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tion of results of measurements of fine effects due to weak interactions.  
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1. INTRODUCTION 
It is well known [1-3] that the bremsstrahlung emit-

ted by polarized electrons could possess nonzero circu-
lar polarization. It is, particularly, an interesting fact 
because the particles produced in weak processes turned 
out to be polarized. Circular polarization of 
bremsstrahlung was considered in many papers (see 
article [2] and references therein) in the frameworks of 
the first Born approximation of quantum electrodynam-
ics. However, it could be necessary to account for the 
second Born approximation contribution for correct 
interpretation of the results of measurements of fine 
effects due to weak interactions. It is of interest also that 
the second Born approximation leads to the dependence 
of radiation characteristics (the cross section and polari-
zation) on the charge sign of the radiating particle.   

2. BREMSSTRAHLUNG MATRIX ELEMENT 
AND CROSS SECTION 

The cross section of bremsstrahlung in an external 
field is determined by formula [3] 
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where e is the electron charge, (ε, p) and (ε', p') are the 
energy and momentum of the initial and final particles, 
(ω, k) are the frequency and wave vector of the photon 
emitted, δ(ε - ε' - ω) is the delta-function expressing the 
energy conservation under radiation, and Mf i is the ma-
trix element of the radiation process. Since the main 
contribution to the bremsstrahlung cross section is made 
by small values of the momentum g = p - p' - k trans-
ferred to the external field (the last is assumed to be 
stationary and potential), g << m, it is convenient to 
express the matrix element as a function of the trans-
ferred momentum. This permits to make an expansion 
in the matrix element by the powers of small parameter 
g / m.  

According to the rules of diagram techniques [3] the 
squared absolute value of the matrix element in (1) 
could be written in the form  
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where Ug is Fourier component of the particle potential 
energy in the external field, M1 and M2 are the matrix 
elements that determine contributions of the first and the 
second Born approximations (see Figure).  

 
Feynman diagrams corresponding to the first and 

the second Born approximations in the description of 
bremsstrahlung in the external field 

Discriminating in the propagator in M1 the depend-
ence on the longitudinal and transverse components of 
the transferred momentum g in an explicit form we 
could write 
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gµ = (0, g) = pµ  - p'µ  - kµ is the transferred 4-
momentum, pµ , p'µ , kµ are the 4-momenta of the initial 
and final electrons and photon, eµ is the photon’s polari-
zation vector, , γµ

µγpp =ˆ µ are Dirac matrices, v and v' 
are the velocities of the initial and final electrons. The 
values b, σg and τg are determined by the formulae 
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where  is the unit vector along the momen-
tum p' direction, and n

|'|/' ppn =

⊥ is the component of this vector 
orthogonal to p. 

Neglecting the terms of order m 2 / ε 2 and m 2 / ε' 2 
the formula for M2 could be derived to the form [4,5]   
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where q 'µ = gµ - qµ  and  
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The cross section itself also could be expressed 
through the transferred momentum (and the angle ϑ 
between the vectors k and p). Transformation to new 
variables is described in [6]. After that the differential 
cross section gets the form   
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where . The variable y is connected to ϑ 
by the relation 
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||g  and g ⊥ are the components of g that parallel and 
orthogonal to the momentum p of the projectile particle. 
Eq. (6) determines the possible values of the radiation 
angle  under given values of  and and gϑ ||g  ⊥. One 
could conclude from the condition of positiveness of the 
value a under radical in (6) that   

εδ 2/2
|| ⊥+≥ gg . 

The formulae that describe the bremsstrahlung cross 
section averaged over polarizations of initial electron 
and summed over polarizations of final particles were 
obtained in [4, 5].  

3. ACCOUNT OF POLARIZATION EFFECTS 
Remember how to take into account the polarization 

of interacting particles. Matrix element of a process 
with single electron in initial and final states has the 
form uQuM if '= . The squared absolute value of such 
matrix element is equal to (see, e.g., [3])  
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where 

00 γγ += QQ . 

If an electron is in a mixed (partially polarized) 
state, the products of bispinor amplitudes are to be re-
placed by the corresponding density matrices: 

ρ→uu ,    ''' ρ→uu . 

The density matrix for polarized electron is described by 
Eq. (29.13) from [3]: 
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ζ is the double average value of the spin vector in the 
electron rest frame (in pure state 1=ζ , in mixed one 

1<ζ  ). It is easy to see that 
ε
ps ⋅

=0s , and that in ul-

trarelativistic case pvζs
m
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≈ . 

For nonpolarized electron ( mp += ˆ
2
1

ρ ) . Substitu-

tion of this formula is equivalent to averaging over the 
electron’s polarizations. Since we need to calculate the 
cross section of the process with arbitrary polarization 

of final electron, let us put ( )mp += 'ˆ
2
1'ρ  and multiply 

the result by the factor 2 that would be equivalent to 
summation over final electron polarizations.  

The polarization of final photon is present in the 
value Q as 4-vector e , and in *

µ Q  as eµ . So, in the 
squared absolute value of the matrix element we get the 
tensor . For description of the case of arbitrary 
partially polarized state this tensor ought to be replaced 
by the density matrix [3]: 
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Here ξ 1, ξ 2, ξ 3 are the Stocks parameters,  and  
are the polarization 4-vectors. 
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Note that here ξ is the polarization discriminated by 
the detector. Polarization of the final photon as well could 
be easily found if we know the squared absolute value of 
the matrix element as a function of parameters ξ :  

ξβ ⋅+=α
2

ifM . (9) 

Then the polarization of the final photon will be de-
scribed by Stocks parameters [3] 

α
βξ =)( f . (10) 

Since the circular polarization degree is of our interest, 
we need to calculate only the values α and β 2 , that 
have their origin from the substitution of the first and 
the third terms of the photon density matrix, respec-
tively.  
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Substituting the expression for the matrix element in 

the form (2) with account of Eqs. (3), (4) for M1 and M2 
and (7), (8) for density matrices into Eq. (5) for the ra-
diation cross section, we obtain (after simple but rather 
awkward calculations) for the values α and β 2 , deter-
mined in (9), integrated over the variables y and ||g 1:  
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where for the screened Coulomb potential  
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This result is justified with the accuracy up to the terms 
of order of m 2 / ε 2, m 2 / ε' 2  and m 2 / ωε . 

Under integration of the expressions obtained over 
d 2g⊥ there arises logarithmic divergence under large g⊥ 
in the first Born approximation, and linear divergence in 
the second one. That divergence is connected to the ap-
proximation g⊥ << m used above. Hence for estimation 
of the contribution of the second Born approximation 
into the radiation polarization one needs to integrate 
over g⊥ from 0 to m introducing the cut-off on the upper 
limit.  

Substituting the result of such integration into (10) 
we get the following formula for the circular polariza-
tion degree: 
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where we have denoted  

                                                 
1 Since in a field of an individual atom the characteristic value 
of  appreciably exceeds , 

-dependence of U  can be neglected [5,6]. 
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It is easy to see that in the first Born approximation 
the formula (12) manifests agreement with well known 
result [2].  

Substituting I (g ⊥) in the form (11) into (13), we ob-
tain the following estimate for the value of F: 
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where α ≈ 1/137 is the fine structure constant. For ex-
ample, the silicon atom has Z = 14, ln(mR) ≈ 4, and for 
electrons of energy 100 MeV 

||/102~ 4 eeF −⋅− . 
Account of the second Born approximation leads to 

the dependence of the polarization on the radiating parti-
cle charge sign. It is easy to see from (12), (14) that the 
degree of circular polarization of radiation from positrons 
exceeds the same from electrons by the relative value  
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For soft photons (ω << ε ) that relative difference is of 
order of  Zα mω / ε 2.  

4. CONCLUSION 
We see that the contribution of the second Born ap-

proximation into circular polarization of the photons 
emitted by polarized electrons of high energy on an 
amorphous target is rather small. However, such small 
correction could be important for correct interpretation 
of the results of measurement of fine effects due to 
weak interactions.  

It should be mentioned also that the relative contri-
bution of the second Born approximation could substan-
tially grow in the case of radiation of the electrons in 
oriented crystal due to coherent effects [6], like it takes 
the place for the bremsstrahlung cross section summed 
over polarizations of particles participating in the proc-
ess [4,5].  
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ЦИРКУЛЯРНАЯ ПОЛЯРИЗАЦИЯ ТОРМОЗНОГО ИЗЛУЧЕНИЯ  
ЭЛЕКТРОНОВ ВЫСОКОЙ ЭНЕРГИИ С УЧЕТОМ ВТОРОГО БОРНОВСКОГО ПРИБЛИЖЕНИЯ 

Н.Ф. Шульга, В.В. Сыщенко 

Получена оценка вклада второго борновского приближения в циркулярную поляризацию тормозного из-
лучения линейно-поляризованными электронами. Учет этого вклада может быть важным для корректной 
интерпретации результатов измерения тонких эффектов, обусловленных слабыми взаимодействиями.  

 
 

ЦIРКУЛЯРНА ПОЛЯРИЗАЦIЯ ГАЛЬМОВНОГО ВИПРОМIНЮВАННЯ  
ЕЛЕКТРОНIВ ВИСОКОΪ ЕНЕРГIΪ З УРАХУВАННЯМ ДРУГОГО БОРНIВСЬКОГО НАБЛИЖЕННЯ 

М.Ф. Шульга, В.В. Сищенко 

Отримано оцінку внеску другого борнiвського наближення до циркулярної поляризації гальмівного ви-
промінювання лiнiйно-поляризованими електронами. Урахування цього внеску може бути важливим для 
коректної iнтерпретацiї результатів вимірювання тонких ефектів, що обумовлені слабкими взаємодіями.  
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