ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ МАТЕРИАЛОВ ЭЛЕМЕНТОВ КОНСТРУКЦИИ АКТИВНОЙ ЗОНЫ РЕАКТОРА ВОДО-ВОДЯНОГО ТИПА ПРИ ТЯЖЕЛЫХ АВАРИЯХ, СОПРОВОЖДАЮЩИХСЯ РАСПЛАВЛЕНИЕМ

В.С. Красноруцкий, Н.Н. Белаш, В.В. Корнеева, Я.А. Куштым, Р.В. Матющенко, E.A. Слабоспицкая Научно-технический комплекс «Ядерный топливный цикл» ННЦ ХФТИ,

Харьков, Украина

Представлены результаты исследований по определению параметров плавления материалов и влиянию температуры на степень расплавления, приведены структурно-фазовые характеристики получаемых материалов.

введение

Обеспечение безопасности и защита окружающей среды, в том числе в аварийных ситуациях, являются главными направлениями, определяющими дальнейшее развитие атомной энергетики.

Практика эксплуатации промышленных и экспериментальных ядерных энергоустановок показала, что нарушение режима работы энергоблоков и другие аварийные события на АЭС могут привести к серьезным экологическим и социальным последствиям.

Одним из основных разделов обоснования безопасности АЭС с BBЭР (PWR) является анализ тяжелой аварии, которая может привести к таким серьезным последствиям, как плавление активной зоны (АЗ), разрушение корпуса реакторной установки, выход водорода, радиоактивных продуктов деления и расплава активной зоны под герметичную оболочку реакторного здания (контеймент).

При анализе тяжелой аварии необходимо иметь информацию о состоянии активной зоны и способах ее захолаживания, чтобы произвести правильные действия по предотвращению дальнейшего развития аварии и приведению реактора в безопасное состояние. Процессы деградации активной зоны – ключевой фактор в развитии серьезной аварии; они определяют начальные условия для явлений внутри и вне корпуса реактора; ведут к угрозе загрязнения и определяют сроки начала выделения продуктов деления и водорода. Последствия серьезной аварии включают большое количество явлений, которые могут продолжаться долгий период времени. Важность любого отдельного явления будет меняться по мере развития аварии.

В связи с этим необходимы целенаправленные и систематические работы по изучению свойств конструкционных материалов активной зоны и границ их деградации в процессе развития аварии для определения пределов безопасной эксплуатации, при которых материалы сохраняют способность выдерживать высокие температуры без потери основных рабочих характеристик, а также по исследованию термомеханического поведения конструкционных элементов активной зоны.

Ведущие европейские научные центры, занимающиеся проблемой тяжелых аварий, проводят исследования в рамках совместной европейской программы по изучению процессов деградации активной зоны реакторов. Цель этих совместных усилий состоит в улучшении понимания и аналитического описания явлений деградации внутри корпуса реактора путем экспериментальных и модельных исследований.

В рамках Программы научно-исследовательских работ по атомной науке и технике в НТК ЯТЦ ННЦ ХФТИ проводятся работы по изучению поведения расплавленного топлива и его взаимодействия с различными конструкционными материалами в условиях тяжелых аварий.

Целью исследований является получение данных о параметрах взаимодействия материалов элементов активной зоны реакторов водо-водяного типа и образования расплавов, в первую очередь конструкционных материалов и компонент пэлов и оболочки направляющего канала.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Разработанная концепция исследований по выяснению процессов, происходящих с материалами, твэлами, пэлами, ТВС в условиях запроектных аварий с расплавлением активной зоны, состоит в последовательном изучении поведения элементов конструкций ТВС и ее материалов после расплавления в соотношении, близком к реальному. При этом имитируется расплавление ТВС как без поглощающего стержня системы управления и защиты, так и укомплектованной им. На первом этапе изучали элемент конструкции, состоящий из направляющей трубы с поглощающим элементом внутри. В этой системе, согласно литературным данным, расплавы контактирующих материалов образуются при наиболее низких температурах. Соотношение материалов было таким, как и в элементах ПС СУЗ штатного изготовления.

Исследования были проведены на образцах, полученных в результате нагрева макетов пэлов с циркониевой оболочкой в интервале температур 1100...1900 °C, а также их расплавления электрической дугой, температура которой ~3000 °C. Переменным параметром выступал фактор температуры. Полученные образцы исследовали с применением методов металлографического и рентгенографического анализов, а также метода измерения значений микротвердости.

При проведении исследований в качестве исходных компонентов были использованы следующие материалы:

• карбид бора в виде порошка (материал пэла);

• нержавеющая сталь марки X18H10T (материал оболочки пэла);

• циркониевый сплав Э110 (материал оболочки твэла);

• циркониевый сплав Э125 (материал направляющего канала);

• диоксид циркония (материал циркониевой оболочки после окисления).

Экспериментальное оборудование для получения расплавленного конструкционного материала и изучения его взаимодействия с топливными материалами представляет собой вакуумную водоохлаждаемую камеру, оснащенную форвакуумным насосом ВН-1 и диффузионным масляным насосом, обеспечивающим при необходимости глубокий вакуум. Вакуумная камера оснащена приспособлениями, дающими возможность заполнения объема газами и контроля давления при проведении экспериментов в газовых средах.

В вакуумную камеру через электроизоляторы введены медные водоохлаждаемые токоподводы, обеспечивающие прохождение электрического тока до 5000 А. Внутри камеры между токоподводами размещается графитовое нагревательное устройство с экранами, благодаря которым достигается температура 3000 °C.

Температуру поверхности тиглей измеряли через смотровое окно оптическим пирометром «Промінь».

Состояние материалов исследовали после охлаждения образцов до комнатной температуры.

Металлографические исследования были проведены на образцах, полученных в результате взаимодействия оболочки тепловыделяющего элемента из циркониевого сплава Э110 с макетом нейтронно-поглощающего элемента.

Образцы шлифовали на абразивных материалах с различной величиной зерна: от 150 до 9 мкм. В качестве охлаждающей жидкости в процессе приготовления шлифов использовали воду.

Структуру образцов исследовали с помощью оптического исследовательского металлографического микроскопа МИМ-10. Фотографии микроструктуры сделаны при увеличении (x200) в светлом поле и в поляризованном свете.

Качественными признаками идентификации объектов были цвет, форма, размеры образовавшихся фаз, способность отражения света в светлом поле и в поляризованном свете.

Измерение микротвердости различных фаз проводили на приборе ПМТ-3 с нагрузкой на индентор 50 и 100 г.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ПОВЕДЕНИЯ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ РЕАКТОРА ВВЭР-1000 В УСЛОВИЯХ ТЯЖЕЛОЙ АВАРИИ

Диаграммы состояния системы

Для анализа тяжелых аварий и управления ими требуются более полные знания о физикохимических явлениях, играющих важную роль в сценарии тяжелых аварий и определении поведения кориума внутри и вне корпуса реактора. Начальной точкой для физико-химического моделирования являются фазовые диаграммы кориума и его смесей с конструкционными материалами. Для условий внутри корпуса таким смесям обычно соответствуют системы, включающие U-Zr-Fe (Cr, Ni, Mn...)-О. Системы кориума в условиях вне корпуса реактора являются еще более сложными и содержат дополнительно различные химические элементы окружающих конструкций, например Si, Al, Ca, Mg и др., из бетона шахты реактора или жертвенный материал ловушки активной зоны.

Разработка теоретических моделей расчета фазовых диаграмм и их применение в моделировании явлений тяжелых аварий в настоящее время находятся в процессе реализации. Результаты этих усилий используются в различных расчетных кодах, таких как GEMINI, MULTICOM, и в ориентированных на коды базах данных, аналогичных IVTANTHERMO и NUCLEA. Верификация баз данных фазовых диаграмм нуждается в экспериментальной проверке, нацеленной на изучение еще не изученных к настоящему времени высокотемпературных систем или областей фазовых диаграмм или на их уточнение. В таблице приведены уже известные в настоящее время интересующие нас данные по высокотемпературным эвтектикам и областям фазовых диаграмм с детальным указанием литературных источников этих данных.

Состояние материала после плавления

В результате проведенных исследований получены следующие сведения.

При выдержке в течение 10 мин при температуре 1100 °С макеты пэлов (рис. 1) сохраняли устойчивость. На нержавеющих оболочках в районе газосборника наблюдалось небольшое вздутие, на некоторых макетах наблюдались проколы уголками поглощающего материала. Взаимодействия с циркониевой оболочкой не наблюдалось.

В месте контакта направляющего канала с оболочкой макета пэлов происходит локальное взаимодействие материалов цирконий-нержавеющая сталькарбид бора, которое выражается в появлении диффузионного слоя. Диффузионный слой имеет толщину 3...65 мкм и отмечен по всему внутреннему диаметру циркониевой оболочки. Его значение микротвердости составляет 3009...3939 МПа в отличие от значения микротвердости оболочки, равной 1832...1970 МПа.

Элемент	Элемент	Эвтектика, °С	Концентрация	Литература
В	Cr	~1570	87 % Cr	[1, c. 141]
		~1600	83 % Cr	[2, c. 14]
	Fe	~1200	82 % Fe	[2, c. 9]
		1149	17 % B	[5, c. 272]
	Nb	~1600	86 % Nb	[1, c. 151]
			80 % Nb	[2, c. 21]
	Ni	~1015	65 % Ni	[2, c. 11]
		~1080	78 % Ni	[1, c. 152]
		990	56 % Ni	[5, c. 279]
	Ti	$\sim 2850 \pm 50$	-	[1, c. 161]
	Zr	1650	-	[3, c. 140]
		1760	22 % B	[5, c. 289]
	Nb	2335	10,5 % C	[1, c. 248]
	Ti	1645±8	4,4 % C	[1, c. 260]
	Nb	1660	81,4 % Cr	[1, c. 355]
	Ni	1345	46 % Ni	[1, c. 355]
	Ti	650	13 % Cr	[1, c. 368]
	Ti	1558	Ограниченные твердые растворы ~0,5 % С в Ті	[6]
	Zr		Ограниченные твердые растворы ~2 % С в Zr	[6]
	Nb		Ограниченные твердые растворы ~0.3 % С в Nb	[6]
	Ni	0,4	Ограниченные твердые растворы ~0,4 % С в N	[6]
		1318	Ограниченные твердые растворы ~0,3 % С в N	[6]
Fe	Nb	1370±12	(88,01±0,15) % Fe	[3, c. 356]
Nb	Ni	1170	59,5 % Ni	[3, c. 568]
		1100±5	-	[4, c. 227]
	Fe	1200	Ограниченные твердые растворы ~2,2 % Fe в Nb	[6]
		1500	Ограниченные твердые растворы ~3 % Fe в Nb	[6]
	0	800	Ограниченные твердые растворы ~1.4 % О в Nb	[6]
		1500	Ограниченные твердые растворы ~5,5 % О в Nb	[6]
	Zr	>1000	Ограниченные и непре- рывные твердые растворы до ~100 %	[6]
	Cr	1350	Ограниченные твердые растворы ~10 % Сг в Nb	[6]
		1660	Ограниченные твердые растворы ~20 % Сг в Nb	[6]
Ni	Zr	960	75,9 % Zr	[4, c. 273]

Высокотемпературные эвтектики и области фазовых диаграмм

Область локального взаимодействия материалов цирконий-нержавеющая сталь-карбид бора имеет значение микротвердости 10574...21874 МПа. Ее

структура представляет собой включение частиц карбида бора в прослойке расплавленной стали. Для обоих материалов характерен рост зерен.

Рис. 1. Макеты пэлов при выдержке при температуре 1100 °С в течение 10 мин: а - макет пэла в циркониевой оболочке до начала эксперимента; б - макет пэла после эксперимента; в - область взаимодействия материалов цирконий-нержавеющая сталь-карбид бора

При температуре 1200 °С (рис. 2) наблюдали разрушение макета в районе нижней концевой детали, плавление оболочки пэлов, его падение и рассыпание поглощающего материала по тиглю. Взаимодействия с направляющим каналом не наблюдалось.

Повышение температуры до 1200 °С приводит к образованию пористой фактуры нержавеющей оболочки пэлов с глубоким внедрением в нее частиц карбида бора на границе их контакта. На границе цирконий-нержавеющая сталь-карбид бора образовалось трехфазное соединение со следующими характеристиками. Микропористая фаза светлого цвета паркетной структуры со значением микротвердости 2548...3940 МПа. Существенный разброс значений микротвердости свидетельствует о переменном содержании составляющих ее компонентов или изменении степени пористости.

Микропористая фаза светлого цвета без выраженной паркетной структуры со значением микротвердости 2803...2900 МПа.

Пористая фаза светлого цвета с выраженной паркетной структурой со значением микротвердости 3105...3508 МПа.

Рис. 2. Макеты пэлов при выдержке при температуре 1200 °С в течение 10 мин: а - макет пэла в тигле после эксперимента; б - макет пэла после эксперимента; в - структура материала макета пэла после эксперимента

С повышением температуры нагрева макетов до 1200 °С наблюдали увеличение размеров β -превращенных зерен циркония до 40...290 мкм, а также длины и ширины мартенситных игл α' -фазы Zr.

Для структуры сплавленной части образца характерно наличие трех фаз:

- беспористой фазы светло-серого цвета, имеющей значение микротвердости 3391...6556 МПа;

 пористой фазы серого цвета, значение микротвердости которой составляет 3391...4096 МПа;

- фазы светло-серого цвета, очертания которой имеют форму правильных геометрических фигур (ромб, прямоугольник и т. д.). Значение ее микро-твердости составляет 5390 МПа.

Согласно литературным данным при температуре 1200 °С могут образовываться эвтектические соединения с содержанием 78%Ni-22%B [1], а также 82%Fe и 18%B [2].

Как при температуре 1300 °С, так и при температуре 1400 °С (рис. 3) наблюдали плавление оболочки и полное разрушение макетов пэлов. Расплавленный металл оболочки стекал вниз по полости направляющего канала и нес с собой частицы карбида бора. Оболочка канальной трубы окислялась и покрывалась толстой пленкой. Наблюдали наклон и деформацию оболочки, полного разрушения не наблюдалось.

При повышении температуры до 1400 °С происходит размягчение стальной оболочки с последующим ее формоизменением, существенно увеличивается ее пористость. Частицы карбида бора оказываются захваченными стекающим материалом. В месте контакта с циркониевой трубой образуется соединение, состоящее из беспористой фазы серого цвета, имеющей значение микротвердости ~12118 МПа, и микропористой фазы серого цвета, значение микротвердости которой составляет ~8280 МПа.

При температуре 1600 °С (рис. 4) наблюдали полное плавление макетов пэлов и канальной трубы с образованием мартенситных игл, характерных для литых материалов после охлаждения. Материал кипел и разбрызгивался по полости тигля.

Рис. 3. Макеты пэлов при выдержке при температуре 1400 °С в течение 10 мин: а - оболочка направляющего канала после эксперимента; б - макет пэла после эксперимента; в - содержание макета пэла; г - структура материала макета пэла

При этом происходило плавление нержавеющей оболочки. Отдельные фрагменты (расплавленная масса нержавеющей оболочки) налипли на поверхность циркониевой оболочки, частицы карбида бора внедрились в расплав. Содержимое макета пэла расплавлено и спечено с образованием двухфазной матрицы, состоящей из беспористой фазы светлосерого цвета, значение микротвердости которой находится в пределах 10780...11334 МПа, и пористой фазы такого же цвета, значение микротвердости которой составляет 2715...2900 МПа.

Рис .4. Макеты пэлов при выдержке при температуре 1600 °C в течение 10 мин: а - оболочка канала с макетом пэла в тигле; б - макет пэла в разрезанной канальной трубе; в - содержание макета пэла; г - структура материала макета пэла

При температуре 1900 °С (рис. 5) наблюдали полное расплавление материалов конструкционных элементов, кроме частиц карбида бора: тигля из ZrO₂, макета пэла, направляющего канала с образованием продуктов плавления в виде различных капель материала на дне графитового тигля.

В результате нагрева система макета пэла и канальной трубы спеклась в один конгломерат. При плавлении часть материала разбрызгалась по стенкам тигля, а стакан из диоксида циркония оплавился. В результате анализа полученной спеченной массы идентифицировали двухфазное соединение, состоящее из беспористой фазы серого цвета, имеющей значение микротвердости ~ 9921 МПа, и тонких прослоек микропористой фазы серого цвета, значение микротвердости которой измерить не удалось ввиду незначительной толщины.

Расплавление электрической дугой приводит к полному расплавлению и перемешиванию материалов, которые входят в макеты пэлов и оболочки твэлов. При этом легкоплавкая часть расплава стекает. Идентификации подлежит более тугоплавкая часть расплава.

Рис. 5. Макеты пэлов при выдержке при температуре 1900 °С в течение 10 мин: а - расплав макета пэла и канальной трубы из диоксида циркония в тигле; б - структура оболочки канальной трубы из диоксида циркония; в - расплав макета пэла и оболочка канальной трубы; г - структура материала макета пэла

В результате металлографического анализа удалось зафиксировать (рис. 6) внедрение оплавленных частиц карбида бора в двухфазную матрицу, состоящую из пористой фазы серого цвета, имеющей значение микротвердости ~6017...6537 МПа, и микропористой фазы светло-серого цвета с выделениями в виде фигур правильной геометрической формы, значение микротвердости - ~11897...17503МПа.

6

г

Рис. 6. Макеты пэлов при расплавлении электрической дугой: а - расплав макета пэла после эксперимента; б - структура расплавленной зоны макета пэла; в - расплав макета пэла в твэльной оболочке; г - структура расплавленной зоны макета пэла в месте сплавления с оболочкой твэла

В результате рентгенографического анализа с использованием базы данных порошковых рентгенограмм ASTM удалось зафиксировать следующие фазы: ZrB_2 , ZrO_2 , NbO, NbO₂, CrO_2 , $CrO_{0,5}Fe_{1,5}Zr$.

Металлографический анализ микроструктуры образца, полученного в результате повторного переплава показал наличие двухфазного соединения, состоящего из беспористой фазы серого цвета, имеющей значение микротвердости ~ 5949...6321 МПа, и тонких прослоек фазы светлосерого цвета, значение микротвердости которой измерить не удалось ввиду незначительной толщины. На поверхности образца зафиксировано двухслойное образование в виде окантовки серого и темносерого цвета толщиной по 25...30 мкм каждый.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате проведенных исследований получены сведения, которые можно описать следующим образом.

При нагреве до температуры 1100 °С в месте контакта канальной трубы с оболочкой макета пэла наблюдается взаимодействие материалов цирконийнержавеющая сталь, которое выражается в появлении слоя, обогащенного углеродом. В обоих материалах отмечен рост зерен.

Повышение температуры до 1200 °С приводит к образованию пористой фактуры нержавеющей обо-

лочки пэлов с внедрением в нее частиц карбида бора.

Дальнейшее повышение температуры до 1400 °C приводит не только к увеличению пористости нержавеющей оболочки, но и к ее формоизменению.

При повышении температуры до 1600 °С происходит плавление нержавеющей оболочки, отдельные расплавившиеся фрагменты (расплавленная масса нержавеющей оболочки) налипли на поверхность циркониевой оболочки, частицы карбида бора внедрены в расплав.

При температуре 1900 °С происходит практически полное расплавление всех конструкционных элементов (кроме частиц карбида бора), однако расплавы конструкционных элементов почти не перемешиваются.

Расплавление макетов электрической дугой приводит к полному расплавлению и перемешиванию материалов, которые входят в макеты пэлов и канальной трубы.

ЗАКЛЮЧЕНИЕ

Анализ научно-технической информации показал, что физико-химические процессы, происходящие в кориуме в условиях тяжелых аварий, являются объектом исследований многих ведущих международных и российских научных организаций, занимающихся вопросами безопасности атомных электростанций. Эффективность разработок мер по предотвращению развития тяжелых аварий или снижению их негативных последствий определяется скоординированными усилиями специалистов разных стран, участвующих в совместных научных исследованиях и проектах по данной проблеме.

Украинские специалисты в настоящее время находятся на начальном этапе исследований по этой проблеме и пользуются данными, известными из открытых источников информации. Как правило, доступные данные не отражают полную картину. Следовательно, необходимо расширять круг собственных исследований в этой области и устанавливать широкие связи с другими специалистами.

К настоящему времени изучены основные характеристики расплавов, которые образуются в процессе нагрева образцов до температур 1100...1900 °С. Полученные данные вызвали много дополнительных вопросов и предложений по проведению экспериментов в лабораторных условиях с целью изучения их характеристик.

В данной работе представлены результаты исследований по определению параметров плавления смесей составных элементов твэлов и конструкции ПС СУЗ и влияния температуры на характеристики образующихся материалов. Полученные результаты позволяют ставить новые задачи по более глубокому изучению процессов образования расплавов разных материалов в различных соотношениях компонентов. Полученные сведения о характеристиках расплавов являются первичными результатами исследований в данном направлении. Расширение этих сведений в дальнейшем позволит прогнозировать процессы протекания аварий и ставить более детальные эксперименты по изучению взаимодействия расплавов с расходуемым материалом ловушек для прогнозирования нарушения их целостности.

ЛИТЕРАТУРА

- 1. Р.П. Эллиот. Структура двойных сплавов. М.: «Металлургия», 1970, т. 1, 455 с.
- 2. Н.П. Лякишев. Борсодержащие стали и сплавы. М.: « Металлургия», 1986, 191 с.
- 3. Ф. Шанк. Структура двойных сплавов. М.: «Металлургия», 1973, 760 с.
- 4. Р.П. Эллиот. Структура двойных сплавов. М.: «Металлургия», 1970, т. 2, 472 с.
- 5. М. Хансен. К Андерко. Структура двойных сплавов. М.: «Металлургия», 1962, т. 1,2, 2094 с.
- И.И. Корнилов, И.М. Матвеева, Л.И. Прядихина, Р.Ф. Полякова. Металлохимические свойства элементов периодической системы. М.: «Наука», 1966, 122 с.

Статья поступила в редакцию 03.09.2010 г.

ВИВЧЕННЯ ВЗАЄМОДІЇ МАТЕРІАЛІВ ЕЛЕМЕНТІВ КОНСТРУКЦІІ АКТИВНОЇ ЗОНИ РЕАКТОРА ВОДО-ВОДЯНОГО ТИПУ ПРИ ТЯЖКИХ АВАРІЯХ, ЩО СУПРОВОДЖУЮТЬСЯ РОЗПЛАВЛЕННЯМ

В.С. Красноруцький, М.М. Бєлаш, В.В. Корнєєва, Я.О. Куштим, Р.В. Матющенко, О.О. Слабоспицька

Представлено результати досліджень з визначення параметрів плавлення матеріалів і впливу температури на ступінь розплавлення, наведені структурно-фазові характеристики отриманих матеріалів.

RESEARCH INTO EFFECTS OF INTERACTION OF PRESSURISED REACTOR CORE STRUCTURAL MATERIALS ELEMENTS AT SEVERE ACCIDENTS ACCOMPANIED BY MELTING-DOWN

V.S. Krasnorutskyy, N.N. Belash, V.V. Kornyeyeva, Ya.A. Kushtym, R.V. Matushenko, E.A. Slabospitskaya

Results of research into melting parameters of materials and influence of temperature on melting-down degree, also phase and structural characteristics of obtained materials are presented in the paper.