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The transient stage of nucleation is studied on the basis of the Fokker-Planck equation. The approximate self-

similar solutions for the nucleus size distribution function and the nucleation rate are obtained. The non-diffusion 
phase transition is considered as an illustration of the method developed. 
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1. INTRODUCTION 

As is known, determination of nucleation rate during 
the first-order phase transition is usually reduced to the 
solution of the Fokker-Planck (FP) equation for the 
cluster distribution function in the size space [1-3]. As a 
rule, theoretical treatments of isothermal phase transi-
tions are limited to consideration of a steady-state nu-
cleation, ignoring a non-stationary stage of the process. 
Actually, in most cases, nucleation occurs in a pulsed 
mode, when the saturation ratio is suddenly increased to 
a value at which homogeneous nucleation exists. Never-
theless, nucleation experiments have always been ana-
lyzed within the framework of the steady-state theory. If 
the incubation period of the nucleation t  is much less 
than the time period of the phase transformation de-
tailed study of a non-steady state of nucleation is of no 
interest. Frequently, the nucleation kinetics includes a 
transient stage during which the cluster size distribution 
changes drastically with time. Examples include (i) va-
por condensation in nozzles, (ii) formation of clusters in 
molecular beams (iii) retarded nucleation when kinetic 
coefficients are small. 
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By various methods in [1-4] the characteristic time 
lag needed for establishment of a steady state nucleation 
flux in the critical region has been estimated (with accu-
racy to a numerical factor) as  
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Here  is the minimal work required to form the 
-atomic cluster,  is the diffusion coefficient in the 

size space near the critical point, T  is the temperature 
in energy units. This expression was obtained taking 
into account only diffusion in the sizes space, the drift 
term in FP equation was neglected. It is obvious that the 
time lag obtained in the “diffusion approximation” does 
not include the time needed for subcritical clusters to 
reach steady state, i.e. this time lag is only the time it 
takes for a cluster to diffuse across the free energy bar-
rier. In last years numerous attempts have been made to 
describe the transient nucleation kinetics [4-11]. The 
big variety of results have been obtained, which is ex-
plained by diversity approximations used since in gen-
eral case FP equation with variable coefficients admits 
no analytical solution. Solutions of the classic equation 
of nucleation kinetics by Kashchiev [5] are generally 

considered to be the most accurate and have been 
widely used [12,13]; although his choice of the eigen-
function cutoff leads to incorrect results [4]. Similar 
approach has been developed in [6,7], where the solu-
tion of FP equation is expanded in series in eigenfunc-
tions of the corresponding Schrödinger equation. Dis-
advantage of this approach is poor convergence of solu-
tion and difficulty of its comparison with real and nu-
merical experiments. In [8,9] the quadratic approxima-
tion for the free energy barrier and constant growth rate 
of clusters is used. For this particular model a closed 
analytical solution of FP equation has been found using 
the Green function approach. The disadvantage of this 
method is that the solution does not satisfy physical 
boundary conditions [8]. Evidently, the most reasonable 
approach to study the non-stationary stage of nucleation 
is the approach based on the assumption of high nuclea-
tion barrier . This condition is closely 
related to applicability of FP equation to the nucleation 
problem; it is well fulfilled in real experiments. In [10, 
11] the asymptotic solutions for the time-dependent 
distribution function and nucleation rate have been de-
rived by a singular perturbation method. The general 
solution has been obtained by matching inner solution 
valid near the critical size with the outer solution satis-
fying boundary conditions. In fact such a solution well 
describes the transient nucleation kinetics only for large 
relaxation times.  

( Tn,Φ )

)

n cD

1/)( >>Φ Tnc

The aim of the present work is to describe the tran-
sient kinetics of nucleation using the FP approach. The 
time-dependent self-similar solution is presented for the 
cluster distribution function and the nucleation rate.  

2. BASIC EQUATION 
Let us assume that clusters evolve in size by adding 

or losing only single atoms at a time. Then the distribu-
tion function  satisfies the equation [1-2] ( tnf ,

( ) ( tnItnI
t
f ,,1 −−=
∂
∂ )

)

)

,  (1) 

where  is the flux of nuclei in the size space  ( tnI ,
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Here  and W  are probabilities of adding or 
losing at a time of one atom by the cluster containing  
atoms. According to the Zeldovich theory [1], for 
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1>>cn , the discrete Eq. (1) can be transformed to a 
differential form 
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where is the equilibrium distribution function )(0 n
[ ]TTnf /),(exp)1() 0 Φ−= . 

The boundary conditions for Eq. (3) are specified at 
both ends of the size distribution function. At  the 
monomer concentration is the same as the value used to 
define the equilibrium distribution [1,2] 
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The boundary condition 
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describes removal of overcritical nuclei from the sys-
tem. 

Let us consider the transient nucleation kinetics 
when at t  the saturation ratio is suddenly raised to a 
specified value. Since the initial concentrations of nu-
clei of all sizes equal zero it is reasonable to take the 
initial condition in the form . In this 
case the problem is reduced to finding evolution of the 
distribution function  from zero to quasi-
stationary value. The solution of Eq. (3) with boundary 
conditions (4), (5) and zero initial condition completely 
determines the time evolution of the system and con-
tains practically all necessary information for determi-
nation of transient nucleation rate.  
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3. ASYMPTOTIC SELF-SIMILAR 
SOLUTION 

The approximate analytical solution of Eq. (3) can 
be obtained if one neglects the size dependence of the 
diffusion coefficient  and expands  near the 
critical point in a power series of ∆  up to the 
second order. It is useful to introduce the dimensionless 
timeτ , the free energy barrier V  and the distribu-
tion functionψ , using scaled size  
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In these notations the equation (3) reduces to 
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with the following boundary and initial conditions 
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In the framework of this approximation the kinetic 
model depends only on single parameter . Approxi-
mately , where  is the minimal for-
mation energy of the critical cluster. As Zeldovich [1] 
and Frenkel [2] have noted, Eq. (6) is formally equiva-
lent to the equation of diffusion of the particle moving 
in the parabolic force potential V . The sta-

tionary solution of Eq. (6) satisfying conditions (7) is 
given by 
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Then the stationary flux is  
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Obviously, when the parameter  is large enough, the 
non-stationary solution of the problem (6) and (7) is 
possible to find as a self-similar solution describing 
drift-diffusional movement of the “nucleation front” 
ahead of which there are no clusters of a new phase. 
The approximate self-similar solution of Eq. (6) and (7) 
is  
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where the function ψ  describes position of the 
nucleation front in the size space. Solution (10) is ap-
proximate because at small time it does not satisfy the 
boundary condition ψ . However for a very 

short interval of time τ , this boundary 
condition is approximately valid and solution (10) is 
asymptotically exact. Then non-stationary nucleation 
rate is given by the expression 
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Fig. 1. Function ψ  in parabolic approximation 
at  for several values of the relaxation time: 

; ; . Dotted lines correspond 
to the analytical solution; solid line is the results of 
numerical calculation 
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Fig. 1 compares analytical solution (10) with nu-
merical integration of Eqs. (6) and (7) at λ . The 
normalized transient nucleation rate as a function of 
dimensionless time is plotted in Fig. 2. Figures show a 
good agreement of self-similar solutions (10) and (11) 
with the numerical results almost for all relaxation times 
at . 
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Using (10) it is easy to estimate the time lag τ  af-
ter which the function differs from its stationary value 
by no more than 1%.  
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Fig. 2.  Normalized nucleation rate  in 

parabolic approximation as a function of the normal-
ized time τ  at . The dotted line is the analyti-
cal solution; solid line is the numerical calculation 

stII /)(τ

nτ/ 5=λ

Let us study now the transient to steady state of nu-
cleation in a general case without expansion of the free 
energy near the critical point, and taking into account 
size dependence of the “diffusion coefficient” . Then 
the equation for the distribution function becomes 
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where , . Steady state 
distribution function in this case equals [4] 
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For sufficiently large  that in this case equals 
, the second term in the right hand side of 

Eq. (13) can be neglected. Then asymptotic solution at 
 is again similar to Eq. (10), but now the coordi-

nate of the "nucleation front” is found from the equation 
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with . Hence, time needed to reach steady 
state becomes 
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Here  is the cutoff parameter determining the required 
accuracy of stationary value of distribution function. 
Taking into account (15) the transient nucleation rate is  
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To illustrate the obtained results, consider the “drop 
model” of non diffusion transformation (no stoichiomet-
ric difference between two phases). In this model the 
minimal work sufficient to form the spherical nucleus 
[2, 14] in dimensionless variable is written as  

( ) ( ) ( )[ ]12133 3/2 +−+⋅= xxxV λ ,   (19) 
where  is the barrier for nucleation; and size 
dependence of the diffusion coefficient is [2] 
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According to Eq. (16) the equation determining po-

sition of the “nucleation front” is given by 
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In the limit  we obtain  ∞→t
)12exp(3)( −−= λττw , (22) 

and time lag required to reach the steady-state nuclea-
tion practically coincides with Eq. (12). In Fig. 3, the 
distribution function ψ  is shown for λ , that 
was obtained using the self-similar solution (10). The 
transient nucleation rate as a function of τ  for the 
same values of  is plotted in Fig. 4.  
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Fig. 3.  Function  for “drop model” at 

, for several values of normalized time τ  = 
0.1, 0.25 and 0.5. Dotted lines correspond to the ana-
lytical solution; solid lines is the results of the numeri-
cal calculation 
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Fig. 4.  Normalized nucleation rate  for 

“drop model” in the parabolic approximation as a 
function of the normalized time τ  at λ . The 
dotted line is the analytical solution; solid line is ob-
tained from the numerical solution 
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It is necessary to note one important feature of the 
obtained self-similar solution. In contrast the “diffu-
sion” approximation used usually for the transient nu-
cleation rate  [3], Eq. (17) ob-
tained in the present work contains some time lag 
needed for subcritical nuclei to reach the critical size. 
As it follows from Eqs. (17) and (21), this time is about  
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and can vary from 10  to 5  of the total time 
needed to reach the steady state. In the “diffusion” ap-
proximation the relaxation time is only the time re-
quired for a nucleus to “diffuse” across the energy bar-
rier; hence this approach underestimate the incubation 
period of nucleation. 

% %0

Note cases when the self-similar solution becomes 
incorrect. The presence of self-similar universality be-
haviour means satisfaction of the following condition 

. In the high supersaturation regime the uni-
versality can be violated, but then the conditions of ap-
plicability of the FP equation are violated too. Namely 
the presence of the large parameter makes behaviour of 
nucleation process universal, independent on a type of 
kinetic coefficients. 

1/ >>Φ Tc

4. CONCLUSIONS 
The incubation stage of nucleation has been investi-

gated using the time dependent FP equation for the nu-
cleus size distribution for realistic boundary and initial 
conditions. The asymptotic exact expressions for the 
distribution function and the nucleation rate have been 
obtained. This allowed us to describe completely the 
nucleation kinetics both for quadratic approximation 
and for general case of arbitrary size dependence of 
nucleus free energy. By numerical integration of FP 
equation it is shown that obtained analytical solution 
well describes the transient kinetics of nucleation prac-
tically for all relaxation times. 

The author thanks Dr. A.A. Turkin for helpful dis-
cussions and comments. 
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КИНЕТИКА НЕСТАЦИОНАРНОЙ СТАДИИ ГОМОГЕННОГО ЗАРОЖДЕНИЯ 

М.П. Фатеев 

На основе уравнения Фоккера-Планка исследована нестационарная стадия гомогенного зарождения. По-
лучено приближенное автомодельное решение для функции распределения зародышей по размерам и ско-
рость зарождения как в квадратичном приближении, так и в случае произвольной зависимости свободной 
энергии образования зародышей от размеров. Метод иллюстрирован случаем бездиффузионного фазового 
превращения. 

 
 

КІНЕТИКА НЕСТАЦІОНАРНОЇ СТАДІЇ ГОМОГЕННОГО ЗАРОДЖЕННЯ 

М.П. Фатєєв 

На основі рівняння Фоккера-Планка досліджено нестаціонарну стадію гомогенного зародження. Одер-
жано наближене автомодельне рішення для функції розподілу зародків за розміром та швидкість зароджен-
ня як у квадратичному наближенні, так і у випадку довільної залежності вільної енергії утворення зародків 
за розміром. Метод ілюстровано у випадку бездифузійного фазового перетворення. 
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