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The estimation of contribution of the second Born approximation into circular polarization of bremsstrahlung
from linearly polarized electrons is obtained. Account of this contribution could be important for correct interpreta-
tion of results of measurements of fine effects due to weak interactions.
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1. INTRODUCTION

It is well known [1-3] that the bremsstrahlung emit-
ted by polarized electrons could possess nonzero circu-
lar polarization. It is, particularly, an interesting fact
because the particles produced in weak processes turned
out to be polarized. Circular polarization of
bremsstrahlung was considered in many papers (see
article [2] and references therein) in the frameworks of
the first Born approximation of quantum electrodynam-
ics. However, it could be necessary to account for the
second Born approximation contribution for correct
interpretation of the results of measurements of fine
effects due to weak interactions. It is of interest also that
the second Born approximation leads to the dependence
of radiation characteristics (the cross section and polari-
zation) on the charge sign of the radiating particle.

2. BREMSSTRAHLUNG MATRIX ELEMENT
AND CROSS SECTION

The cross section of bremsstrahlung in an external
field is determined by formula [3]

62

2
6 =—3(—e-0)\M | dpd’k, (1
oy wee Pl @p M

where e is the electron charge, (g, p) and (¢', p') are the
energy and momentum of the initial and final particles,
(o, k) are the frequency and wave vector of the photon
emitted, d(e - €' - ®) is the delta-function expressing the
energy conservation under radiation, and My, is the ma-
trix element of the radiation process. Since the main
contribution to the bremsstrahlung cross section is made
by small values of the momentum g=p-p'-k trans-
ferred to the external field (the last is assumed to be
stationary and potential), g <<m, it is convenient to
express the matrix element as a function of the trans-
ferred momentum. This permits to make an expansion
in the matrix element by the powers of small parameter
g/ m.

According to the rules of diagram techniques [3] the
squared absolute value of the matrix element in (1)
could be written in the form
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where U, is Fourier component of the particle potential
energy in the external field, M; and M, are the matrix

elements that determine contributions of the first and the
second Born approximations (see Figure).
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Discriminating in the propagator in M; the depend-
ence on the longitudinal and transverse components of
the transferred momentum g in an explicit form we
could write

M, =u'Qu, (3)
where
o L 1Y
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g.=0,8)=py -p'y -k, is the transferred 4-
momentum, p, , p'y , k, are the 4-momenta of the initial
and final electrons and photon, e, is the photon’s polari-
zation vector, p=p,y",y, are Dirac matrices, v and v’

are the velocities of the initial and final electrons. The
values b, o, and 1, are determined by the formulae
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where n=p'/|p'| is the unit vector along the momen-

tum p' direction, and n; is the component of this vector
orthogonal to p.

Neglecting the terms of order m */&* and m*/¢'?
the formula for M, could be derived to the form [4,5]
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where ¢ ', = g, - g, and
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The cross section itself also could be expressed
through the transferred momentum (and the angle 9
between the vectors k and p). Transformation to new
variables is described in [6]. After that the differential
cross section gets the form
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where & =w@m?/2¢e'. The variable y is connected to 9
by the relation
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g and g, are the components of g that parallel and
orthogonal to the momentum p of the projectile particle.
Eq. (6) determines the possible values of the radiation
angle 9 under given values of g and and g,. One
could conclude from the condition of positiveness of the
value @ under radical in (6) that
g 298 +gi/2£ .

The formulae that describe the bremsstrahlung cross
section averaged over polarizations of initial electron

and summed over polarizations of final particles were
obtained in [4, 5].

3. ACCOUNT OF POLARIZATION EFFECTS

Remember how to take into account the polarization
of interacting particles. Matrix element of a process
with single electron in initial and final states has the
form M ;; =u'Qu . The squared absolute value of such

matrix element is equal to (see, e.g., [3])
2 . =
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where
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If an electron is in a mixed (partially polarized)
state, the products of bispinor amplitudes are to be re-
placed by the corresponding density matrices:

uw—p, uu'-p'.

The density matrix for polarized electron is described by
Eq. (29.13) from [3]:

p=(pemli-yss]. ™)
where
_[p:§ P& -
S“_( m o m(m+£)j’ SuPu =0

€ is the double average value of the spin vector in the
electron rest frame (in pure state |§| =1, in mixed one

|§| <1 ). It is easy to see that s, =——, and that in ul-
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For nonpolarized electron p = E(p +m). Substitu-

tion of this formula is equivalent to averaging over the
electron’s polarizations. Since we need to calculate the
cross section of the process with arbitrary polarization

of final electron, let us put p ':%(13'+m) and multiply

the result by the factor 2 that would be equivalent to
summation over final electron polarizations.
The polarization of final photon is present in the

value Q as 4-vector e, , and in 0O as e,. So, in the

“ b
squared absolute value of the matrix element we get the

tensor e, e, . For description of the case of arbitrary

n
partially polarized state this tensor ought to be replaced
by the density matrix [3]:
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Here e";], &, &5 are the Stocks parameters, eLl) and eflz)

are the polarization 4-vectors.

Note that here  is the polarization discriminated by
the detector. Polarization of the final photon as well could
be easily found if we know the squared absolute value of
the matrix element as a function of parameters & :

o1, = pt. ©)

Then the polarization of the final photon will be de-
scribed by Stocks parameters [3]

£ B

o

(10)

Since the circular polarization degree is of our interest,
we need to calculate only the values a and 3, , that
have their origin from the substitution of the first and
the third terms of the photon density matrix, respec-
tively.
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Substituting the expression for the matrix element in
the form (2) with account of Egs. (3), (4) for M, and M,
and (7), (8) for density matrices into Eq. (5) for the ra-
diation cross section, we obtain (after simple but rather
awkward calculations) for the values o and f,, deter-
mined in (9), integrated over the variables y and g; g
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where for the screened Coulomb potential
U(}’):Z|e|e€_r/R, Ug:472[:Z|e|Ze
r g +R

as the potential of atom in which the electron radiates,
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This result is justified with the accuracy up to the terms
oforderof m?/e*m?/¢'* andm?/ we .

Under integration of the expressions obtained over
d’g, there arises logarithmic divergence under large g,
in the first Born approximation, and linear divergence in
the second one. That divergence is connected to the ap-
proximation g, << m used above. Hence for estimation
of the contribution of the second Born approximation
into the radiation polarization one needs to integrate
over g, from 0 to m introducing the cut-off on the upper
limit.

Substituting the result of such integration into (10)
we get the following formula for the circular polariza-
tion degree:
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where we have denoted

! Since in a field of an individual atom the characteristic value
of g, ~ R!'>>5 appreciably exceeds g ~5,

g -dependence of U o can be neglected [5,6].
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It is easy to see that in the first Born approximation
the formula (12) manifests agreement with well known
result [2].

Substituting 7 (g 1) in the form (11) into (13), we ob-
tain the following estimate for the value of F:
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where a = 1/137 is the fine structure constant. For ex-
ample, the silicon atom has Z = 14, In(mR) = 4, and for
electrons of energy 100 MeV

F~-2:10"¢/|e]|.

Account of the second Born approximation leads to
the dependence of the polarization on the radiating parti-
cle charge sign. It is easy to see from (12), (14) that the
degree of circular polarization of radiation from positrons
exceeds the same from electrons by the relative value
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For soft photons (o << ¢ ) that relative difference is of
order of Zoumw /&>,

4. CONCLUSION

We see that the contribution of the second Born ap-
proximation into circular polarization of the photons
emitted by polarized electrons of high energy on an
amorphous target is rather small. However, such small
correction could be important for correct interpretation
of the results of measurement of fine effects due to
weak interactions.

It should be mentioned also that the relative contri-
bution of the second Born approximation could substan-
tially grow in the case of radiation of the electrons in
oriented crystal due to coherent effects [6], like it takes
the place for the bremsstrahlung cross section summed
over polarizations of particles participating in the proc-
ess [4,5].
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OUPKYJIAPHASA NOJAPU3ALINA TOPMO3HOTI'O U3 TYYEHUA
3JEKTPOHOB BbICOKOM SHEPTUH C YYETOM BTOPOI'O BOPHOBCKOI'O ITPUBJINKEHUSI

H.®. Illlynvea, B.B. Coiugenko

ITonmyuyena oneHka BKJIaZia BTOPOr0 OOPHOBCKOTO MPUOIMKEHUS B IIUPKYJISAPHYIO HOISPU3AIIINI0 TOPMO3ZHOTO H3-
Jy4eHHs JIMHEHHO-TIOJSIPU30BAaHHBIMU DJIEKTPOHAMH. YUET 3TOr0 BKJaJa MOXET ObITh Ba)KHBIM JUIsi KOPPEKTHOMH
MHTEPIPETALUH PE3yJIbTaTOB U3MEPEHUs TOHKUX (P dekToB, 00yCIOBIEHHBIX CIa0BIMHI B3aUMOACHCTBUSIMH.

HIPKYJISIPHA TOJISIPU3ALILA T'AJIBMOBHOI'O BUITPOMIHIOBAHHSI
EJIEKTPOHIB BUCOKOI EHEPI'II 3 YPAXYBAHHSIM /IPYT'OI'O BOPHIBCBKOI'O HABJIMKEHHS

M. ®. Illynvea, B.B. Cuwenxo

OTpHMaHO OIIIHKY BHECKY JPYroro OOpHIBCHKOTO HaOJNW)KEHHS J0 LUPKYJSIPHOI MOJsipu3alii ranbMiBHOTO BHU-
MPOMIHIOBaHHS JIIHIHHO-TIOJIIPU30BAHUMHI €JIEKTPOHAMHU. YpaxyBaHHs I[bOIO BHECKY MOXE OYTH Ba)KIIMBUM IS
KOPEKTHOI iHTepIpeTanii pe3yIbTaTiB BUMIpIOBaHHS TOHKHX €()eKTiB, 1110 00yMOBJIEHI CITA0KNMH B3a€EMOISIMH.
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