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The program for 3D simulation of the intense charge particle beam dynamics on the base of the Multi-Compo-
nent Ion Beam code is described. Fast analysis and study of the averaged beam characteristicsis performed by the 
moments method.
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INTRODUCTION

Within the framework of the Multi-Component Ion 
Beam code (MCIB04) [1] the program for 3D simula-
tion of the intense charge particle beam dynamics is cre-
ated.

Fast analysis and study of the averaged beam char-
acteristics,  such  as  root-mean-square  (RMS)  dimen-
sions, is performed by the moments method [2]. 

The main advantage of the moments method in com-
parison with macro particle one is fast calculation and 
therefore applicability for transport line optimization. 

The  model  describing  the  charge  density  of  the 
bunched beam is introduced. The external electromag-
netic fields are assumed to be linear. The approach of 
effective  linearization  [2]  of  both  longitudinal  and 
transversal beam self fields gives possibility to get the 
closed  system of  the  equations  for  second order  mo-
ments. 

The  fitting  procedure  based  on  minimization  of  a 
quadratic functional at any point of the beam line by us-
ing either gradient or simplex-method is available [3].

BEAM MODEL
Let  consider  the  train  of  bunches  (Fig.1),  moving 

with  average  velocity  c0β  with  distance  between  its 
center-of-mass 00λβλ = . Here 0λ  is cyclotron RF field 
wave length.

Fig.1.
The beam density may be defined as:

),()(),,( 0//0 yxctzNctzyx ⊥−=− ρβρβρ , (1)

where  cZe
IN

0β
λ=  – the number of particle at spatial 

period λ , I – beam current, Ze – ion charge. 
Longitudinal //ρ and transverse densities ⊥ρ are equal to:
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According to  formula  (2.1)  longitudinal  density  is 
periodical  function  )()( //// λρρ += zz  with a constant 
number of particles at period λ :
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In the case  σz ≳ λ this model describes the beam 
with constant density and for  σz <<  λ gives Gaussian 
beam. The dependencies on z of the longitudinal beam 
density for various values of ratio  zσλ /  are shown in 
Fig.2.
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Fig.2. Longitudinal beam density
Curve 1 – zσλ / = 1; 2 – zσλ / = 4; 3 – zσλ / = 8

BEAM SELF FIELD
   By using formulae (1, 2) the beam self field may be 
represent in the following form [4]:
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Here )(2 22
yxa σσ +=  – RMS radius of the beam, b – 

vacuum pipe radius and prime denotes derivative with 
respect to z.

MOMENTS EQUATIONS
Let us define the second order moments  M of the 

beam distribution function f:

∫== dyfYY
N

YYM TT 1
, (5)
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where superscript T denotes transpose vector or matrix, 
),(),,(),,,,,( ////0

TTTTTT YYYVXctzyxyxY ⊥==−′′= δβ  – 
vector  of  phase  space  coordinates  of  the  particle, 

00 /)( βββδ −=  – relative momentum spread. Integra-
tion in (4) is fulfilled over all phase space occupied by 
bunch particles  (at  one  spatial  period),  prime denotes 
derivative with respect to longitudinal coordinate of the 
bunch center-of-mass.

The equations for transverse second order moments 
TYYM ⊥⊥⊥ = does not changed significantly in compari-

son with the case of non-bunched beam[2]:

  TAMAMM ⊥⊥⊥ +=′ ; 





+

=
extsext abb
E

A
0

 (6)

Here M⊥, A are fourth order matrices, E is second order 
unit matrix, aext and bext are 2×2 matrices defined by ex-
ternal fields. Second order matrix  bs depends on RMS 
dimensions and is defined by beam self fields:
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where А – ion mass, IA = mc3/e – Alfven’s current.
The bunching factor  k⊥ is connected with changing 

of the transverse beam self fields due to changing of the 
longitudinal density:
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Here  2z  is  current  longitudinal  RMS dimension of 
the bunch:
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and 3/2
0 λ=z  its value for non-bunched beam. The 

plot of function )(xF⊥  is shown in Fig.3,a.
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Fig.3.

As may be seen from Fig.3,a function )(xF⊥  is ap-
proximately  equal  to  unity  with  difference  does  not 
greater than 6%. In the program this function is repre-
sented as the sixth order polynomial.

The equations for the longitudinal second order mo-
ments M// has the following form:











==

2

2

//////
δδ

δ
z

zzYYM T
    (10.1)

δzz 22 =
′




     (10.2)

( ) zzE
cAm

Zez 22
0

2

β
δδ +=

′
    (10.3)

δ
β

δ z
z

zE
cAm

Ze z
222

0

2 =
′




     (10.4)

Computation of average zzE  in accordance with formu-
lae (4, 5) results in:
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The  bunching  factor  of  the  longitudinal  motion  k// is 
defined by formula:













=−= ⊥

−
∫ 2

0

2

//

2/

2/

2
//

2
//// )]2/()([

z

zFkdzzk
λ

λ

λρρλ (12)

The  plot of function  )(// xF  is shown in Fig.3,b. In 

the case x ∼ 1 function F// is close to zero because of the 
longitudinal electric field of non-bunched beam is equal 
to zero. For the well bunched beam(x << 1) due to small 
longitudinal density at point  z = λ/2 formulae (11) and 
(12) become identical and function F// is close to unity. 
In the program function )(// xF  is approximated by the 
fifth order polynomial for all values of x.

MCIB04 CODE MODIFICATION

The 3D moments equations were introduced into ex-
isting program library code MCIB04 [1]. The interface 
of the program is shown in Fig.4. 

Fig.4. Interface of the program

Before launching of the program the files containing 
the beam-line lattice, initial beam parameters and (op-
tionally)  the  longitudinal  magnetic  field  distribution 
have to be created.

During working of the program the changes of the 
second order moments along the beam-line are comput-
ed. The plots of the longitudinal magnetic field distribu-
tion (green line in Fig.4) and RMS dimensions of the 
beam (red – x and blue – y) are given at monitor. The 
special  windows are  intended  for  values  of  the  beam 
RMS dimensions  at  the  exit  of  the  channel  (RMSX, 
RMSY) and initial parameters – RMS dimensions(X,Y), 
emittances (Xemit, Yemit), mass-to-charge ratio (A/Z), 
kinetic energy (Energy) and beam current (Current).

The fitting procedure based on minimization by us-
ing  either  gradient  or  simplex-method  of  a  quadratic 
functional computed for every second order moments at 
any point of the beam line is available [3].
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The dependencies on distance along the channel of 
the beam envelopes, emittances, momentum spread and 
other parameters are writing to the file and processing 
by the graphing program package.

BUNCHING SYSTEM COMPUTATION
The  simulation  of  the  bunching  system  of  the 

DC350 cyclotron axial injection beam-line [5] was ful-
filled by using created 3D version of MCIB04 code.

The  bunching  system consists  of  linear  and  sinu-
soidal bunchers. The linear buncher is placed at 275 cm 
and sinusoidal – at 80 cm from median plane of the cy-
clotron. In the simulation all bunchers were replaced by 
infinitesimal width gap with variable voltage.

The initial parameters of the beam are contained in 
Table.

48Ca beam initial parameters

Injected beam 48Ca6+

Mass, A 48
Charge, Z 2…8

Injected current, µA 0…190
Ca beam current, µA 0…700
He beam current, µA 200

48Ca6+ kinetic energy, keV/u 3.1375
Diametr, mm 8

Emittance, π mm×mrad 142

The initial conditions for the moments were defined at 
the entrance of the linear buncher and were found by 
macro-particle simulation. Charge state distributions for 
ion beam and its self fields were taken into account in 
this simulation. 

The beam focusing is provided by two solenoids. The 
longitudinal magnetic field of the cyclotron is consid-
ered also.
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Fig.5. Apertutre (A), horizontal (H) and vertical (V) 48-
Ca6+ beam envelopes near inflector

The matching condition at the entrance of the spiral 
inflector  corresponds  to  the  steady  state  of  the  beam 
(without envelopes oscillation) in the uniform magnetic 
field with magnitude to be equal to the field in the cy-
clotron center.  The amplitude of  the  voltage at  linear 
buncher was found to provide the equality k⊥ = 2 at the 
entrance of sinusoidal buncher.

The beam envelopes near spiral  inflector of  the cy-
clotron are shown in Fig.5.

Let  define  the  bunching  efficiency  as  ratio  of  the 
number of particles within RF phase interval 015≤∆ ϕ  
to non-bunched beam one. This quantity shows the pos-
sible increasing of the number of particle captured into 
acceleration in the cyclotron due to the bunching sys-
tem. The dependence of the bunching efficiency on the 
48Ca6+ beam current is shown in Fig.6.
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Fig.6. Bunching efficiency versus beam current
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3D-МОДЕЛИРОВАНИЕ ДИНАМИКИ СИЛЬНОТОЧНОГО ПУЧКА С ИСПОЛЬЗОВАНИЕМ   МЕТОДА 
МОМЕНТОВ 

Н. Казаринов, В. Александров, В. Шевцов 
Описывается программа 3D-численного моделирования интенсивного пучка заряженных частиц, созданная на осно-

ве Multi-Component Ion Beam кода. Быстрый анализ и исследование средних характеристик пучка проводится методом 
моментов 

3D-МОДЕЛЮВАННЯ ДИНАМІКИ ПОТУЖНОСТРУМОВОГО ПУЧКА З ВИКОРИСТАННЯМ    МЕТОДУ 
МОМЕНТІВ

Н. Казарінов, В. Олександров, В. Шевцов 
Дано опис програми 3D-чисельного моделювання інтенсивного пучку заряджених частинок, що створена на основі 

Multі-Component Іon Beam коду. Швидкий аналіз і дослідження середніх характеристик пучку проводиться методом 
моментів. 
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