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In this Monte Carlo study we concentrated on the influence of non-magnetic impurities arranged as the lines 

with random orientation on paramagnetic-to-ferromagnetic phase transition in the 3D Ising model. Special empha-
size is given to the long-distance decay of the impurity-impurity pair correlation function. It is shown that for the 
lattice sizes considered (L=10-96) and for the two different impurity distributions (purely random and mutually 
avoiding lines) the function is governed by the power law of 1/ra with an universal exponent a≈2. This result sup-
ports our findings about the numerical values of the critical exponents governing magnetic phase transition in the 
3D Ising model with long-range-correlated disorder.  

PACS: 05.10.Ln, 64.60.Fr, 75.10.Hk 
 
The ferromagnetic phase transition in the three-

dimensional (3D) Ising model with quenched long-
range-correlated impurities is governed by the critical 
exponents that are different of both those for the pure 
3D Ising model and for the 3D Ising model with uncor-
related impurities [1-5]. In particular, we are interested 
in the case, when the impurity-impurity pair correlation 
function h(r) decays at large separations r accordings to 
a power law [1]:  

arrh /1)( ≈ , . (1) ∞→r

Besides purely academic interest, a reason behind such 
a choice is that the power law decay (1) allows a direct 
geometrical interpretation. Indeed, for integer a it corre-
sponds to the lines (at a=D-1) or the planes (at a=D-2) 
of impurities of random orientation [1]. Moreover, non-
integer a is sometimes treated in terms of impurities 
fractal dimension [6].  

Whereas both analytical and numerical studies agree 
on the fact that the 3D Ising model with long-range cor-
related disorder (i.e. when a<D) possesses a new uni-
versality class [1-5], the numerical values of the critical 
exponents are found to be rather different. Indeed, the 
renormalization group (RG) estimates of Ref. [1] gave 
the values of the exponents in the first order of ε=4-D, 
δ=4-a-expansion. Furthermore, the first-order result for 
the correlation length critical exponent ν=2/a was con-
jectured to be an exact one [1]. On contrary, the second-
order RG calculations of Ref. [2] lead to non-trivial 
dependence of exponents on the correlation parameter 
a. MC simulations also split into two groups. First, the 
random Ising model with power-law correlated non-

magnetic impurities was considered in Ref. [3]. There, 
the impurities were simulated in two different ways: (i) 
as point-like particles, correlated according to (1) with 
correlation exponent a=2 and (ii) as the lines of random 
orientation. An outcome of the simulations favoured 
theoretical predictions of Ref. [1]. Indeed, for the impu-
rity concentration p=0.2 the correlation length and pair 
correlation function exponents were estimated by means 
of combination of Wolff and Swendsen-Wang algo-
rithms as ν=1.012(10) and η=0.043(4) [3], whereas the 
theoretical estimate of Ref. [1] reads: ν(a=2)=1, η=0. 
However, the following MC simulation [4] questioned 
results of Refs. [1,3]. Two sets of estimates for the ex-
ponents obtained there by using different algorithms at 
p=0.2 read: ν=0.719(22), β=0.375(45) (short-time criti-
cal dynamics with Metropolis algorithm), and 
ν=0.710(10), γ=1.441(15), β=0.362(20) (finite-size 
scaling with Wolff algorithm). In turn, these results 
support a theoretical estimate of Ref. [2]: ν=0.7151 
(note however, that η= - 0.0205 in [2]). As a possible 
reason for the discrepancy with Refs. [1,3] the authors 
of Ref. [4] mention that they implemented a mutual 
avoidance condition on the lines of impurities, whereas 
it was not the case in the simulations of Ref. [3]. 

To resolve such a bias, we performed MC simula-
tions of the 3D Ising model with the impurities arranged 
as lines of random orientation [5]. Our estimates for the 
exponents differ from the results of the two numerical 
simulations performed so far [3,4] and are in favour of a 
non-trivial dependency of the critical exponents on the 
peculiarities of long-range correlations. Moreover, we 
have analysed both previously considered cases of 

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 372-375. 372 



 

purely random and mutually avoiding impurity lines 
distributions. No difference was found within the error 
bars (see below for more details).  

One more question remained unanswered in the 
above-mentioned context. Namely, in the numerical 
simulations performed so far [3-5] it was tacitly as-
sumed that the impurity-impurity pair correlation func-
tion power law asymtotics holds for the randomly ori-
ented impurity lines with an exponent a=2. Although, it 
is certainly true for an infinite system, it is not obvious 
that such behaviour holds for the finite-size systems 
considered during simulations. Therefore, the goal of 
this paper is to supply the MC simulations of the phase 
transition in magnetic subsystem by simultaneous con-
trol of the structural properties of the impurities.  

We consider a 3D Ising model with non-magnetic 
sites arranged in a form of randomly oriented lines. The 
Hamiltonian reads: 

< >

= − ∑ i j i j
ij

H J c c S S , (2) 

where the summation is over the nearest neighbour  
sites of a s.c. lattice of linear size L, J>0 is the interac-
tion constant, Ising spins Si= ± 1, and ci = 0,1 is the 
occupation number for the i-th site. Non-magnetic sites 
(ci = 0) are located along the lines and quenched in a 
fixed configuration. To ensure an isotropic distribution 
of lines, we take their number to be the same along each 
axis. 

We performed the MC simulations by means of the 
Wolff cluster algorithm [7] using histogram reweighting 
technique [8] imposing periodic boundary conditions, 
measuring system magnetisation, energy, Binder cumu-
lant, and magnetic susceptibility at the critical tempera-
ture for the lattices of varying sizes L=10… 96 and ap-
plying finite-size scaling technique to extract the values 
of the critical exponents. The impurity concentration 
was taken to be p=0.2 both to adhere previous MC 
simulations [3,4] as well as to minimize possible correc-
tion-to-scaling effects. The presence of quenched disor-
der leads to two different types of averaging to be per-
formed: besides the Boltzmann averaging, the observ-
ables are to be averaged with respect to different disor-
der realizations. To perform the averaging over differ-
ent disorder configurations we generated 104 lattice 
samples for the sizes L=10… 48 and 103 samples for 
L=64,96. To accomplish the Boltzmann averaging for 
each disorder realization, a run of 250τE Monte Carlo 
steps (MCS) was performed for system equilibration 
with following 20000 MCS for further calculations at 
L=10… 32. For the larger lattice sizes, L=48… 96 the 
number of MCS steps was 103τE (τE being energy auto-
correlation time) [9]. Further details of our simulations 
are reported in [5]. 

As has already been outlined in the introduction, we 
are interested in the analysis of two different variants of 
non-magnetic sites distribution: in the first one the lines 
of impurities are randomly oriented and some of them 
may intersect (from now on we call such situation ‘dis-
tribution A’); whereas in the second variant we impose 
a mutual avoidance condition on the randomly oriented 

lines (‘distribution B’, correspondingly). Theoretically, 
these two distributions may lead to different critical 
behaviours, as far as only the distribution A corresponds 
to the impurities in the form of lines, whereas the 
distribution B may result in objects of a different 
dimension. However it is not obvious that such effect 
may show up and cause any influence on the critical 
behaviour for the systems of sizes considered in the 
simulation. Indeed, the results for the critical exponents 
we obtain in the simulations for the above two 
distributions read [5]: 

A: ν=0.864(10), β=0.519(11), γ=1.555(26);  (3) 

B: ν=0.872(19), β=0.522(16), γ=1.450(39). (4) 

The exponents ν and β obtained do agree within the 
confidence interval whereas exponent γ differs within 
3%. Already the above numbers enabled us to arrive at 
the conclusion [5] that the difference between the re-
sults of simulations performed in Ref. [3] and Ref. [4] 
can not be caused solely by the difference between im-
purity line distributions A and B. 

To complete an analysis of the paramagnetic-to-
ferromagnetic phase transition that has led to the esti-
mates (3), (4) for the critical exponents, we studied the 
behaviour of the impurity-impurity pair correlation 
function h(r) for the distributions A and B for the lat-
tices considered. To this end, we define h(r) in terms of 
the radial distribution function g(r) 

, (5) 1)()( −= rgrh

where g(r) is given by [10]: 

3 3
( ) .

4 (( ) )
3

=
π + δ −

g r
r r r

( )< >n r  (6) 

In (6), <n(r)> means average number of non-
magnetic sites which lie within distance δr of a sphere 
of radius r that contains a non-magnetic site in the ori-
gin. Note that for the diluted system (6) is to be normal-
ized by the non-magnetic component concentration p. 

By applying Eq. (6) for each disorder realization it is 
straightforward to find the impurity-impurity pair corre-
lation function by counting the number of non-magnetic 
sites that lie within the distance interval [r, r+δr] from 
the given one. Then, the resulting histogram is to be 
averaged over different disorder realizations (different 
samples). The number of samples was taken N=1000 for 
the lattice sizes L=10-64 and N=100,50 for the lattices 
with L=96,128, respectively. Note, that for a given sam-
ple the statistics is enriched by placing in turn each non-
magnetic site at the origin. This increases the number of 
data points for the largest lattice sizes L=128 by pL3≈ 
105. In Figs. 1 and 2 we give a typical outcome of the 
analysis: configurationally averaged impurity-impurity 
pair correlation function h(r) for one of the lattice sizes 
(L=96) and for the impurity distributions A and B. Fit to 
a power-law (1) is shown by a solid line.  
It is appropriate to make several comments before pass-
ing to numerical estimates of the exponents governing 
such fits. For the sake of theoretical analysis, one is 
interested in the behaviour of h(r) for large r. In the 
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simulations, r is limited by the linear lattice size 
L.However, because of the system finite size and a 
presence of periodic boundary conditions, the cutoff 
distance for the interparticle correlations is L/2. There-
fore, although the theoretical estimates of Refs. [1,2] are 
intended for the systems where (1) holds in asymptotics, 
in the finite-size systems with randomly distributed 
lines the power-law decay (1) is observed in the wide 
region of distances, starting already from r = 1 (note 
that at the origin h(r) = –1 by definition (5)). 

 
Fig. 1.  Impurity-impurity pair correlation function 

h(r) for the distribution A and lattice size L=96. Solid 
line (red online) shows a power-law fit (1) with an ex-
ponent a=2.05 (see Table) 

 
Fig. 2.  Impurity-impurity pair correlation function 

h(r) for the distribution B and lattice size L=96. Solid 
line (red online) shows a power-law fit (1) with an ex-
ponent a=2.06 (see Table 1) 

 
Table 1 summarizes our results of the fits of the im-

purity-impurity pair correlation function h(r) to the 
power law for lattice sizes L = 10-128 and for impurity 
lines distributions A and B. There are several conclu-
sions that follow from these data:  

(i)  the power-law behaviour of h(r) is confirmed for 
the lattice sizes used in the simulations;  

(ii)  distributions A and B are characterised by the 
same (within the confidence interval) value of the ex-
ponent a;  

(iii)  the value of the exponent a within the confi-
dence interval does not vary with L.  

The last fact is of crucial importance as far as it jus-
tifies application of the finite-size-scaling technique 

used to extract the values of critical exponents that gov-
ern paramagnetic-to-ferromagnetic phase transition. 
Indeed, if a were found to vary with L an application of 
this technique would be questioned, as far as in this case 
one faces an analysis of systems which are differently 
correlated for each L. Note also that the correlation pa-
rameter is a≈2, and the deviations found are of order of 
several percents and do not suffice to cause changes in 
the critical exponents values within the confidence in-
terval of data given in (3), (4). 

The values of exponent a for different lattice sizes L and 
for two different impurity lines distributions. Distribu-

tion A: lines are allowed to intersect;  
Distribution B: mutually avoiding lines 

L Distribution A Distribution B 
10 2.16 ± 0.18 2.17 ± 0.20 
12 2.08 ± 0.17 2.10 ± 0.18 
16 2.07 ± 0.13 2.08 ± 0.14 
24 2.04 ± 0.10 2.06 ± 0.10 
32 2.03 ± 0.08 2.06 ± 0.10 
48 2.04 ± 0.07 2.05 ± 0.08 
64 2.04 ± 0.06 2.05 ± 0.06 
96 2.05 ± 0.06 2.06 ± 0.06 

128 2.05 ± 0.06 2.06 ± 0.06 

Together with the results for critical exponents (3), 
(4) the data presented in Table bring about the fact that 
the 3D Ising model with long-range-correlated disorder 
in the form of non-magnetic impurity lines of random 
orientation belongs to the new universality class. The 
values of the exponent obtained certainly differ from 
those of the pure 3D Ising model (ν = 0.630(1), β = 
0.3265(15), γ = 1.237(3) [11]) as well as from the 3D 
Ising model with uncorrelated impurities (ν = 0.68(2), β 
= 0.35(1), γ = 1.34(1) [12]). However, our results differ 
from previous MC estimates [3,4] of the exponents for 
3D Ising model with long-range-correlated disorder (see 
the numbers given at the beginning of this paper). The 
reason for the discrepancy remains unclear. Further-
more, for the lattice sizes considered the constraint of 
mutual avoidance imposed on the impurity lines appears 
to be an irrelevant one. 

Results discussed here were presented at the 2nd In-
ternational Conference on Quantum Electrodynamics 
and Statistical Physics (Kharkiv, 19-23 September, 
2006). Yu. H. deeply acknowledges Yurij Slyusarenko 
for his kind hospitality during stay in Kharkiv.  
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ПАРНАЯ КОРPЕЛЯЦИОННАЯ ФУНКЦИЯ ПРИМЕСЬ-ПРИМЕСЬ И ПЕРЕХОД 
ПАРАМАГНЕТИК–ФЕРРОМАГНЕТИК В НЕУПОРЯДОЧЕННОЙ МОДЕЛИ ИЗИНГА 

Д. Иванейко, Б. Берш, Ю. Головач, Я. Ильницкий 

Обсуждаются результаты исследований методом Монте-Карло влияния немагнитных примесей в виде 
линий со случайной ориентацией на фазовый переход парамагнетик-ферромагнетик в трехмерной модели 
Изинга. Особое внимание уделено угасанию на больших расстояниях парной корреляционной функции 
примесь-примесь. Для обсуждаемых размеров решеток (L=10…96) и для двух типов распределений приме-
сей (пересекающиеся и непересекающиеся линии) показано, что функция подчиняется закону 1/ra с универ-
сальным показателем a≈2. Этот результат поддерживает полученные нами ранее данные о числовых значе-
ниях критических показателей магнитного фазового перехода в трехмерной модели Изинга со скоррелиро-
ванным на больших расстояниях беспорядком.  

 
 

ПАРНА КОРЕЛЯЦІЙНА ФУНКЦІЯ ДОМІШКА-ДОМІШКА І ПЕРЕХІД ПАРАМАГНЕТИК–
ФЕРОМАГНЕТИК В НЕВПОРЯДКОВАНІЙ МОДЕЛІ ІЗИНГА  

Д. Іванейко, Б. Берш, Ю. Головач, Я. Ільницький 

Oбговорюються результати досліджень методом Монте-Карло впливу немагнітних домішок у вигляді 
ліній з випадковою орієнтацією на фазовий перехід парамагнетик-феромагнетик в тривимірній моделі Ізин-
га. Особливу  увагу приділено загасанню на великих відстанях парної кореляційної функції домішка-
домішка. Для розглянених розмірів граток (L=10…96) і для двох типів розподілу домішків (лінії, що пере-
тинаються і лінії, що не перетинаються) показано, що функція має степеневий вигляд 1/ra з універсальним 
показником a≈2. Цей результат підтверджує отримані нами числові значення критичних показників магніт-
ного фазового переходу в тривимірній моделі Ізинга з далекосяжно-cкорельованим безладом. 
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