В.А. Воронко¹, В.В. Сотников¹, В.В. Сидоренко¹, В.В. Жук¹, И.В. Жук², А.С. Потапенко², М.И. Кривопустов³, П.С. Кизим⁴ ¹Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина ²Объединенный институт энергетических и ядерных исследований, Минск, Беларусь ³Объединенный институт ядерных исследований, Дубна, Россия ⁴Харьковский национальный университет им. Каразина, Харьков, Украина

E-mail: voronko@kipt.kharkov.ua

Представлены результаты исследования процессов генерации нейтронов в уран-свинцовой сборке с четырьмя секциями уранового бланкета, облучаемой релятивистскими дейтронами с энергиями 1.6 ГэВ.

1. ВВЕДЕНИЕ

С начала 50-х годов, когда Е. Лоуренс в США и Н.Н. Семенов в СССР предложили использовать ускорители для генерации нейтронов, в мире не ослабевает интерес к исследованию процессов, происходящих в различных средах под действием высокоэнергетичных частиц. Нейтронный поток генерируется в результате реакций расщепления, и такой способ получения нейтронов получил название – электроядерный. Тогда же, в 50-х, в Канаде и США был предложен способ переработки природного тория и урана в легкоделящиеся ядра урана-233 и плутония-239 с помощью ускорителя протонов с энергией 1 ГэВ и током сотни миллиампер (электроядерный бридинг). В дальнейшем использование электроядерных нейтронов было предложено для управления подкритическим безопасным реактором, а также для трансмутации отходов атомной энергетики.

По инициативе профессоров К.Д Толстова (ОИЯИ) и Н.А. Хижняка (ХФТИ) в начале 80-х на базе Синхрофазотрона ЛВЭ ОИЯИ (Дубна) были начаты экспериментальные исследования нейтронных потоков, генерируемых релятивистскими ядрами в протяженных мишенях из тяжелых элементов. Для исследования взаимодействия различных пучков релятивистских ядер с протяженной мишенью использовался свинцовый блок 50×50×80 см, весом более 2,2 т. Были получены следующие основные результаты (см., напр., [1-2]):

- измерены пространственные распределения реакций радиационного захвата ²³⁸U(n,γ);
- измерены пространственные распределения реакций деления ²³⁸U(n,f);
- получены относительные кумулятивные выходы осколков деления ²³⁸U для указанных пучков;
- измерены энергетические спектры нейтронов внутри свинцовой мишени;
- определена энергетическая стоимость нейтронов для различных пучков.

В середине 90-х, основываясь, в том числе, и на результатах, полученных на Свинцовом блоке, была разработана и создана установка «Энергия + трансмутация» (ОИЯИ, Дубна, Россия). На установке ведутся систематические исследования генерации нейтронов и энерговыделения в свинцовой мишени и урановом бланкете на пучках релятивистских ядер, а также исследуется трансмутация радиоактивных отходов атомной энергетики (I-129, Np-237, Pu-239 и Am-241) [3-6].

Целью настоящей работы является исследование пространственно-энергетического распределения нейтронов в системе "свинцовая мишень + бланкет из естественного урана" при облучении ее дейтронами с энергией 1,6 ГэВ. Работа включает в себя:

- определение параметров дейтронного пучка;
- измерение пространственного распределения в U/Pb-сборке числа реакций деления ²³⁸U, числа реакций радиационного захвата нейтронов ²³⁸U;
- измерение сечений деления и сечений ядерных реакций на ^{nat}U, ^{nat}Pb и ²⁰⁹Bi под действием дейтронов на прямом пучке с энергией 1,6 ГэВ.

2. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Облучение свинцовой мишени с четырьмя секциями уранового бланкета проводилось дейтронами с энергией 1,6 ГэВ, ускоренными сверхпроводящим синхротроном «Нуклотрон» Лаборатории высоких энергий ОИЯИ. Направление дейтронного пучка совпалало с горизонтальной осью симметрии мишени. Средняя интенсивность пучка составляла около 7×10⁹ дейтронов в импульсе. Более подробное описание экспериментальной установки можно найти в работе [1,7]. Определение полного флюенса упавших на свинцовую мишень ускоренных дейтронов проводилось с помощью стандартной методики активации алюминиевой фольги. Сечение образования ²⁴Na известно для дейтронов с энергией 2,33 ГэВ [8]. Величина этого сечения равна (15,25±1,50) мбарн. Следует отметить, что в этом диапазоне энергий сечение практически не меняется и поэтому для дейтронов с энергией 1,6 ГэВ можно использовать сечение равное 15,25 мбарн. Полное число дейтронов за все время облучения составило $(2,1\pm0,2)\times10^{13}$, время облучения вместе с техническими остановками составило 6 часов 47 минут.

Для определения профиля дейтронного пучка использовались твердотельные трековые детекторы ядер (ТТДЯ) с радиатором из *Рb_{ecm}*. В качестве ТТДЯ использовалась искусственная слюда (фторфлогопит). Данный тип трекового детектора имеет высокую эффективность регистрации осколков деления и позволяет исключить фон от ядер отдачи при экспозиции в полях нейтронов с жестким спектром. Детекторы располагались по азимутам 0...180 (ось Х) и 90...270 (ось Ү). Детекторы располагались на расстоянии от -13,5 до +13,5 см, считая от оси сборки, всего 37 штук. Распределение плотности треков от деления свинца по оси У и по оси Х представлено на Рис.1.

Рис.1. Распределение плотности треков от деления свинца по оси Y и по оси X

Координаты центра пучка по осям X и Y составили соответственно $(-0,6) \pm 0,1$ см и $0,4 \pm 0.1$ см. Ширина пика на полувысоте по осям X и Y составила соответственно $2,8 \pm 0,1$ см и $1,9 \pm 0,1$ см. В результате проведенных измерений получено, что 99.7% ускоренных дейтронов упало на свинцовую мишень.

ТТДЯ были также использованы для получения пространственного распределения числа реакций деления естественных урана и свинца в U/Pb-сборке. Методики работы с ТТДЯ подробно описаны в [9, 10]. Пространственное распределение числа реакций радиационного захвата нейтронов ²³⁸U измерялось с помощью урановых фольг естественного состава (диаметр 8 мм, толщина 1 мм). Фольги вместе с ТТДЯ размещались в уран-свинцовой сборке на пяти пластинах и экспонировались в течение полного сеанса облучения U/Pb-сборки дейтронами. Всего было использовано 30 урановых фольг. Позиции для размещения измерительных сенсоров внутри U/Pb сборки были использованы такие же, как и в работе [11]. После окончания облучения уран-свинцовой сборки проводилось измерение у-спектров облученных урановых фольг с помощью полупроводникового спектрометра с детектором Canberra GC1520 из сверхчистого германия объемом 95 см³ с относительной эффективностью 15%. Измерения проводились в двух геометриях: на расстоянии 0 и 70 мм от крышки детектора. Эффективность регистрации детектора для этих геометрий определялась с помощью калибровочных источников. Определение количества ядерных реакций в активационных детекторах проводилось с учетом режима работы нуклотрона (с учетом временной зависимости интенсивности дейтронного пучка и технических остановок ускорителя во время облучения). Подробное описание методики измерения представлено в работе [11].

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Число реакций радиационного захвата 238 U соответствует количеству 239 Pu, образующемуся в результате цепочки β-распадов 239 U:

$^{238}\text{U}(n,\gamma)^{239}\text{U}\rightarrow^{239}\text{Np}\rightarrow^{239}\text{Pu}.$

После окончания процесса облучения уран-свинцовой сборки проводилось измерение γ -спектров облученных урановых фольг. На Рис.2 представлены пространственные распределения числа реакций радиационного захвата ²³⁸U(n, γ) для U/Pb-сборки.

Из Рис.2,а видно, что максимумы кривых распределения числа захватов для R=0 и R=85 мм находятся на расстоянии порядка Z=100...130 мм, в то время как для R=135 мм максимум находится на расстоянии порядка Z=150...200 мм, т.е. по центру сборки и соответственно по центру биологической защиты. Это связано с тем, что основной вклад в число реакций захвата для R=135 мм вносят нейтроны, отраженные биологической защитой. Этим же объясняется то, что результаты выхода реакций захвата для фольг, расположенных в уране и воздухе, близки, а на переднем и заднем торце сборки совпадают в пределах статистической ошибки. В радиальном направлении (Рис.2,b) скорость реакций радиационного захвата ²³⁸U(n, γ) уменьшается по мере удаления от оси U/Pb-сборки, а на периферии видно, что основную роль также играют нейтроны, отраженные защитой. Число реакций захвата при R = 135 мм больше чем при R = 85 мм для всех детекторных пластин.

Наряду с у-линиями, сопровождающими распад ²³⁹Np, в спектрах было идентифицировано большое количество у-линий, соответствующих радиоактивным осколкам деления в интервале массового числа A=88...146 (⁸⁸Kr, ⁹¹Sr, ⁹⁷Zr, ¹⁰⁵Ru, ¹³¹I, ¹³²Te, ¹³³I, ¹³⁵I, ¹³⁵Хе, ¹⁴³Се, ¹⁴⁶Се и др.). По измеренной интенсивности у-линий были определены полные количества ядер этих нуклидов, наработанных за весь сеанс облучения в различных точках уран-свинцовой сборки. Из количества образовавшихся продуктов деления, у которых выходы на одно деление близки для нейтронов в широком энергетическом диапазоне, можно определить число реакций деления ²³⁸U. Число делений определялось усреднением результатов для следующих осколков: ⁹⁷Zr (5,7%), ¹³¹I (3,6%), ¹³³I (6,3%), ¹⁴³Се (4,3%). В скобках средний кумулятивный выход для спектра деления и 14 МэВ нейтронов [12]. На Рис.3 представлены пространственные распределения числа реакций деления ²³⁸U(n,f) для U/Pb-сборки.

Отметим, что поскольку деление ²³⁸U – пороговый процесс, то распределения числа делений отражают распределения нейтронов с энергией E> 1 МэВ. Об этом говорит и тот факт, что на периферии сборки в случае реакций деления не наблюдается вклада от тепловых нейтронов, отраженных биологической защитой. Наблюдаемый более резкий спад числа делений в R-распределениях по сравнению с L-распределениями указывает на то, что спектр нейтронов в продольном направлении жестче.

На основе полученных пространственных распределений реакций радиационного захвата нейтронов ²³⁸U в бланкете уран-свинцовой сборки можно определить также и полное количество ²³⁹Pu, наработанного за все время облучения. Экспериментальное значение массы плутония, наработанного в урановом бланкете за все время облучения дейтронами с энергией 1,6 ГэВ, составило (4,2±0,4)·10⁻⁸ г, или в пересчете на один ускоренный дейтрон и один гигаэлектронвольт энергии – (1,2±0,1)·10⁻²¹ г/ГэВ·d. При облучении сборки дейтронами с энергией 2,52 ГэВ (декабрь 2005 г.) экспериментальное значение массы плутония составило (1,6±0,2)·10⁻⁸ г, или на один дейтрон и один гигаэлектронвольт энергии – (1,1± 0,1)·10⁻²¹ г/ГэВ·d.

тировать не только д и т.д. и т.д.

Рис.3. Пространственные распределения числа реакций деления ²³⁸U(n,f) для U/Pb-сборки. Данные приведены на одно ядро ²³⁸U. а) - аксиальные (при R=0, 30, 60, 85, 110, 135 мм), b) - радиальные (при L=0, 118, 236, 354, 472 мм)

На Рис.4,а и 4,b приведены аксиальные и радиальные распределения плотности треков в ТТДЯ при делении свинца. Поскольку плотность треков пропорциональна количеству делений, то на этих рисунках представлены пространственные распределения деления свинца. А так как это пороговый процесс, то эти распределения отражают распределение нейтронов с энергией E>50 МэВ.

Отметим, что аксиальные распределения деления для свинца и урана подобны. Исключением является точка на первой детекторной пластине при R=0. Образцы в этой точке делятся прямым дейтронным пучком, а так как в случае свинца деление регистрируется с помощью ТТДЯ, которые позволяют детектировать не только двойные деления, но и тройные и т.д.

Рис.4. а - аксиальные распределения плотности треков в ТТДЯ при делении свинца; b - радиальные распределения плотности треков в ТТДЯ при делении свинца

С помощью активационной методики мы видим только двойные деления.

Радиальные распределения также подобны за исключением того, что в случае деления свинца число реакций падает значительно быстрее, чем в случае деления урана. Это значит, что нейтроны быстро теряют энергию в бланкете сборки в результате ядерных реакций.

4. ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕ-ЛЕНИЕ СЕЧЕНИЙ ДЕЛЕНИЯ И ЯДЕР-НЫХ РЕАКЦИЙ НА ПРЯМОМ ПУЧКЕ ДЕЙТРОНОВ

В ходе ускорительного сеанса нами также было проведено измерение сечений деления и сечений ядерных реакций на ^{nat}U, ^{nat}Pb и ²⁰⁹Bi под действием дейтронов на прямом пучке с энергией 1,6 ГэВ. Необходимость таких измерений связана с тем, что, в отличие от протонов, для дейтронов экспериментальные данные (для большинства ядер) по сечениям ядерных реакций с энергией бомбардирующих частиц выше 500 МэВ практически отсутствуют (библиотека EXFOR [13]), что затрудняет, в частности, проведение модельных расчетов подкритических сборок ADS (электроядерные системы, управляемые ускорителем). Отсутствуют данные по цирконию, гафнию и другим конструкционным материалам, использование которых возможно в подкритических ADS. Нет экспериментальных данных в данном диапазоне энергий и по сечениям ядерных реакций под действием дейтронов на висмуте, который используется в свинцово-висмутовой эвтектике (перспективная жидкая мишень, одновременно используемая для съема тепла в подкритических ADS). Полученные нами экспериментальные значения сечений реакций приведены в Табл.1,2.

В Табл.1 приведены полученные нами значения сечений деления на ^{nat}U, ^{nat}Pb и ²⁰⁹Bi, а также, для

сравнения, более ранние экспериментальные значения, полученные другими авторами. В пределах ошибок данные сечения совпадают.

,		
Образец	Сечения деления, мб для E _d = 1.6 ГэВ (эксперимент, дан- ная работа)	Сечения деления, мб для E _d = 1.6 ГэВ (эксперимент, база EXFOR [13])
U-nat	1700 ± 300	1654 ± 340
Pb-nat	200 ± 50	182 ± 40
Bi-209	220 ±80	323 ± 60

Таблииа 1. Сечения деления дейтронами

В Табл.2 приведены экспериментальные значения сечений ядерных реакций ²⁰⁹Bi(d,x) с выходом различных изотопов висмута. Сечения ядерных реакций на Ві (под действием дейтронов в диапазоне энергий E_d > 500 МэВ) получены впервые. Для сравнения, в Табл. 2 приведены экспериментальные значения сечений аналогичных реакций под действием протонов с примерно такой же энергией $(E_p = 1,5 \ \Gamma \ni B, E_d = 1,6 \ \Gamma \ni B)$. Отношение экспериментальных значений сечений реакций [](²⁰⁹Bi(d,x)^ABi)/[] (²⁰⁹Bi(p,x)^ABi) примерно равно 1,8 для выхода большинства изотопов висмута. Исключение составляет выход изотопа ²⁰⁰Ві, для которого значения сечений на протонах и дейтронах отличаются всего в 1.2 раза.

Таблица 2. Сечения ядерных реакций на ²⁰⁹Ві

Продукт ре-	Сечение, мб	Сечение, мб
акции	дейтроны	протоны
$^{209}\text{Bi}(d,x)$	E _d = 1,6 ГэВ	Е _р = 1,5 ГэВ
или	(эксперимент,	(эксперимент,
209 Bi(p,x)	данная работа)	[14])
²⁰⁷ Bi	-	$66,8 \pm 8,6$
²⁰⁶ Bi	60 ± 5	$31,5 \pm 3,8$
²⁰⁵ Bi	-	$29,4 \pm 3,5$
²⁰⁴ Bi	51 ± 4	$30,3 \pm 3,6$
²⁰³ Bi	42 ± 3	$23,3 \pm 3$
²⁰² Bi	$25 \pm 2,5$	$13,2 \pm 2,6$
²⁰¹ Bi	$14 \pm 1,5$	-
²⁰⁰ Bi	$12 \pm 1,5$	$10,1 \pm 1,2$

Обсуждение полученных экспериментальных значений сечений ядерных реакций, а также методика измерений и сравнение с теоретическими расчетами будут опубликованы в отдельной статье.

ЗАКЛЮЧЕНИЕ

Выполнено исследование пространственно-энергетического распределения нейтронов в системе "свинцовая мишень + бланкет из естественного урана" при облучении ее дейтронами с энергией 1.6 ГэВ. Определены параметры дейтронного пучка – полный поток и профиль пучка. Более 99% первичного пучка дейтронов падает на свинцовую мишень. Измеренные пространственные распределения числа реакций радиационного захвата нейтро-

нов ²³⁸U в бланкете сборки позволили определить полное число ²³⁹Ри, который был наработан за все время облучения. Число²³⁹Ри, нормированное на полный поток и гигаэлектронвольт энергии, совпадает в пределах ошибки с числом плутония, наработанного на дейтронах с энергией 2.52 ГэВ. На основе пространственных распределений реакций деления естественных урана и свинца получены распределения нейтронов с энергией E>1 МэВ и E> 50 МэВ. Получены значения сечений деления на ^{nat}U, ^{nat}Pb и ²⁰⁹Bi, которые совпадают в пределах ошибок с более ранними экспериментальными результатами. Впервые (для дейтронов с энергией > 0.5 ГэВ) определены экспериментальные значения сечений ядерных реакций ²⁰⁹Bi(d,x) с выходом различных изотопов висмута.

ЛИТЕРАТУРА

- V.A. Voronko, V.M. D'yachenko, V.Ya. Kostin, et al. Interaction of Relativistic Protons and ¹²C Nuclei with a Lead Target // *Atomic Energy*. 1989, v.66, p.252-254.
- V.A. Voronko, V.Ya. Kostin, L.G. Levchuk, et al. Energy spectra of neutrons generated by relativistic nuclei in extended lead target // *Atomic Energy*. 1991, v.71, p.1028-1030.
- 3. M.I. Krivopustov, D. Chultem, J. Adam, et al. First experiments with a large uranium blanket within the installation "Energy plus Transmutation" exposed to 1.5 GeV protons // *Kerntechnik*. 2003, v.68, p.48-55.
- 4. M.I. Krivopustov, J. Adam, V.Bradnova, et al. First experiments on transmutation studies of ¹²⁹I and ²³⁷Np using relativistic protons of 3.7 GeV // *Radioanal. and Nucl. Chem.* 1997, v.222, p.267-271.
- 5. J.-S. Wan, Th. Schmidt, E. Langrock, et al. Transmutation of ¹²⁹I and ²³⁷Np using spallation neutrons produced by 1.5, 3.7 and 7.4 GeV protons // *Nucl. Instrum. and Neth. in Phys. Res.* 2001, v.A463, p.634-639.
- 6. J. Adam, A. Balabekyan, V.P. Bamblevski, et al. *Transmutation of*²³⁹*Pu and other nuclides with spallation neutrons produced by relativistic pro-*

tons reacting with massive U - and Pb - targets: JINR Preprint. EI136, Dubna, 2001.

- M.I. Krivopustov, V.A. Voronko, V.V. Sotnikov, et al. About the first experiment on investigation of ¹²⁹I, ²³⁷Np, ²³⁸Pu and ²³⁹Pu transmutation at the Nuclotron 2.52 GeV deuteron beam in neutron field generated in U/Pb-assembly «Energy plus Transmutation»: JINR Preprint. El-2007-7, Dubna, 2007.
- J. Banaigs, J. Berger, J. Dulfo, et al. Determination del intensite d un faiscean de deutrons extrain d un synchrotron et mesure des sections efficaces des reactions ¹²C(d,p2n)¹¹C et ²⁷Al(d,3p2n)²⁴Na a 2.33 GeV // Nucl. Instr. and Meth. 1971, v.95, p.307-311.
- 9. А.П. Малыхин, И.В. Жук, О.И. Ярошевич, Ю.И. Чуркин. Измерение отношения эффективных сечений деления $\overline{\sigma}_{f}^{238}/\overline{\sigma}_{f}^{235}$ и $\overline{\sigma}_{f}^{235}/\overline{\sigma}_{f}^{239}$ и гетерогенных эффектов в быстро-тепловых критических сборках // Весці АН БССР. Сер. фіз.-энер. навук. 1975, №1, с.22-24.
- А.П. Малыхин, И.В. Жук, Ю.И. Чуркин, О.И. Ярошевич. Измерение отношения эффективных сечений деления σ⁻²³⁸/σ⁻²³⁵ методом твердых трековых детекторов // Весці АН БССР. Сер. фіз.-энер. навук. 1972, №2, с.5-10.
- В.А. Воронко, В.В. Сотников, В.В. Сидоренко и др. Нейтронно-физические характеристики уран-свинцовой сборки, бомбардируемой релятивистскими дейтронами // Вісник ХНУ ім. Каразіна. 2006, №746, с.75-81.
- В.М. Горбачев, Ю.С. Замятин, А.А. Лбов. Взаимодействие излучений с ядрами тяжелых элементов и деление ядер. М.: «Атомиздат», 1976.
- 13. Experimental Nuclear Reaction Data (EXFOR). http://www-nds.iaea.org/exfor/
- 14. Yu.E. Titarenko, O.V. Shvedov, M.M. Igumnov, et al. Experimental and computer simulation study of the radionuclides produced in thin 209-Bi targets by 130 MeV and 1.5 GeV proton-induced reactions // Nucl. Instrum. Methods in Physics Res. 1998, v.A73, p.414.

Статья поступила в редакцию 16.11.2007 г.

NEUTRON GENERATION IN THE U-Pb ASSEMBLY UNDER IRRADIATION WITH DEUTERONS OF ENERGIES 1.6 GeV

V.A Voronko, V.V. Sotnikov, V.V Sidorenko, V.V. Zhuk, I.V. Zhuk, A.S. Potapenko, M.I. Krivopustov, P.S. Kizim Results are reported from the studies on the processes of neutron generation in the uranium-lead assembly with four sections of uranium blanket exposed to relativistic deuterons having a energy of 1.6 GeV.

ГЕНЕРАЦІЯ НЕЙТРОНІВ В УРАН-СВИНЦЕВОЇ ЗБІРЦІ ПРИ ОПРОМІНЕННІ ДЕЙТРОНАМИ З ЕНЕРГІЄЮ 1.6 Гев

В.О. Воронко, В.В. Сотніков, В.В. Сидоренко, В.В. Жук, И.В. Жук, А.С. Потапенко, М.І. Кривопустов, П.С. Кізім

Представлено результати дослідження процесів генерації нейтронів в уран-свинцевої збірці із чотирма секціями уранового бланкета, що опромінюється релятивістськими дейтронами з енергіями 1,6 ГеВ.