально анизотропная микроструктура. В интегральной форме она проявляется в величине и симметрии наведённой ФМА. Для теоретического выяснения происходящих процессов и получающихся свойств АМ адекватными оказываются квантово-статистические методы. Здесь мы используем метод двухвременных функций Грина (Боголюбова). В основе метода лежит введение волновых функций ионов в форме многоэлектронных операторных спиноров (МЭОС). В последнее время широко используется [3–7] кластерное представление разных фаз жидких (ЖМ, см. также [8]) и АМ образцов при интерпретации наблюдаемых свойств. Это тем более важно, что во внешних полях может меняться не только микро-, но и макро- (фазовая) структура АМ, а именно зарядовый (орбитальный), магнитный или механический порядок решётки АМ. Последнее должно менять симметрию тензора упругих модулей.

Получение быстрой закалкой ленты аморфного металла [7] предназначено для пополнения класса магнитомягких ферромагнетиков (ФМ) с высоким электросопротивлением (ЭС). Подавленная кристаллографическая ФМА обусловливает низкие коэрцитивные силы ($H_c \sim 1$ Э) и низкую энергию перемагничивания (MB)_{max}. Более высокое ЭС понижает потери на вихревые токи на технических частотах $\omega \sim 10^2 - 10^3$. Аспект применения «гигантского магнитосопротивления» (ГМС) предполагает поиски антиферромагнитных (АФМ) 3d(АМ)-соединений.

Вначале остановимся на бинарных $Fe_{1-x}M_x$ (M = B, P, Si, ...) [3, 8] АМ сплавах. Волновые функции Fe-иона предполагают разделение на высокоспиновые (BC) (3), низкоспиновые (HC) (1) и зонные ($f_{r\sigma}$) состояния 3*d*-электронов:

$$\Psi_r^+(\mathbf{Fe}) = \xi_3 D_r^3 + \xi_1 D_r^1 + \sum_{\sigma} \xi_{b\sigma} f_{r\sigma}^+, \ D_r^n = \{ d_{rn\sigma L} c_{nr\sigma} \nabla_{rL} \}$$
(1.1)

с факторизацией МЭОС на координатные $(d_{r...})$, спиновые $(c_{r...})$ и орбитальные $(v_{r...})$. Локализация спинов S_r (ВС) и s_r (НС) хундовским обменом и замораживание орбитального момента L_r частично обсуждаются ниже.

Волновая функция М-иона:

$$\Psi_{r}^{+}(\mathbf{M}) = \xi_{+}P_{r} + \xi_{0}\Psi_{\mathbf{M}}^{0}, P_{r} = \{P_{r\sigma L}c_{pr\sigma}\nu_{rL}\}$$
(1.2)

выражается МЭОС для n = 1 ковалентного электрона через амплитуды катионного (ξ_+) и атомного (ξ_0) состояний. Орбитальные факторы МЭОС (v_L) используются для расчёта чётных (ФМА, магнитострикция (ФМС), ...) и нечётных (эффект Холла, ...) эффектов Акулова [1]. Определим:

$$c_{nr\sigma}^{2} = [1 + \mathbf{S}_{r}(\mathbf{s}_{r})\sigma] / 2, v_{rL}^{2} = (1 + \mathbf{IL}_{r}) / (2l+1)$$
(1.3)

для спиновых **о** и орбитальных **l** матриц при l = 1 (B) или 2 (Fe). Номинальные спины S = 3/2 (BC) или s = 1/2 (HC).

Ограничиваемся парными (ковалентными) взаимодействиями катионов:

$$H^{\text{cov}} = -\sum \Gamma^{nn} D_r^n \overline{D}_R^n \xi_n^2 - \sum \Gamma^{ij} D_r \{ \overline{D}_R^j \}, \, \xi_i = \{ \xi_3, \xi_1, \xi_+ x \}$$
(1.4)

и зонно-ковалентными (металлическими) связями:

$$H^{b-\text{cov}} = -\sum \gamma_j \xi_j \{D_r^j\} f_{R\sigma} - \sum t_{\sigma} (r-R) f_{r\sigma}^+ f_{R\sigma}$$
(1.5)

с учётом перескоков (t_{σ}) зонных электронов между разными узлами AM.

В разделе 2 на примере ФМ сплава АМ исследуется подход к чётным (ФМА, ...) и нечётным эффектам Акулова. Магнитная восприимчивость ФМ АМ обсуждается в разд. 3. Антиферромагнитная система (АФМ АМ) исследуется в разд. 4. Магнитострикция в разд. 5 выражается через амплитуды ξ_i состояний B⁺, HC-Fe и др. Две ветви ферромагнонов ФМ АМ рассчитываются в разд. 6. Магнитосопротивление ФМ АМ выражается через ферромагнитный «дефект массы зонного электрона» в разд. 7. Более реальная АФМ АМ система рассчитывается в разд. 8 на примере Fe_{1-x}Cr_xB. Метамагнитный переход (MM) в ней при критической температуре $T_{MM}(\xi_i)$ или в магнитном поле $B_{\rm MM}(T, \xi)$ исследуется в разд. 9. Соответствующее этому переходу гигантское магнитосопротивление (ГМС) вычисляется в разд. 10. Оно связывается с «дефектом массы» $\Delta m^{\tilde{s}}(B, \xi)$. Наведение ферромагнитной анизотропии (ФМА) рассчитывается в модели локальных деформаций u_{ii} в разд. 11. Модель зонного экранирования ковалентных связей дана в разд. 12, обсуждение и выводы — в разд. 13.

2. ФЕРРОМАГНЕТИЗМ АМ. РОЛЬ ЛОКАЛЬНОЙ АНИЗОТРОПИИ

Разложение спиновых и орбитальных факторов МЭОС в ряды по спинам S_r и s_r , а также орбитальным моментам L_r выделяет спиновый и спин-орбитальный гамильтонианы. Вводя спиновый момент σ_r примесного иона (В,...), имеем обменный гамильтониан, (пока бинарный по спинам):

$$H^{ex} = -\sum_{rR} A_{jj} \mathbf{S}_{jr} \mathbf{S}_{jR} \xi_j^2 - \sum_{ijrR} \xi_i \xi_j A_{ij} \mathbf{S}_{ir} \mathbf{S}_{jR}, \ i, j = 3, 1, +.$$
(2.1)

Далее символ σ_r может использоваться для зонных электронов. Здесь обменные параметры A_{ij} являются функционалами ФХС через МЭОС:

$$A_{jj} = \Gamma^{jj} (r - R) \{ d_r^j \overline{d}_R^j \}, \ A_{31} = \Gamma^{31} z_{31} \{ d_r^3 \overline{d}_0^1 \overline{d}_0^1 \overline{d}_R^1 \}, \ A_{1+} = \Gamma^{1+} \{ d_r^1 \overline{P}_R \}, \quad (2.2)$$

здесь z_{13} — число ближайших соседей ионов ВС-НС. Аналогично получаются интегралы (косвенного) обмена с электронами проводимости (зонными).

Выводы спин-орбитальных гамильтонианов требуют дополнительных пояснений, особенно для Fe-ионов, как BC, так и HC, см. [8, 9]. Приведём только результат для неоднородной связи типа HC-M:

$$H^{s-o} = -\sum \lambda_{1+} \xi_1 \xi_+ (\mathbf{\sigma} \mathbf{s}_r) (\mathbf{L} \mathbf{L}_R), \ \mathbf{v}_{RL}(M) \cong (\mathbf{1} + \mathbf{L} \mathbf{L}_R / 2) / 2, \qquad (2.3)$$

причём, спин-орбитальный параметр λ_{1+} является функционалом МЭОС: d_r^1 и \overline{P}_R . Ниже учитываем тензорный характер связей, обусловленный нарушением локальной симметрии неоднородными деформациями u_{ij} .

Для расчёта как чётных, так и нечётных эффектов Акулова используем принцип Боголюбова нарушенной симметрии. В каждом кластере понижение интегральной сферической симметрии AM до кубической приводит к соответствующей (локальной) ФМА. Дальнейшее понижение симметрии (аналогично ГПУ Со,...) наводит одноосную ФМА, увеличивая магнитную жёсткость [1,2].

Математический анализ явления [2] традиционно использует представление классического тензора деформаций \hat{u} (точнее, дисторсий $\hat{\varepsilon}$).

Разложение ковалентных и других гамильтонианов в ряды по *u*_{*ij*} даёт:

$$\Gamma(\mathbf{r} - \mathbf{R}) = \Gamma(\mathbf{r}_0 - \mathbf{R}_0) + \Gamma'_0[(\partial r_i / \partial \rho_i) - (\partial R_i / \partial \rho_i)] + \dots, \quad (2.4)$$

где

$$\rho = r - R, \ u_{ij}(r) = \partial r_i / \partial \rho_j, \ \Gamma'_{\rho} = \partial \Gamma / \partial \rho.$$
(2.4')

Согласно (2.4), к обменным гамильтонианам добавляются «акуловские» члены:

$$\Delta H^{\text{cov}} = = -\sum W_{ij}^{tt} u_{ij} S_{tr}^i S_{tR}^j \xi_t^2 \sigma_i \sigma_j - \sum W_{ij}^{13} u_{ij} S_r^i s_R^j \xi_3 \xi_1 \sigma_i \sigma_j - \sum W^{b1} u_{ij} s_r^i \kappa_R^j \sigma_i \sigma_j, (2.5)$$

$$t = 1, 3,$$

где через κ_{R} обозначен спин зонного (b) электрона.

В приближении средних спинов S (ВС-Fе) и s_j (НС-Fе) подрешёток и двух подсистем АМФ спинов НС-Fе получаем термодинамический потенциал (ТДП) Ф в обменном приближении. Вводим спиновую часть энтропии [8, 9]:

$$\Delta S_e = -q_3 S^2 - q_1 \sum_j s_j^2, \ j = 1, \ 2.$$
(2.6)

Суммарный ТДП в поле $B \rightarrow 0$ (при $s_{1,2} = \pm s$):

$$\Phi(S, s_j) = = (q_3 T - \xi_3^2 A_{33})S^2 + q_1 T \sum s_j^2 + \xi_1^2 A_{11} s_1 s_2 - A_{31} S \sum_j s_j \xi_3 \xi_1 - B(S \xi_3 + \xi_1 \sum s_j).$$
(2.7)

Варьируем ТДП (2.7). Полагая малыми $\xi_1^2 \sim 10^{-2}$ и $A_{11} \cong 0, 1A_{33}$, опускаем соответствующие члены в уравнении для температуры Кюри T_c . (Аналогично можно рассмотреть АФМ-состояние AM с более слабым $A_{33} \sim |A_{11}|$.)

Получаем для T_c выражение:

$$T_{c} \cong \left\{ \xi_{3}^{2} A_{33} + 2(A_{31}^{2} \xi_{1}^{2} / q_{1} T_{c}) \right\} / q_{3} < T_{c} \text{ (α-Fe$),}$$
(2.8)

уменьшенное по сравнению с T_c для α -Fe ($\cong 10^3$ K), что связано с уменьшенной амплитудой $\xi_3^2 < 1$ и с уменьшением координационных чисел $z_{33} < 8$ на поверхности кластера. Поэтому имеем $T_c(AM) \cong \cong (0,5-0,7)T_c$ (α -Fe). Магнитная восприимчивость при $T > T_c$ и $B \to 0$:

$$\chi_{p}(T) \cong C_{c} / (T - T_{c}), C_{c} \sim \xi_{3}^{2}.$$
 (2.9)

Увеличение поля *В* разрушает АФМ-связь подрешёток HC-Fe. Их вклад добавляется к (2.9) в форме парамагнитного закона Кюри:

$$\Delta \chi_{p1} \cong C_p \xi_1^2 / T. \tag{2.10}$$

Немонотонность кривой намагниченности M(T) при $T > T_c$ должна

наблюдаться на опыте.

3. МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ ФМ АМ ПРИ $T < T_c, T_K$

Применение ФМ лент АМ требует изучения их магнитных свойств при $T \cong 300$ К при обычных T_c , $T_K \sim 10^3$ К. Малым полям $B \to 0$ соответствуют процессы намагничивания за счёт смещения (условно говоря) 180° и 90° доменных стенок [4]. Переход к более высоким полям $B \cong B_A$ (поля ФМА кубического α -Fe) $\sim 10^2-10^3$ Гс должен приводить к вращениям векторов \mathbf{M}_K кластера K_j . Этот процесс описываем, вводя для кластера K_j константу K_1 его ФМА, намагниченность **М**, а также полярные углы векторов **М** (θ), B ($\theta = 0$) и осей ФМА (θ_0). Суммарный ТДП [2]:

$$\Phi = -BM\cos\theta - K_1[\cos^4(\theta - \theta_0) + \sin^4(\theta - \theta_0)], B = B_z, \qquad (3.1)$$

варьируем по θ .

При $B > B_A$ получаем для $\theta << 1$:

$$\theta \sim (K_1 / BM) \sin 4\theta_0,$$
для $0 < \theta_0 < \pi / 4.$ (3.2)

Магнитный момент кластера K_j в поле $B = B_z$ после усреднения, согласно (3.2):

$$M_{i}^{z} = M \cos \theta \cong M[1 - [K / (BM)]^{2} / 8]$$
(3.3)

ведёт себя обычным образом для процесса приближения к магнитному насыщению Φ M-поликристалла с заданной K_1 для кубической Φ MA. Магнитная восприимчивость:

$$\chi_{MA} = (K_1 M)^2 / 4B^3 \tag{3.4}$$

качественно согласуется с данными [10], см. рис. 1.

В больших полях $B \sim A_{31}/M$ заметный вклад в $\chi(B)$ должно давать намагничивание системы HC-Fe-ионов. Для «средних» полей возможно заметить константную часть:

$$\Delta \chi(B) \sim (A_{31} / M) \xi_1^2(T), \qquad (3.5)$$

существенно зависящую от T при $T \to T_{\kappa}$, практически исчезающую выше температуры кристаллизации T_{κ} .

При $B < B_A < 2K_1/M$ основную роль играет наведённая ФМА (K_u). Её ТДП:

$$\Phi_{\mu} = -K_{\mu}\cos^{2}\varphi, \quad \theta_{0} - \theta = \varphi, \quad \varphi \cong B\sin\theta_{0} / (2K_{\mu} + B\cos\theta_{0}). \quad (3.6)$$

Рис. 1. Рассчитанная магнитная восприимчивость ΦМ AM χ (сплошная кривая) как функция магнитного поля *B*; экспериментальные точки [10].

Намагниченность усредняется по θ_0 :

$$M = M_z = M\cos\theta_0 + B\left\langle\sin\theta_0 / (2K_u + B\cos\theta_0)\right\rangle.$$
(3.7)

Восприимчивость тогда:

$$\chi = [\chi_0 / (1 + B / \overline{B}_u)] - \chi_1 B / (1 + pB / B_u)^2, \ B_u = \langle 2K_u / M \rangle, \quad (3.8)$$

и согласуется с данными [10] при «средних» полях В; см. рис. 1.

4. АНТИФЕРРОМАГНИТНЫЕ (АФМ) ХАРАКТЕРИСТИКИ АМ СПЛАВОВ Fe

Роль АФМ-подсистемы HC-Fe может усиливаться добавлением АФМ связанных ионов типа Cr или Mn. В таких AM основное состояние может быть АФМ и при наличии ФМ кластеров (типа α -Fe и др.).

По-прежнему рассматриваем Fe-B_x ($x \ge 0,1$). Каждый кластер K_j представляем ФМ упорядоченной системой спинов S_r (BC-Feионов). (Поскольку разбавление АМ чаще добавляет HC ионы типа Cr, Ni, Cu [3-6, 10] со спинами $s_r = 1/2$, продолжаем и для АФМ системы использовать кластерную модель [8].) Вводим для HC-спинов две подрешётки (s_{jr} , j = 1, 2). Из ковалентных связей BC- и HC-ионов получаем спиновый гамильтониан:

$$H = -\sum A_{ij} \mathbf{S}_{ir} \mathbf{S}_{jR} - \mathbf{B} g \mu_B \sum \mathbf{S}_{jr}, (S_i = S, s_j), \Delta S^e = -(q_3 S^2 + q_1 \sum_i s_j^2), (4.1)$$

где обменные параметры A_{ij} выражаются через ковалентные связи Γ_{ii} и корреляторы МЭОС с учётом ФХС. Вводя амплитуды волновых

21

функций ξ_j для BC и HC состояний Fe-ионов (под концентрацией ξ_1^2 ниже понимаем всю совокупность спинов (HC) s = 1/2), переходим к ТДП:

$$\Phi = -A_{33}\xi_3^2 S^2 + A_{11}\xi_1^2 - A_{31}\xi_1\xi_3 \sum_j |Ss_j| + T(q_3 S^2 + q_1 \sum_j s_j^2) - \mathbf{B}\sum_j \xi_j^2 \mathbf{S}_j$$
(4.2)

для малых $B \to 0$. Полагаем, что средний спин $S = S_T$ кластера (при температуре T) ориентирован параллельно спинам s_j ближайшей j-подрешётки. Таким образом, система спинов S кластеров также предполагается разбитой на две подрешётки. Обмен между подрешётками считаем АФМ ($A_{11} > 0$).

Варьируем ТДП (4.2) по средним спинам *S* и *s* ионов (ВС и НС). Обычным образом [9] получаем уравнение для критической температуры спинового разупорядочения:

$$\begin{split} \Delta &= q_3 q_1 T^2 + (q_3 A_{11} - q_1 A_{33}) T - A_{33} A_{11} (\xi_3 \xi_1)^2 - (\xi_3 \xi_1 A_{31})^2 \cong \\ & \cong q_3 q_1 [T^2 - T_c (T + T_N)]. \end{split}$$

Здесь в приближении малого $A_{31}^2 << A_{33}$, A_{11} можно ввести характерные температуры:

$$T_{c} = (A_{33}\xi_{3}^{2} / q_{3}) + (A_{31}\xi_{1}\xi_{3})^{2} / (q_{1}A_{33}\xi_{3}^{2} + q_{3}A_{11}\xi_{1}^{2})$$
(Кюри) (4.4)

и

$$T_{N} = (A_{11}\xi_{1}^{2} / q_{1}) - (A_{31}\xi_{1}\xi_{3})^{2} / (q_{1}A_{33}\xi_{3}^{2} + q_{3}A_{11}\xi_{1}^{2})$$
(Нееля) (4.5)

Магнитная восприимчивость:

$$\chi = R(T) / (T + T_N)(T - T_c)$$
 при $T > T_c$, $R(T) = a(\xi_j)T + b(\xi_j)$. (4.6)

Функции *a* и *b* являются комбинациями обменных параметров *A*_{ii}:

$$a = (q_1\xi_3^2 + q_3\xi_1^2) / q_1q_3, b = (\xi_3^2A_{11} + 2\xi_1\xi_3A_{13} - q_3\xi_1^2A_{33}) / q_1q_3.$$
(4.7)

Функция $\chi(T)$ существенно нелинейна.

Сильная зависимость $\chi(T)$ при $T < T_c$ связана с явлением метамагнетизма [1, 2]. В критических полях $B > B_{\rm MM}$ разрушается АФМпорядок подрешёток. Поскольку АФМ-обмен A_{11} вводится для HC подрешёток, а в полевой член ТДП (т.е. намагниченность M) основной вклад дают кластеры K_j , явление метамагнетизма AM отличается от такового для редкоземельных металлов и других кристаллических АФМ-материалов.

Для перехода от АФМ-порядка (здесь двух подрешёток антипараллельных спинов) к ФМ почти насыщенной намагниченности $M_s \cong M_0 = Ng\mu_B S$ поле $B \ge B_{\rm MM}$ должно преодолеть межподрешёточный обмен A_{11} . Поскольку этот обмен определяется малым спином s и малой амплитудой ξ_1 , а энергия магнитного поля зависит от числа $N \sim \xi_3^2$ спинов S, получаем поле $B_{\rm MM}$ в виде:

$$B_{\rm MM} \cong \xi_1^2 N A_{11}(T) s^2 / M_0, \ A(T) \sim \Gamma_{11}(T) \sim \left\langle D_0^1 \overline{D}_0^1 \right\rangle.$$
(4.8)

При $NA_{11} \sim 10^8$ эрг/см³, $(\xi_1 s)^2 \sim 10^{-2}$, $M_0 \sim 10^3 \, \Gamma c/cm^3$ получаем оценку $B_{\rm MM} \sim 10^3 \, \Im$.

Из-за быстрого падения $\xi_1^2(T)$ при $T \to T_K$, а также функционального уменьшения $\Gamma_{11}(T)$ как магнонами, так и ФХС, метамагнитное поле B_{MM} может оказаться достаточно малым при $T \to 300$ К. Этот фактор способствует росту магнитосопротивления в окрестности $B \to B_{MM}$ согласно механизму «ФМ-дефекта эффективной массы» зонных электронов [8, 9].

Использование метамагнитного эффекта может найти новые применения для АМ.

5. МАГНИТОСТРИКЦИЯ

Ленты ФМ АМ при их использовании испытывают механические нагрузки, сильно (иногда кардинально [10]) меняющие их магнитные характеристики. Эффекты механострикции и магнитострикции требуют детального рассмотрения. Предлагаемая кластерная модель АМ позволяет связать структурные и магнитные параметры с изменениями расстояний между ионами (деформациями u_{ij} решётки АМ). Исходим из представлений (2.1)–(2.4).

В начальном состоянии намагниченности **М** || 0*z* вдоль оси 0*z* ленты AM её исходная деформация u_{zz} . Полагаем, что деформации внутри кластеров K_j малы. Прилагаем поперечное поле **B** \perp 0*z* (т.е. B_x) и упругую реакцию на него ленты связываем с деформациями полостей u_{ij} , т.е. расстояний (HC-Fe)–B⁺. Реакцию спиновой подсистемы отражает гамильтониан:

$$H^{\text{cov}} = -\sum \left(\Gamma^{31p} D_r^3 \overline{D}_R^1 \overline{P}_g \overline{P}_f + \text{H.c.} \right), \ \rho_j = R - r_j, \ (r, g, f) \in r_j.$$
(5.1)

Параметр связи $\Gamma^{31p}(\rho_j)$ как функционал $u_{ij}(a_j - \text{условный параметр}$ решётки) разлагаем в ряды:

$$\Gamma^{31p} = \Gamma^{31p}(\rho_{j0}) + (\partial \Gamma^{31p} / \partial \rho_j) \Delta \rho_j, \quad u_{ij}a_i = \Delta \rho_j, \quad (5.2)$$

приводящие к магнитоупругому ТДП.

Для этого разлагаем спиновый фактор МЭОС в ряды по \mathbf{s}_R или \mathbf{S}_r :

$$c_{rS} \cong (1 + \sigma_i S_r^i / 2 + ...) / \sqrt{2}.$$
 (5.3)

Варьирование суммарного гамильтониана по s_r^i и выражение деформационной части энергии ковалентной (косвенной) связи ВС– HC–B⁺:

$$\xi_{1}\xi_{+}^{2}\sum \alpha_{ss} [(\partial \Gamma^{31p} / \partial \rho_{1i})u_{ij}a_{ij}^{(1)} + (\partial \Gamma^{31p} / \partial \rho_{3i})u_{ij}a_{i}^{(3)}]K_{0}^{31p} = \widehat{\Lambda}^{31}u_{ij} \quad (5.4)$$

позволяют выразить параметры магнитоупругой связи $\widehat{\Lambda}^{ij}$ (далее Λ_{ij}) через ковалентные параметры $\widehat{\Gamma}$. Кроме условных параметров решётки *а* сюда входят комбинации α_{Ss} параметров разложения (5.3) и корреляторы МЭОС:

$$K_0^{31p} = \left\langle D_0^3 \overline{D}_0^1 \overline{P}_0 \overline{P}_0 \right\rangle \tag{5.5}$$

в нулевом приближении по ФХС. Получаем:

$$\Delta H^{\text{cov}} = -\sum \Lambda_{ij}^{31}([\rho_f])S_r^i S_R^j \sigma_i \sigma_j u_{ij}, \ \left\langle \widehat{\Lambda}_{ij}^{31} \right\rangle = \Lambda_{ij}(0).$$
(5.6)

Для перехода к константам магнитострикции вводим вектор намагниченности:

$$M_{j} = g\mu_{B}N\xi_{3}^{2}\langle S_{r}^{j}\rangle, \ \theta_{j} = M_{j}/M, \ N\xi_{3}^{2} = N_{K},$$
 (5.7)

где N_{K} — число ВС-ионов в кластерах K_{j} . После усреднения (5.7) записываем магнитоупругий гамильтониан в стандартной форме [1]:

$$H_{M-S} = -\Lambda_{ij} \theta_i \theta_j u_{ij}, (i, j) = (x, y, z).$$
(5.8)

Константы магнитострикции $\Lambda_{ij}(T)$ сильно зависят от T через амплитуды ξ_i HC и B⁺ ионов:

$$\Lambda_{ij}(T) = \Lambda_{ij}(0)\xi_1(T)\xi_1^2(T), \xi_+ \to 1.$$
(5.9)

На функции $\xi_j(T)$ накладывается функциональная зависимость $\Lambda_{ij}(0)$ от спектров магнонов, согласно [2]. Отсюда методами [2] получаем дефекты упругих модулей $C_{ij}(T)$ после рассмотрения наведённой магнитной анизотропии (ФМА); см. ниже.

6. ФЕРРОМАГНОНЫ АМ

Обычные магнитные возбуждения (магноны) AM ферромагнетика получаем из *k*-представления спинового гамильтониана:

$$H = H^{\text{ex}} + H^{MA} - \mathbf{B}\mathbf{M} \text{ при } \mathbf{M} = g\mu_B \sum_{\mathbf{r}} (\xi_3^2 \mathbf{S}_r + \xi_1^2 \mathbf{s}_r), \quad (6.1)$$

где гамильтониан для Φ MA носит сложный характер $H^{MA}(\xi_i)$ и будет

рассмотрен ниже. Поэтому здесь он опускается для больших частот E_k магнонов. Обменный гамильтониан [2] при $\xi_3 \cong 1$:

$$H^{\text{ex}}/N = -A_{33}(0)\mathbf{S}_{0}\mathbf{S}_{0} - -\sum_{k}A_{33}(k)\mathbf{S}_{k}\mathbf{S}_{-k} - A_{31}(0)\mathbf{S}_{0}\mathbf{s}_{0}\xi_{1} - \sum_{kq}A_{31}(k,q)\mathbf{S}_{k}\mathbf{s}_{q}(\delta_{kq} + Z_{k-q}).$$
(6.2)

Интеграл неортогональности Z_{k-q} определён [8].

Для расчёта спектров вводим спиновые функции Грина [2, 9]:

$$G_{k}^{S} = \left\langle \left\langle S_{k}^{+} \mid S_{k}^{-} \right\rangle \right\rangle, G_{0,q}^{s} = \left\langle \left\langle s_{0,q}^{+} \mid S_{k}^{-} \right\rangle \right\rangle, G_{0}^{S} = \left\langle \left\langle S_{0}^{+} \mid S_{0}^{-} \right\rangle \right\rangle.$$
(6.3)

Уравнения движения для (6.3) при отсутствии пространственной симметрии (т.е. сохранения импульса k) имеют сложный вид при $\langle S_r^z \rangle = S_T$ и $\langle s_r^z \rangle = s_T$:

$$(E - A_k^{33})G_k^S - \xi_1 A_{31}(k)S_T Z_k G_0^s + A_{31}(0)s_T \xi_1 G_k^S - \sum_q \xi_1 A_{31}(k,q)Z_{r-q} G_q^s = 2S_T / N,$$
(6.4)

$$(E - A_{31}(0)S_T / \xi_1)G_0^s - A_{31}(k)(s_T / \xi_1)Z_k^*G_k^s - -\sum_q A_{31}(k,q)(Z_{k-q} / \xi_1)\left\langle \left\langle S_k^z s_q^+ \mid S_k^- \right\rangle \right\rangle = 0$$
(6.4')

Из уравнения (6.4') получаем:

$$G_0^s \cong (E - A_{31}(0)S_T/\xi_1)^{-1} \{A_{31}(k)s_T Z_k G_k^S/\xi_1 - \ldots\}, \ E_0^s = A_{31}(0)S_T/\xi_1, \ (6.5)$$

т.е. оптическую ветвь магнонов двухспиновой системы.

Решение (6.5), перенормируя правую часть уравнения (6.4), отражает влияние HC-подсистемы спинов s_r на средний спин S_T кластеров K_j . При малом $B \to 0$ неупорядоченность HC-подсистемы ($s_T \cong 0$) дает стандартный квадратичный спектр поперечных ферромагнонов:

$$E_{k}^{\perp} = A_{k}^{33} - \{A_{31}^{2}(0) - A_{31}^{2}(k)\}s_{T} / A_{31}(0) - \dots, A_{k}^{33} \cong A_{33}k^{2}, \qquad (6.6)$$

перенормировка которого взаимодействием с HC существенна при упорядочении последних ($s_{\tau} \neq 0$).

Более детальный расчёт требует учёта функций Грина высших порядков.

7. МАГНИТОСОПРОТИВЛЕНИЕ ФМ АМ В МАГНИТНОМ ПОЛЕ В

Полагаем, что локальное упорядочение материала кластеров K_i дает

25

сравнительно небольшой вклад в суммарное электросопротивление (ЭС) ленты АМ. Больший вклад в ЭС дает рассеяние токовых (зонных) электронов на НС и В⁺ ионах. Пренебрегая для начала ролью спинов В⁺-ионов, полагаем основную часть магнитосопротивления ФМ АМ лент связанной с рассеянием на спинах s_r (НС-ионов).

Разложение спиновых факторов $c_{r\sigma}$ в ряды по s_r и удерживание только линейных по s_r членов добавляет в ковалентный гамильтониан:

$$\Delta H^{\text{cov}} = -\xi_1 \sum_{k,q} \gamma \ d_q^1 f_{k\sigma} [\sigma \mathbf{s}_r] Z_{k-q} + \text{H.c.} \}, \ q \in \mathbf{0}.$$
(7.1)

Интеграл неортогональности Z_{k-q} особенно важен для учёта членов q = 0 (7.1).

Спиновая часть гамильтониана рассеяния носителей тока (7.1) содержит два члена в сумме (7.1) в поле $B = B_z$:

$$\widehat{F}_{0} = d_{0}^{1} f_{k} s_{T} Z_{k} \quad \text{if } F_{q} = d_{0}^{1} f_{k} s_{q} Z_{k-q}, s_{T} = \left\langle s_{r}^{z} \right\rangle.$$
(7.2)

Член F_0 появляется в поле магнитного насыщения ~ $10^2 - 10^3$ Гс.

Рассмотрим «дефект эффективной массы» зонного электрона и его роль в магнитосопротивлении [9] АМ-ленты при изменении *B*.

Вводим функции Грина:

$$G_{k}^{f} = \left\langle \left\langle f_{k} \mid f_{k}^{+} \right\rangle \right\rangle, G_{0,q}^{1} = \left\langle \left\langle \overline{d}_{0}^{1} [s_{T}, s_{q}^{z}] \mid f_{k}^{+} \right\rangle \right\rangle.$$
(7.3)

Уравнения движения:

$$(E - \tilde{\varepsilon}_k)G_k^f - \xi_1 \sum_q \gamma \ Z_{k-q}^* G_q^1 (1 + \delta_{q0} s_T) \cong \mathbf{0}, \tag{7.4}$$

$$(E - \Gamma_q^{11})G_q^1 - \delta_{kq}Z_k s_T G_k^f \gamma^* / \xi_1 + ... = 0.$$
 (7.5)

Решение (7.5) для $B \to 0$ дает $G_0^1 \cong 0$, т.е. отсутствие возмущения зонного спектра рассеянием данного типа.

При $B \ge B_s$ намагничивание спинов HC-ионов дает $s_T > 0$. Учёт (7.5) перенормирует зонный спектр и приводит к «дефекту эффективной массы» аналогично [9]. Решение (7.5) теперь:

$$G_0^s = \delta_{kq} Z_k s_T G_k^f, |Z_k|^2 = \xi_1^2.$$
(7.6)

Подставляем (7.6) в (7.4), находим G_k^f и перенормировку зонного спектра:

$$\Delta \tilde{\varepsilon}_{k} = \xi_{1}^{2} | \gamma(k) |^{2} s_{T}^{2}(B) / \Gamma_{0}^{11}, | \gamma(k) |^{2} \cong | \gamma(0) |^{2} + | \gamma_{k}' |^{2} k^{2}.$$
 (7.7)

В приближении (параболическом) эффективной массы *m**:

$$\tilde{\varepsilon}_{k} \cong (k^{2} / 2m^{*}) - \varepsilon_{F}(s_{T}), \ \varepsilon_{F} = \varepsilon_{F}^{0} - \xi_{1}^{2} | \gamma(0) |^{2} s_{T}^{2}(B) / \Gamma_{0}^{11}.$$
(7.8)

«Дефект эффективной массы» зонных электронов ФМ АМ согласно:

$$(m^*)^{-1} = (m_0^*)^{-1} + \xi_1^2(T) |\gamma_k'|^2 s_T^2(B) / \Gamma_0^{11}$$
(7.9)

зависит от В и Т.

В приближении функции Друде для ЭС получаем зависимость (уменьшение) ЭС от растущего магнитного поля *B*:

$$\Delta R(T,B) / R(T,0) = -(\Delta m^*)^{-1} m_0^* = -(|\gamma'_k|^2 m_0^* / \Gamma_0^{11}) \xi_1^2(T) s_T^2(B).$$
(7.10)

Величина (отрицательного) магнитосопротивления $\Delta R(T, B)$ зависит от B, в частности, через подсистемную магнитную восприимчивость спинов HC-ионов $\chi_{s1}(T)$. При малой (по сравнению с γ) величине HC-HC-обмена Γ_{11} эффект магнитосопротивления может быть не мал. Резкое уменьшение суммарной магнитной восприимчивости $\chi(B)$ при $B \to B_s$ приводит к максимуму:

$$\partial \Delta R(T,B) / \partial B, T < T_{\kappa}, B < B_{s}.$$
 (7.11)

Особенность (7.11) может оказаться достаточно интересной.

8. АНТИФЕРРОМАГНИТНЫЙ (АФМ) АМОРФНЫЙ МЕТАЛЛ (АМ) Fe_{1-x}Cr_xB_y

Материалом для гигантского магнитосопротивления (ГСМ) может оказаться АМ плёнка (лента) в исходном АФМ-состоянии. Она может испытывать метамагнитный переход в ФМ-фазу как в магнитном поле $B = B_{\rm MM}$, так и при изменении температуры ($T \rightarrow T_{\rm MM}$). Для примера удобно рассматривать сплавы Fe с металлами типа Cr, Mn, В данном случае, кроме ВС-Fe-ионов (D_r^3), вводим ионы Cr (n = 2ковалентных электронов, МЭОС V_R). Для иона B^+ оставляем символ МЭОС P_r . Вводим волновую функцию иона Cr:

$$\psi_{R}^{+}(\mathrm{Cr}) = \xi_{V}V_{R} + \xi_{0}V_{R}^{0}, \ \xi_{V} = \xi, \ V_{R} = \{V_{R\sigma}c_{R\sigma}\}, \ c_{R\sigma}^{2} = (1 + \sigma s_{R}) / 2.$$
(8.1)

Тогда Фурье-образы $V_{k\sigma}$ окажутся бозонами.

Расчёт обменных эффектов выполняем на основе гамильтониана: *H* =

$$= -\sum_{r,R} \Gamma_{33} D_r \overline{D}_R - \sum_{r,R} \Gamma_{VV} V_r \overline{V}_R - \sum_{rRt} (\Gamma_{V3} D_r \overline{V}_R \overline{P}_t + \text{H.c.}) - \mathbf{B} \cdot \sum_{jr} (N_j \mathbf{S}_{jr} + x \mathbf{s}_{jr}).$$
(8.2)

Ниже предполагаем при расчёте $\xi_0
ightarrow 0$ и $x\xi^2
ightarrow x$. В полевой член

сразу введено различие АФМ подрешёток спинов Cr (1 и 2). Полагаем также, что кластеры K_j ионов BC-Fe разбиваются на две системы частиц (N_1 и N_2), связанных со спинами разных подрешёток Cr. При B = 0

$$N_{j}(0) = 1 / 2, N_{j}(B, s_{j}) \rightarrow \delta_{j1}$$
 при $B \rightarrow B_{MM} > 0.$ (8.3)

Переходим от (8.1) к ТДП $\Phi(N_i, s_i)$ при данной температуре $T < T_{MM}$.

Предполагаем, что при нагревании ионы Cr диффундируют, в процессе чего получают возможность «прилепиться» к кластеру K_j . Этот процесс описываем зависимостью от T ближайших Cr-Cr-соседей в полостях:

$$z_h \cong z_0(1-x^b), \ z_0 \cong 3, \ b=1-\tau, \ T \ / \ T_{\rm MM} = \tau, \ z_K = z_0 x^b.$$
 (8.4)

При $T \to T_{\rm MM}$ кластер содержит сплав Fe–Cr, а в полостях AM остаются только B⁺-ионы. Полученный (усреднённый из (8.2)) ТДП

$$\Phi = -\sum_{j} A_{33} (N_{j}S_{j})^{2} - z_{h}^{2} x^{2} A_{VV} s_{1} s_{2} - z_{K} x A_{V3} \sum_{j} N_{j} S_{j} s_{j} + (Q / 4) (s_{1} s_{2})^{2} x^{2} z_{h}^{2} - B \sum_{j} (N_{j} S_{j} + x s_{j})$$

$$(8.5)$$

варьируем по N_j и s_j при $S_j = S_T \cong S$, $s_2 = -s_1 = -s(T)$. Вблизи критических точек $T_N(Cr)$ и $T_c(Fe)$ (они определены ниже) добавляем энтропийный член [8, 9]:

$$\Phi^{E} = T(z_{h}q_{V}\sum_{j}s_{j}^{2} + q_{3}\sum_{j}N_{j}^{2}) / 2.$$
(8.6)

Варьирование в области промежуточных температур $T < T_{_N} < T_{_c}$ дает $T_{_N} \cong z_{_h}A_{_{VV}} \; / \; q_{_V}.$

Получаем здесь:

$$s^{2}(T) \cong (A_{VV}z_{h} - q_{V}T) / Qz_{h}, \ N_{1} \cong (B / q_{3}T) + 1 / 2, \ \chi_{3} \sim 1 / T,$$
 (8.7)

т.е. парамагнитный (Ланжевена) вклад кластеров в магнитную восприимчивость (χ_3). Вклад АФМ-подсистемы согласно (8.7) имеет форму Кюри–Вейсса при $T > T_N$. Его легко получить, опуская член четвёртого порядка в (8.5).

Обмен между кластерами приводит к T_c (Fe); ТДП этой подсистемы:

$$\Phi_{K}(\text{Fe}) = -A_{33}N_{1}N_{2}z_{K}^{2} + (q_{3} / 2)T\sum_{j}N_{j}^{2} - B(N_{1} - N_{2}).$$
(8.8)

ФМ-фазе отвечает $|N_2| \rightarrow N_1, z_K \rightarrow z_0$, откуда имеем при $T > T_c$:

$$N = B / (q_3 T - A_{33} z_K^2), \quad \chi(T > T_c) = C_K / (T - T_c), \quad (8.9)$$

причём как T_c , так и константа Кюри (C_K) определяются свойствами кластеров сплава Fe–Cr.

9. МЕТАМАГНИТНЫЙ ПЕРЕХОД ПРИ $T \to T_{MM}$ ИЛИ $B \to B_{MM}(T)$

Переход первого рода АФМ-ФМ (без учёта доменной структуры и гистерезиса [2, 11]) находим, сравнивая ТДП фаз ФМ (8.8) и АФМ (8.5):

$$\Phi_{\rm AFM} = -A_{VV}^2 z_h^2 / 4Q, \ z_h^2 = z_0^2 (1 - x^b)^2, \qquad (9.1)$$

или

$$T_{\rm MM} / T_0 = 1 - \ln[1 + 4Q\tilde{A}_{33} / A_{VV}^2] / |\ln x|, \ T_0 = T_{\rm MM}(0).$$
(9.2)

Обменный параметр \tilde{A}_{33} перенормируется функцией $S_T(x)$ для среднего спина кластера. Величина $T_{\rm MM}$ явно зависит от концентрации примеси x.

Аналогично находим поле метамагнитного перехода $B_{\rm MM}(T)$, сравнивая ТДП фаз (8.8) и (9.1):

$$B_{\rm MM} / z_0^2 = (A_{VV}^2 / 4Q)(1 - x^{1-\tau})^2 - \overline{A}_{33}(N)x^{2(1-\tau)}, \ x^{1-\tau} \equiv 1 - \tau, \qquad (9.3)$$

согласно (8.4). Здесь приведено разложение b(T) при $\tau \to 1$. Вблизи критической температуры метамагнитного перехода (9.2), тогда имеем:

$$B_{MM}(T) \cong B_{MM}(0)(1-q_M\tau), \ B_{MM}(0) = A_{VV}^2 / 4Q, \ q_M = 4\overline{A}_{33}Q / A_{VV}^2.$$
 (9.4)

При $T_{\rm MM} \sim 3 \cdot 10^2$ К получаем оценку $B_{\rm MM}(0) \sim 1-10$ Тл, но $B_{\rm MM} \rightarrow 0$ при $T \rightarrow T_0$, или $\tau \rightarrow 1$.

10. ГИГАНТСКОЕ МАГНИТОСОПРОТИВЛЕНИЕ АФМ АМ ВБЛИЗИ МЕТАМАГНИТНОЙ ТОЧКИ

Электромагнитные свойства лент и плёнок АМ-сплавов с исходной АФМ-фазой представляют широкий интерес. ФМ-дефект массы зонных электронов и связанное с ним гигантское магнитосопротивление (ГСМ) [9] должны отражаться на самых разных свойствах. Здесь мы остановимся на ГСМ. Учитываем интегралы неортогональности Z_{k-q} [8].

Используем зонно-ковалентный гамильтониан:

$$H = \sum_{jk} \tilde{\varepsilon}_{jk} f_{jk}^{\dagger} f_{jk} - \sum_{kqj} (\tilde{\gamma} V_{jk} f_{jq} Z_{k-q} + \text{H.c.}), j = 1, 2.$$
(10.1)

Из второго члена выделяем рассеяние зонных электронов на спинах \mathbf{s}_{jr} :

$$H[\mathbf{s}_{k}] = -\sum_{jkq} [(\overline{\gamma}_{j}V_{0})s_{jq}^{i}\sigma^{i}f_{jk}Z_{k-q} + \mathrm{H.c}], \ i = x, y, z, q \in \mathbf{0},$$
(10.2)

учитываем бинарный АФМ-спиновый гамильтониан:

$$H^{\text{ex}} = -\sum A_{VV}(k,q) \mathbf{s}_{1k} \mathbf{s}_{2q} Z_{k-q}, \ (k,q) \in \mathbf{0}.$$
 (10.3)

Вводим функции Грина [8]:

$$G_{jk}^{f} = \left\langle \left\langle f_{jk} \mid f_{1k}^{+} \right\rangle \right\rangle, \ G_{jq}^{i} = \left\langle \left\langle V_{0} s_{q}^{i} \sigma^{i} \mid f_{k1}^{+} \right\rangle \right\rangle$$
(10.4)

и систему уравнений:

$$\begin{pmatrix} (E - \tilde{\varepsilon}_{1k}) & 0 & \gamma_1 & 0 \\ 0 & (E - \tilde{\varepsilon}_{2k}) & 0 & \gamma_2 \\ \gamma_1^* s_1 & 0 & (E - A_{VV}(0)s_2) & (-A_{VV}(q)s_1) \\ 0 & \gamma_2^* s_2 & A_{VV}(q)s_2 & (E + A_{VV}(0)s_1) \end{pmatrix} \begin{pmatrix} G_{1k}^{f} \\ G_{2k}^{f} \\ G_{1q}^{-} \\ G_{2q}^{-} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}. (10.5)$$

Детерминан
т Δ системы (10.5) описывает спектры антиферромагнонов и зонный.

Для упрощения предполагаем $\tilde{\varepsilon}_{kj} \cong \tilde{\varepsilon}_k$, $A_{VV} \ll \varepsilon_F$.

$$\Delta = (E - \tilde{\varepsilon}_{k})\{(E - \tilde{\varepsilon}_{k})(E^{2} - E_{k}^{2}) - |\gamma_{1}|^{2} [E + A_{VV}(0)s_{1}]s_{1} - |\gamma_{2}|^{2} [E - A_{VV}(0)s_{2}]s_{2}\}.$$
(10.6)

Здесь обозначены энергии антиферромагнонов E_k (рис. 2):

$$E_{k}^{2} = A_{VV}^{2}(0) - A_{VV}^{2}(k), \ \tilde{\varepsilon}_{k} = \varepsilon_{k0} - \varepsilon_{F}, \ \varepsilon_{k0} \cong k^{2} / 2m_{0}^{*}, \ (10.7)$$

где «немагнитные» зонные энергии ε_{k0} и эффективные массы m_0^* . Перенормированный зонный спектр (с учётом (10.2)) получаем в пределе $E \sim \varepsilon_F >> A_{VV}$, E_k в форме ($\gamma_1 \cong \gamma_2 = \gamma$):

$$\varepsilon_{k1} \cong \varepsilon_{k0} + (s_1 + s_2) |\gamma|^2 / \varepsilon_F, |\gamma|^2 \cong \gamma^2(0) + \gamma_k^2 k^2 / 2.$$
(10.8)

Перенормировка эффективной массы отсюда:

$$(m_1^*)^{-1} = (m_0^*)^{-1} + \Delta m^{-1},$$
 (10.9)

29

Рис. 2. Зависимость энергии ферро- (E_k) и антиферромагнонов $(E_a \ {\rm u} \ E_0)$ от k.

где

$$-\frac{\left<\Delta m^{-1}\right>}{(m_0^*)^{-1}} = -[(s_1(T,B) + s_2(T,B)](\gamma_k^2 / \varepsilon_F)m_0^*.$$
(10.9')

Так как в АФМ фазе $s_2 = -s_1$, $\Delta m^{-1} = 0$. После перехода $B > B_{\rm MM} \Delta m^{-1} > 0$. Для ГМС имеем (рис. 3):

$$\Delta R(T,B) / R(T,0) = -(\gamma^2 m_0^* / \varepsilon_F)[s_1(T,B) + s_2(T,B)]. \quad (10.10)$$

Величина ГМС соответствует (10.10) при $s_1^{}=s_2^{}\cong s\cong 1/2$.

11. НАВЕДЕНИЕ ФМА. ДЕФОРМАЦИОННАЯ МОДЕЛЬ

При деформации и_{іі} наиболее чувствительны полости h и спинорбитальные связи HC-Fe-B⁺. Гамильтониан ковалентного взаимодействия и хаббардовского отталкивания на узле В+:

$$H[\mathbf{L}_{r}] = \sum_{r} (U_{p} / 2)\mathbf{L}_{r}^{2} - \xi_{1} \sum \{ (\lambda_{p} \delta_{ij} + \lambda'_{p} u_{ij}) s_{r}^{i} L_{R}^{i} + \text{H.c.} \} - \xi_{1} \sum A_{31} \mathbf{S}_{R} \mathbf{s}_{p},$$
(11.1)

где спин-орбитальный параметр λ_p линейно связан с Γ_{p1} . Добавление механического ТДП (упругий модуль \hat{C}) приводит к магнитоупругой деформации при температуре отжига T_a :

$$u_{ij}(T_a) = \xi_1 C^{-1} \lambda'_p(T_a) \sum s_r^i L_R^j.$$
(11.2)

Варьирование (11.1) по s_r^i и L_R^j как при T_a , так и при температуре измерения T, приводит к выражению для ФМА.

Рис. 3. ГМС для метамагнитного (ММ) перехода при $T = T_{MM}$ (B = 0) и в поле B(T).

Получаем цепочку решений. Орбитальный момент *B*⁺:

$$L_{R}^{i} = \sum_{r} \xi_{1} \lambda_{p} s_{r}^{i} / U_{p}, \quad \mathbf{s}_{r} = \sum_{R} A_{31} \mathbf{S}_{R} / (A_{11} \xi_{1})$$
(11.3)

выражается через спин HC-Fe. Подставляем (11.3) в (11.2) и получаем наведённую при T_a магнитоупругую деформацию:

$$u_{ij}(T_a) = \xi_1 C^{-1} \sum (\lambda'_p \lambda_p / U_p) (A_{31} / A_{11})^2 \left\langle S_r^i S_R^j \right\rangle = \Lambda_a \cos^2 \theta_a \delta_{iz} \delta_{jz}.$$
(11.4)

В поле $B = B_z$ имеем $S_T^z = S_T \cos \theta_a$.

Подставляем (11.4) в (11.1) и усредняем по ФХС и магнонам. Получаем для наведённой ФМА выражение в форме ТДП:

$$\Phi_{\rm FMA} = -K_u(T_a, T)\cos^2(\theta_a - \theta), \quad M_z = M\cos\theta.$$
(11.5)

Константа наведённой ФМА:

$$K_{u} \cong (\lambda_{p}^{\prime}\lambda_{p}^{\prime} / U_{p}^{\prime})^{2} (A_{31}^{\prime} / A_{11}^{\prime})^{4} \xi_{1}^{2} (T) S^{2} (T_{a}) S^{2} (T)$$
(11.6)

достаточно мала из-за малых дробных факторов. Эта ФМА легко разрушается нагреванием до $T \sim T_a$.

«Спонтанная» ФМА получается деформацией u_{ij}^{C} при получении ФМ АМ. Её константа аналогична (11.6), но с меньшими степенями дробей, т.е. $2 \rightarrow 1$, $4 \rightarrow 2$. Оценки K_u сильно зависят от концентрации НС ионов ξ_1^2 .

12. МОДЕЛЬ ЗОННОГО ЭКРАНИРОВАНИЯ КОВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ

Роль зонных электронов не ограничивается их прямым взаимодействием через перескоки t(r-R) между узлами r и R. Их плотность n_e выражается через энергию Ферми ε_F . Здесь также учитывается экранирование ими ковалентных связей:

$$\Gamma(r) = \Gamma e^{-\kappa r} / r, \ \Gamma(k) = \Gamma / (k^2 + \kappa^2).$$
(12.1)

Радиус экранирования $r_s \sim 1/\kappa$ найдём, вводя снова гамильтонианы:

$$H^{\text{cov}-b} = -\sum_{rR} \tilde{\Gamma}(r) D_R \overline{D}_{R+r} + \sum [\gamma(r-R) D_r f_R + \text{H.c.}], \ \tilde{\Gamma}(r) \sim \Gamma / r. \ (12.2)$$

Диагонализация (12.2) с добавлением зонной энергии перенормирует $\Gamma(k)$:

$$\Gamma(k) = \tilde{\Gamma}(k) - |\gamma(k)|^2 / |\tilde{\varepsilon}_k|, \ \tilde{\Gamma}(k) \sim k^{-2} \sim \gamma(k), \ |\tilde{\varepsilon}_k| \rightarrow \varepsilon_F$$
 при $k \ll 1.$ (12.3)

Получаем:

$$\Gamma(k) = (\tilde{\Gamma} / k^2)(1 - F / \tilde{\Gamma}k^2) \cong \tilde{\Gamma} / (k^2 + \kappa^2), \ \gamma^2 / \tilde{\Gamma}\varepsilon_{\rm F} = \kappa^2.$$
(12.4)

Радиус экранирования ковалентной связи:

$$r_{s} \sim (\tilde{\Gamma} \varepsilon_{F})^{1/2} / \gamma \qquad (12.5)$$

растёт с ростом плотности зонных электронов $n_e \sim \epsilon_F^{3/2}$ и энергии ковалентной связи $\tilde{\Gamma}$. Он уменьшается при увеличении ковалентнозонной связи γ . Уменьшение зонной плотности n_e уменьшает r_s и ослабляет ковалентные связи. Это один из признаков перехода диэлектрик-металл. Возможно, это же способствует высокотемпературной сверхпроводимости.

13. ОБСУЖДЕНИЕ И ВЫВОДЫ

Большой экспериментальный материал на основе AM-лент и плёнок потребовал всестороннего теоретического обсуждения. Новые интересные свойства, например, ФМ AM-лент, часто объясняются с противоположных точек зрения (моделей). Нам представляется наиболее перспективной кластерная модель. Она позволяет детально учесть микроструктуру AM. Приведём в её обоснование некоторые факты.

Модель [12] нанокластеров интерпретирует некоторые данные для Fe-B-лент. Магнитные кластеры выделяются при кристалли-

зации AM лент Fe-Mn-Si-B [13]. Аморфизация поверхностного слоя металла имплантированием Ar⁺ (до 30 кэВ) создаёт кластеры (до 12 нм) [14]. Кристаллизация Zr-Ti-Cu-N проходит фазы кластеров-икосаэдров [15].

Эволюция кластерной структуры AM Fe_{0,8}(B, P)_{0,2} наблюдается в [16]. Аналогично можно объяснить изменение проницаемости мягких AM Fe₇₇Ni₁Si₉B₁₃ [10]. Отметим указания [17] на необходимость трансляционной неинвариантности в кластерных моделях (что здесь и делается). Икосаэдрические кластеры наблюдаются в [18]. Кластер адатомов Fe эволюционирует на поверхности Cu (\cong 1 нм) [19]. В кластерных AM-плёнках CoPt и FePt [20] выделяются двойниковые наночастицы \cong 2 нм. Рост числа кластеров с ростом *T* отмечается [21] для модельного стекла. Термообработка [22] файнмета Fe₈₁ (Si, Nb, Cu) при $M_s = 1,24$ Тл, $H_c \cong 1$ А/м, $\chi \cong 10^4$ наводит ФМА растяжением, причём из кластерного AM выделяются нанокристаллы типа α -Fe порядка 10 нм.

Кластеры Со [23] \cong 3 нм в полиамиде имеют ФМА и температуру блокировки $T_b \cong 100$ К. Интересно влияние водяного пара (О и Н) [24] на магнитные потери в Fe₈₁(B, Si, Co) для 50 Гц. При кристаллизации АМ-лент (Fe–Co)(Hf, B, Si) [25] выделяются наночастицы. Рост T_c [26] Fe–Ni–Si–B при нагревании от АМ (T_c = 434 К) до кристаллического состояния (T_c = 496 К) можно объяснить объединением кластеров в наблюдаемые наночастицы. Нелинейность R(T)для ЭС в Fe₈₅(B, Ni, Co, Si) авторы объясняют в кластерной модели [27].

Из полученных результатов следуют выводы.

1.На ближний порядок АМ-решёток накладывается дальний ФМпорядок. Это позволяет представить связанные прямым 3*d*−3*d*обменом кластеры размером ≅1 нм из ВС-Fе-ионов для АМ типа Fe-B.

2. Волновые функции Fe-ионов слагаются из волновых функций ВС-состояний (МЭОС D_r^3 , спин S = 3/2, амплитуда ξ_3), НС-состояний (D_r^1 , s = 1/2, амплитуда ξ_1), а также зонных f_r -фермионов. Это допускает заполнение полостей h_{ij} между кластерами K_j ионами НС-Fe и B⁺. ФМ-обмен в K_j определяет ФМ-фазу АМ-лент Fe-B.

3. Антиферромагнитный (АФМ) обмен A_{11} между НС-ионами (Fe, Cr, ...) благоприятствует исходному АФМ-состоянию при $T_N \propto A_{11}\xi_1^2$. 4. Оно разрушается в поле $B > B_{\rm MM}(x, \xi_1, T)$ в форме метамагнитного перехода.

5. Стабильность ФМ-фазы при $T < T_c(A_{33}, \xi_3)$ понижена уменьшением плотности $\propto \xi_3^2$ ВС-ионов. Статическая деформация u_{ij} лент ФМ АМ наводит ФМ-анизотропию (ФМА) с константой $K_u \propto u_{ij}$.

6. Рассчитанная магнитная восприимчивость кластеров $\chi(K_u, B)$ в средних полях $B < 2K_1/M$ интерпретирует падающую эксперимен-

тальную кривую.

7. Константы магнитострикции $\Lambda \propto A_{31}(T)\xi_1(T)\xi_1(T)$ сильно зависят от температуры T из-за падения $\xi_j(T)$ с ростом T, а также обмена $A_{31}(T)$ из-за ФХС.

8. Спектр ферромагнонов ФМ АМ-лент содержит стандартную ветвь $E_k = Dk^2$, чья обменная жёсткость перенормирована учётом A_{31} , и оптическую ветвь $E \cong A_{31}$. Спектр антиферромагнонов АФМ АМлент сложнее, но также содержит ветвь, стандартную для АФМ-фазы (линейную $E \sim k$).

9. Магнитосопротивление ФМ АМ-фазы связываем с «ФМдефектом эффективной массы» $\Delta m^* \sim -\xi_1^2(T)s_T^2(B)$ зонных электронов. Он создаётся их рассеянием на спинах s_r полостей HC-ионов.

10. АФМ-состояние $\operatorname{Fe}_{1-x}\operatorname{Cr}_{x}\operatorname{B}_{y}$ стабилизируется Cr -Cr-обменом $A_{VV} < < 0$ при $T < T_{N} \propto z_{h}A_{VV}$ при числе ближайших Cr-Cr-соседей $z_{h}(T)$.

11. Переход Cr из полостей h в кластеры K_j уменьшает z_h , что приводит к метамагнитному переходу первого рода при $T \rightarrow T_{cr} - 0$.

12. Наведение ФМА (K_u) связано со спин-орбитальной HC-B⁺- связью при термообработке в поле *B*.

13. Экранирование ковалентной связи $\Gamma(r)$ выражается через плотность n_e зонных электронов.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. С. В. Вонсовский, Магнетизм (Москва: Наука: 1971).
- 2. А. И. Мицек, В. Н. Пушкарь, *Реальные кристаллы с магнитным порядком* (Киев: Наукова думка: 1978).
- Е. А. Дорофеева, А. Ф. Прокошин, Физ. мет. металловед., 54, № 3: 505 (1984).
- Н. А. Скулкина, О. А. Иванов, Е. А. Степанов и др., Физ. мет. металловед., 103, № 2: 157 (2007).
- 5. Н. А. Скулкина, О. А. Иванов, Физ. мет. металловед., 86, № 2: 54 (1998).
- 6. А. И. Мицек, В. Н. Пушкарь, *Металлофиз. новейшие технол.*, **36**, № 1: 103 (2014).
- 7. Г. Н. Макаров, Успехи физических наук, 183, № 7: 673 (2013).
- А. И. Мицек, Металлофиз. новейшие технол., 36, № 11: 1473 (2014).
- 9. А. И. Мицек, Успехи физики металлов, 13, № 4: 345 (2013).
- 10. Н. А. Скулкина, О. А. Иванов, Физ. мет. металловед., 114, № 5: 411 (2013).
- 11. А. И. Мицек, Фазовые переходы в кристаллах с магнитной структурой (Киев: Наукова думка: 1989).
- 12. В. С. Покатилов, Н. Б. Дьяконова, Е. Г. Дмитриева и др., Наноматериалы и наноструктуры XXI век, 4, № 1: 29 (2013).
- А. В. Носенко, М. Г. Бабич, М. П. Семенько, О. И. Наконечна,
 Н. И. Захаренко, Металлофиз. новейшие технол., 32, № 9: 1183 (2010).
- 14. В. А. Ивченко, *Наноматериалы и наноструктуры XXI век*, **3**, № 3: 3 (2012).
- 15. O. Wang, Phys. Rev. Lett., 106, No. 21: 215505 (2011).
- 16. Г. Е. Абросимова, Успехи физических наук, 181, № 12: 1265 (2011).

- 17. Э. З. Кучинский, Н. А. Некрасов, М. В. Садовский, *Успехи физических наук*, **182**, № 4: 345 (2012).
- 18. A. C. Y. Lin, M. J. Neish, and G. Stokol, *Phys. Rev. Lett.*, **110**, No. 20: 205505 (2013).
- M. Pivetta, G. E. Pacchioni, and U. Schlickham, *Phys. Rev. Lett.*, **110**, No. 8: 86102: (2013).
- 20. F. Tournns and K. Sato, *Phys. Rev. Lett.*, **110**, No. 5: 055501 (2013).
- 21. T. Speck, Phys. Rev. Lett., 109, No. 19: 195703 (2012).
- Н. В. Ершов, В. А. Лукшина, В. Н. Федоров и др., Физика твёрдого тела, 55, № 3: 460 (2013).
- 23. А. А. Харченко, М. Г. Лукашевич, В. И. Нуждин и др., *Физика твёрдого тела*, **55**, № 1: 75 (2013).
- Н. А. Скулкина, О. А. Иванов, Е. А. Степанов и др., Физ. мет. металловед., 114, № 3: 241 (2013).
- Н. В. Дмитриева, В. А. Лукшина, Е. П. Волкова и др., Физ. мет. металловед., 114, № 3: 144 (2013).
- Б. А. Корниенков, М. А. Либман, Б. В. Молотилов и др., Физ. мет. металловед., 114, № 3: 237 (2013).
- М. И. Захаренко, Т. В. Калныш, М. П. Семенько, Физ. мет. металловед., 113, № 8: 804 (2012).

REFERENCES

- 1. S. V. Vonsovsky, *Magnetism* (Moscow: Nauka: 1971) (in Russian).
- A. I. Mitsek and V. N. Pushkar, *Real'nye Kristally s Magnitnym Poryadkom* [Real Crystals with Magnetic Order] (Kiev: Naukova Dumka: 1978) (in Russian).
- 3. E. A.Dorofeeva and A. F. Prokoshin, *Fiz. Met. Metalloved.*, **54**, No. 3: 505 (1984) (in Russian).
- 4. N. A. Skulkina, O. A. Ivanov, E. A. Stepanov et al., *Fiz. Met. Metalloved.*, **103**, No. 2: 157 (2007) (in Russian).
- 5. N. A. Skulkina and O. A. Ivanov, *Fiz. Met. Metalloved.*, **86**, No. 2: 54 (1998) (in Russian).
- 6. O. I. Mitsek and V. M. Pushkar, *Metallofiz. Noveishie Tekhnol.*, **36**, No. 1: 103 (2014) (in Russian).
- 7. G. N. Makarov, *Uspekhi Fizicheskikh Nauk*, **183**, No. 7: 673 (2013) (in Russian).
- 8. O. I. Mitsek, *Metallofiz. Noveishie Tekhnol.*, **36**, No. 11: 1473 (2014) (in Russian).
- 9. O. I. Mitsek, Uspehi Fiziki Metallov, 13, No. 4: 345 (2012) (in Russian).
- 10. N. A. Skulkina and O. A. Ivanov, *Fiz. Met. Metalloved.*, **114**, No. 5: 411 (2013) (in Russian).
- A. I. Mitsek, Fazovye Perekhody v Kristallakh s Magnitnoy Strukturoy [Phase Transitions in Crystals with Magnetic Structure] (Kiev: Naukova Dumka: 1989) (in Russian).
- 12. V. S. Pokatilov, N. B. Dyakonova, E. G. Dmitrieva et al., Nanomaterials and Nanostructures—XXI Century, 4, No. 1: 29 (2013) (in Russian).
- A. V. Nosenko, M. G. Babich, M. P. Semen'ko, O. I. Nakonechna, and M. I. Zakharenko, *Metallofiz. Noveishie Tekhnol.*, 32, No. 9: 1183 (2010) (in

Russian).

- 14. V. A. Ivchenko, Nanomaterials and Nanostructures—XXI Century, 3, No. 3: 3 (2012) (in Russian).
- 15. O. Wang, Phys. Rev. Lett., 106, No. 21: 215505 (2011).
- 16. G. E. Abrosimova, *Uspekhi Fizicheskikh Nauk*, **181**, No. 12: 1265 (2011) (in Russian).
- 17. E. Z. Kuchinski, N. A. Nekrasov, and M. V. Sadovsky, *Uspekhi Fizicheskikh Nauk*, **182**, No. 4: 345 (2012) (in Russian).
- 18. A. C. Y. Lin, M. J. Neish, and G. Stokol, *Phys. Rev. Lett.*, **110**, No. 20: 205505 (2013).
- 19. M. Pivetta, G. E. Pacchioni, and U. Schlickham, *Phys. Rev. Lett.*, **110**, No. 8: 86102: (2013).
- 20. F. Tournns and K. Sato, Phys. Rev. Lett., 110, No. 5: 055501 (2013).
- 21. T. Speck, Phys. Rev. Lett., 109, No. 19: 195703 (2012).
- 22. N. V. Ershov, V. A. Lukshina, V. N. Fedorov et al., *Fizika Tverdogo Tela*, 55, No. 3: 460 (2013) (in Russian).
- 23. A. A.Kharchenko, M. G.Lukashevich, V. I.Nuzhdin et al., *Fizika Tverdogo Tela*, 55, No. 1: 75 (2013) (in Russian).
- 24. N. A. Skulkina, O. A. Ivanov, E. A. Stepanov et al., *Fiz. Met. Metalloved.*, **114**, No. 3: 241 (2013) (in Russian).
- 25. N. V. Dmitrieva, V. A. Lukshina, E. P. Volkova et al., *Fiz. Met. Metalloved.*, 114, No. 3: 144 (2013) (in Russian).
- 26. B. A. Kornienkov, M. A. Libman, B. V. Molotilov et al., *Fiz. Met. Metalloved.*, 114, No. 3: 237 (2013) (in Russian).
- 27. M. I. Zakharenko, T. V. Kalnysh, and M. P. Semenko, *Fiz. Met. Metalloved.*, 113, No. 8: 804 (2012) (in Russian).