RECONSTRUCTION OF SUPERPARTNER MASSES

Yu.M. Malyuta, T.V. Obikhod *

Institute for Nuclear Research, NAS of Ukraine, 03068 Kiev, Ukraine (Received April 12, 2011)

In the context of Minimal Supersymmetric Standard Model histograms of mass distributions for superpartners \tilde{q}_R , $\tilde{\chi}_1^0$, \tilde{q}_L , $\tilde{\chi}_2^0$, \tilde{l}_L , \tilde{g} are constructed.

PACS: 11.25.-w, 12.60.Jv, 02.10.Ws

1. INTRODUCTION

Minimal Supersymmetric Standard Model (MSSM) [1] is determined by the superpotential

$$W = h_{ij}^e L_i H_1 E_j + h_{ij}^d Q_i H_1 D_j + h_{ij}^u Q_i H_2 U_j + \mu H_1 H_2$$

and by the soft supersymmetry breaking potential

$$\begin{split} V &= m_{1}^{2} |H_{1}|^{2} + m_{2}^{2} |H_{2}|^{2} - m_{12}^{2} (\epsilon_{ij} H_{1}^{i} H_{2}^{j} + \text{h.c.}) + \\ &+ M_{\tilde{Q}}^{2} \Big[\tilde{t}_{L}^{*} \tilde{t}_{L} + \tilde{b}_{L}^{*} \tilde{b}_{L} \Big] + M_{\tilde{U}}^{2} \tilde{t}_{R}^{*} \tilde{t}_{R} + M_{\tilde{D}}^{2} \tilde{b}_{R}^{*} \tilde{b}_{R} + \\ &+ M_{\tilde{L}}^{2} [\tilde{\nu}^{*} \tilde{\nu} + \tilde{\tau}_{L}^{*} \tilde{\tau}_{L}] + M_{\tilde{E}}^{2} \tilde{\tau}_{R}^{*} \tilde{\tau}_{R} + \\ &+ \frac{g}{\sqrt{2} m_{W}} \epsilon_{ij} \left[\frac{m_{\tau} A_{\tau}}{\cos \beta} H_{1}^{i} \tilde{l}_{L}^{j} \tau_{R}^{*} + \frac{m_{b} A_{b}}{\cos \beta} H_{1}^{i} \tilde{q}_{L}^{j} \tilde{b}_{R}^{*} - \\ &- \frac{m_{t} A_{t}}{\sin \beta} H_{2}^{i} \tilde{q}^{j} t_{R}^{*} \right] + \frac{1}{2} \left[M_{3} \overline{\tilde{g}} \tilde{g} + M_{2} \overline{\widetilde{W}^{a}} \widetilde{W}^{a} + M_{1} \overline{\widetilde{B}} \widetilde{B} \right] \end{split}$$

where L_i and Q_i are slepton and squark $SU(2)_L$ doublets, \overline{E}_j and $(\overline{D}_j, \overline{U}_j)$ are selectron and squark $SU(2)_L$ singlets, H_1 and H_2 are Higgs $SU(2)_L$ doublets.

The superpotential W and the potential V contain more than 100 parameters [2]. The analysis of this parameter space, based on theoretical and experimental constraints, allows to obtain the restricted parameter set [3]:

$$m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sgn}(\mu),$$
 (1)

where m_0 and $m_{1/2}$ are respectively universal masses of scalar and spinor superpartners, A_0 is the trilinear soft supersymmetry breaking parameter, $\tan\beta$ is the ratio of vacuum expectation values of two Higgs doublets, $\operatorname{sgn}(\mu)$ is the sign of the Higgs mixing parameter. The choice of concrete values of parameters (1) is ambiguous, to what the Table testifies [4].

2. RECONSTRUCTION OF MASSES

The purpose of this work is the construction of histograms describing mass distributions for superpartners

$$\tilde{q}_R, \ \tilde{\chi}_1^0, \ \tilde{q}_L, \ \tilde{\chi}_2^0, \ \tilde{l}_L, \ \tilde{g} \ .$$
 (2)

We choose the following set of parameters:

$$m_0 = 20 \text{ GeV}, \ m_{1/2} = 440 \text{ GeV}, \ A_0 = -25 \text{ GeV},$$

$$\tan\beta = 15, \ \operatorname{sgn}(\mu) = +1.$$
(3)

Using the parameter set (3) it is possible to construct histograms of mass distributions for superpartners (2) by application of the computer program PYTHIA [5] This histograms are shown in Fig.1 - 6.

Scenarios of MSSM

Model	α	β	γ	δ	ϵ	ζ	η
$m_{1/2}$	293	370	247	750	440	1000	1000
m_0	206	225	328	500	20	100	20
an eta	10	10	20	10	15	21.5	23.7
$\operatorname{sign}(\mu)$	+	+	+	+	+	+	+
A_0	0	0	0	0	-25	-127	-25
Masses							
h^0	115	117	115	122	119	124	124
H^0	267	328	241	1159	626	1293	1261
A^0	265	325	240	1152	622	1285	1253
H^{\pm}	278	337	255	1162	632	1296	1264
χ_1^0	113	146	95	310	175	417	417
χ^0_2	215	282	180	600	339	805	804
$\chi_3^{\overline{0}}$	380	503	332	925	574	1192	1176
χ_4^0	400	518	352	935	587	1200	1184
χ_1^{\pm}	215	283	180	601	340	807	806
χ_2^{\pm}	399	518	352	935	587	1200	1184
\tilde{g}	711	880	619	1691	1026	2191	2191
e_L, μ_L	299	351	378	713	306	684	677
e_R, μ_R	216	241	328	572	171	387	374
ν_e, ν_μ	287	340	368	703	290	669	662
$ au_1$	213	239	315	565	153	338	319
$ au_2$	300	352	378	712	309	677	670
ν_{τ}	287	340	365	700	288	660	653
u_L, c_L	674	826	636	1604	935	1991	1998
u_R, c_R	661	808	629	1550	902	1911	1908
d_L, s_L	679	831	642	1606	938	1993	1990
d_R, s_R	652	797	621	1544	899	1903	1900
t_1	492	622	453	1219	710	1545	1553
t_2	662	800	611	1486	900	1842	1840
b_1	609	752	558	1456	852	1807	1804
b_2	641	785	603	1516	883	1851	1846

^{*}Corresponding author E-mail address: obikhod@kinr.kiev.ua

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N5. *Series:* Nuclear Physics Investigations (56), p.7-9.

Fig.1. Histogram of mass distribution for \tilde{q}_R

Fig.3. Histogram of mass distribution for \tilde{q}_L

Fig.2. Histogram of mass distribution for $\tilde{\chi}_1^0$

Fig.4. Histogram of mass distribution for $\tilde{\chi}_2^0$

Fig.5. Histogram of mass distribution for \tilde{l}_L

Fig.6. Histogram of mass distribution for \tilde{g}

References

- H.E. Haber. Introductory low-energy supersymmetry // arXiv: hep-ph/9306207.
- B.C. Allanach. SOFTSUSY2.0: a program for calculating supersymmetric spectra // Comput. Phys. Commun. 2002, v. 143, p. 305-331.
- G.L. Kane, et al. Study of constrained minimal supersymmetry // arXiv: hep-ph/9312272.
- 4. A. De Roeck, et al. Supersymmetric benchmarks with non-universal scalar masses or gravitino dark matter // arXiv: hep-ph/0508198.
- T. Sjöstrand, S. Mrenna, and P. Skands. PYTHIA 6.4 Physics and Manual // JHEP. 2006, v. 5, p. 1-26.

РЕКОНСТРУКЦИЯ МАСС СУПЕРПАРТНЕРОВ Ю.М. Малюта, Т.В. Обиход

В контексте минимальной суперсимметричной стандартной модели построены гистограммы распределения масс для суперпартнеров: \tilde{q}_R , $\tilde{\chi}_1^0$, \tilde{q}_L , $\tilde{\chi}_2^0$, \tilde{l}_L , \tilde{g} .

РЕКОНСТРУКЦІЯ МАС СУПЕРПАРТНЕРІВ Ю.М. Малюта, Т.В. Обіход

В контексті мінімальної суперсиметричної стандартної моделі побудовано гістограми розподілу мас для суперпартнерів: \tilde{q}_R , $\tilde{\chi}_1^0$, \tilde{q}_L , $\tilde{\chi}_2^0$, \tilde{l}_L , \tilde{g} .