ХАРАКТЕРИСТИКИ ГПУ-МЕТАЛЛОВ, ОПРЕДЕЛЯЮЩИЕ ИХ ПОВЕДЕНИЕ ПРИ МЕХАНИЧЕСКОМ, ТЕРМИЧЕСКОМ И РАДИАЦИОННОМ ВОЗДЕЙСТВИИ

Т.П. Черняева, В.М. Грицина

Научно-технический комплекс «Ядерный топливный цикл» Национального научного центра «Харьковский физико-технический институт», г. Харьков, Украина

Проведена систематизация и анализ сведений относительно влияния одного из геометрических параметров ГПУ-решетки (осевого соотношения c/a) на поведение ГПУ-металлов при термическом, деформационном и радиационном воздействии. С учетом наших интересов особое внимание уделено ГПУ-металлам подгруппы IVB (Ti (c/a=1,588), Zr (c/a=1,593) и Hf (c/a=1,581)).

ВВЕДЕНИЕ

Исторически сложилось так, что одна из наиболее ранних и широко применяемых классификаций ГПУ-металлов основана на значении отношения c/a (a и c – параметры решетки c (рис. 1)), точнее на отклонении величины c/a относительно таковой у идеальной ГПУ-решетки (1,633). Согласно данной классификации ГПУ-металлы подразделяют на три класса: 1) c/a<1,633 (Ti, Zr, Hf; Ве и т.д.) 2) c/a \approx 1,633 (Mg, Co); 3) c/a>1,633 (Zn, Cd). Систематизации и анализу сведений о поведении ГПУ-металлов трёх разных классов при нагреве, деформации и под облучением посвящена предлагаемая работа.

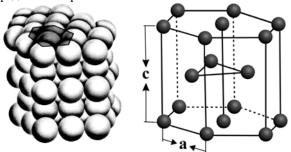


Рис. 1. ГПУ-решетка

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Выбор геометрического фактора (γ =c/a) в качестве одного из основных критериев классификации ГПУ-металлов не случаен: от отношения c/a зависят как соотношение плотности атомов в различных направлениях, так и соотношение плотности упаковки атомов в разных плоскостях (что в значительной мере предопределяет плоскость первичного скольжения, систему двойникования и плоскость залегания дислокационных петель, образующихся при закалке и под облучением).

За основу классификации ГПУ-металлов выбрано два основных критерия ($\gamma = \sqrt{\frac{8}{3}}$ и $\gamma = \sqrt{3}$). Первый из них выбран исходя из соотношения расстояний до ближайших соседей в первой координационной сфере, и проведена классификация ГПУ-металлов на три класса. Согласно второму критерию, исходя из соотношения плотности атомов на базисных и

призматических плоскостях и проведена классификация ГПУ-металлов на две группы. Представим кратко основные положения каждой из этих классификаций.

В ГПУ-металлах существует две группы атомов, входящие в первую координационную сферу (табл. 1, рис. 2) [1]: атомы одной из них отстоят от центрального атома на расстоянии $R_1 = \frac{1}{2023}$,

второй — на расстоянии $R_2=\frac{1}{3}[1120]$. При идеальной плотной упаковке атомов $R_1=R_2=a$; при $\gamma<\sqrt{\frac{8}{3}}$ (1,633) ближайшие соседи находятся на расстоянии $R_1=\frac{1}{6}[2023]$; при $\gamma>1$,633 самое близкое расстояние между атомами равно a.

Таблица 1 Основные геометрические характеристики ГПУ-решетки [1]

Первая координационная сфера (расстояние до бли- жайших соседей)					
6 атомов на расстоянии $\frac{1}{3}\langle 1120\rangle$	а				
6 атомов на расстоянии $\frac{1}{6}\langle 20\overline{23}\rangle$	$\sqrt{\frac{a^2}{3} + \frac{c^2}{4}}$				
Плотность атомов на плос	костях				
Базисных (0001)	$\frac{2/(a^2\sqrt{3})}{2/(ac)}$				
Призматических {1010}	2/(ac)				
Пирамидальных {1011}	$\frac{4}{a\sqrt{3a^2+4c^2}}$				
Расстояние между плоско	стями				
Базисными (0001)	c/2				
Призматическими {1010}	$a/\sqrt{3/2}$				
Пирамидальными {1011}	$\frac{ac\sqrt{3}}{\sqrt{3a^2 + 4c^2}}$				

Как уже отмечалось, ГПУ-металлы (по отношению к идеальной ГПУ-решетке) подразделяют на

три класса: 1) γ <1,633 (Ті, Zr, Hf; Ве и т.д.); 2) γ \approx 1,633 (Мg, Co); 3) γ >1,633 (Zn, Cd). Данный критерий в значительной мере предопределяет первичную (доминирующую) систему скольжения в ГПУ-металлах трёх разных классов. В α -Zr шесть атомов находятся на расстоянии 0,3166 нм и шесть на расстоянии 0,3223 нм, среднее расстояние между атомами 0,319 нм [2].

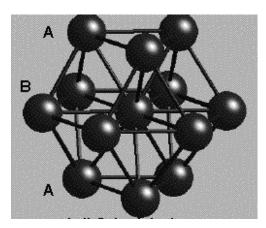


Рис. 2. Атомы первой координационной сферы в ГПУ-металле

Отношение плотности упаковки атомов на базисных и призматических плоскостях $\rho_{(0001)}/\rho_{(1010)}^{-1}$

равно [1, 3]

$$\frac{2/(a^2\sqrt{3})}{2/ac} = \frac{c}{a\sqrt{3}}.$$
 (1)

При $\gamma > \sqrt{3}$ (1,732) плоскостью наиболее плотной упаковки являются базисные плоскости, при $\gamma < \sqrt{3}$ – призматические. В табл. 2 приведены значения нормированной по отношению к $\rho_{(0001)}$ плотности атомов на базисных, призматических и пирамидальных плоскостях в α -Zr [3].

Таблица 2 Соотношение плотности упаковки атомов на плоскостях α -Zr (ГПУ, c/a=1,593) [3]

Плотность упаковки атомов						
(не	(нормирована относительно $\rho_{(0001)}$)					
(0001)	{1010}	{1011}	{1012}			
1,0000	1,08726	0,9555	0,4777			

Из данных табл. 2 видно, что в α -Zr относительная плотность упаковки атомов уменьшается в порядке: призматические плоскости $\{10\overline{10}\}$, базисные плоскости $\{0001\}$ и пирамидальные плоскости $\{10\overline{11}\}$. Величина γ для рассматриваемого металла (её положение относительно $\sqrt{3}$ (1,732)) играет решающую роль в отношении вовлеченных в деформацию систем двойникования и вклада двойникования в пластическую деформацию, а также в отношении плоскости залегания дислокационных петель, образующихся при закалке и под облучением.

2. ТЕНДЕНЦИИ

2.1. ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ

Деформация ГПУ-металлов происходит как путем скольжения, так и путем двойникования (рис. 3-4) [4-8]. При этом согласно имеющимся сведениям активность вовлеченных в деформацию систем скольжения и двойникования, а также микроскопические аспекты процессов упрочнения и разрушения под напряжением и SD-эффект (гистерезис предела текучести при растяжении и сжатии) в значительной мере зависят от величины c/a [9].

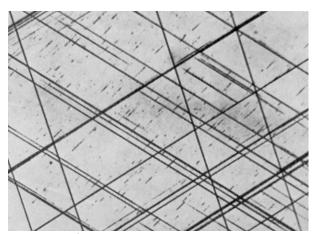


Рис. 3. Три системы линий скольжения по плоскостям {1010} в Zr и короткие отрезки линий базисного скольжения [10]

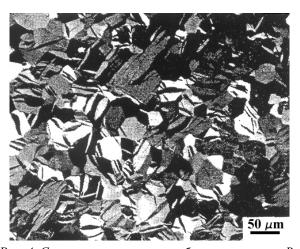


Рис. 4. Структура изогнутого образца циркония. Во многих зернах вдоль внутренней области при изгибе идёт интенсивное двойникование; оптическая металлография, поляризованный свет [11]

2.1.1. СКОЛЬЖЕНИЕ

Сведения о наблюдаемой в ГПУ-металлах кристаллографии скольжения обобщены в работах Yoo [4], Tenckhoff [5], Wang [8], Bacon [12], Григоровича [1], Келли и Гровса [13], Poirier и Price [14] и соответствующие данные приведены в табл. 3, 4. Как видно из представленных данных, в зависимости от отношения *с/а* либо призматическое, либо базисное скольжение вдоль направления *а* обычно является первичным и доминирует в деформации ГПУ-

металлов. Следует подчеркнуть, что все ГПУ-металлы характеризуются легким скольжением вдоль направлений, лежащих в базисной плоскости, и трудным скольжением вдоль оси «с». Только пи-

рамидальное скольжение с вектором Бюргерса $<\!c\!+\!a\!>$ и двойникование вносят вклад в деформацию кристаллов в направлении c.

Таблица 3

Основные системы скольжения в ГПУ-металлах [4, 13]

Системы	Элементы	Число независи-
скольжения	скольжения	мых систем
		скольжения
Базисное скольжение	$\{0001\}\langle 11\overline{20}\rangle$	2
Призматическое скольжение	{1010}\(1120\)	2
Пирамидальное скольжение $\langle a \rangle$	{1011}⟨1120⟩	4
Пирамидальное скольжение $\langle a + c \rangle$	{1011}⟨1123⟩	5
(4. 1. 3)	$\{11\overline{2}1\}\langle11\overline{2}3\rangle$	
	{1122}⟨1123⟩	

Таблица 4 Обычные для ряда ГПУ-металлов системы скольжения [3,5,8,12]

Элемент	c/a	Отклонение, % от идеального <i>c/a</i> =1,633	Первичная систе- ма скольжения	Вторичная система скольжения	Другие системы скольжения
Cd	1,886	+15,5	Базисная	Пирамидальная	Призматическая
			{0001} < 1120 >	{1122} < 1123 >	{1010} < 1120 > .
					Пирамидальная
					{1011} < 1120 >
Zn	1,856	+13,6	Базисная	Пирамидальная	Призматическая
			{0001} < 1120 >	{1122} < 1123 >	{1010} < 1120 >
Mg	1,624	-0,6	Базисная	Призматическая	Пирамидальные
			{0001} < 1120 >	{1010} < 1120 >	{1011} < 1120 > и
					{1122} < 1123 >
Co	1,623	-0,6	Базисная	Нет	Нет
			{0001} < 1120 >		
Zr	1,593	-2,4	Призматическая	Базисная	Пирамидальные
			{1010} < 1120 >	{0001} < 1120 >	{1011} < 1120 > ,
					{1121} < 1123 > и
					{1122} < 1123 >
Ti	1,588	-2,8	Призматическая	Базисная	Пирамидальные
			{1010} < 1120 >	{0001} < 1120 >	{1011} < 1120 >,
					{1122} < 1123 >
Hf	1,581	-3,2	Призматическая	Базисная	Пирамидальные
			{1010} < 1120 >	{0001} < 1120 >	{1011} < 1120 > и
					{1122} < 1123 >
Ве	1,568	-4,0	Базисная	Призматическая	Пирамидальные
			{0001} < 1120 >	{1010} < 1120 >	{1011} < 1120 > и
					{1122} < 1123 >

Legnard рассмотрел проблему легкого скольжения ГПУ-металлов с точки зрения электронной структуры и рассчитал энергию дефектов упаковки на базисных и призматических плоскостях с использованием потенциала сильной связи [15]. Он также показал, что соотношение легкости скольжения по базисным и призматическим плоскостям может быть просто определено параметром R, представляющим соотношение ширины расщепления дислокаций на базисных и призматических плоскостях:

$$R = \frac{C_{66} \times \gamma_{FB}}{C_{44} \times \gamma_{FP}},$$
 (2)

где C_{66} и C_{44} – константы упругости и γ_{FB} γ_{FP} – энергия дефектов упаковки на базисных и призматических плоскостях соответственно. При R<1 первичной и доминирующей системой скольжения является базисное скольжение. При R>1 первичной и доминирующей системой скольжения является призматическое скольжение. При R \cong 1 скольжение легко происходит как по базисным, так и по призматическим плоскостям. Классификация ГПУ-металлов по параметру R и плоскости легкого скольжения (SGP) показана в табл. 5.

Таблица 5 Классификация ГПУ-металлов по R и системам легкого скольжения (В – базисное скольжение, Р – призматическое скольжение) [15]

Клас. ГПУ- мет.	Cd	Со	Mg	Zn	Ве	Re	Тс	Ru	Os	Hf	Zr	Ti	Y
R	0,2	0,2	0,25	0,25	0,6	0,9	1	1,7	1,8	2,1	2,3	2,5	3,5
SGP	В	В	В	В	В	B/P	-	P	-	P	P	P	P

Остановимся на особенностях процесса скольжения в металлах трех разных классов.

c/a>1,633. При отношении c/a>1,633 скольжение преимущественно происходит по плотноупакованным прочным плоскостям $\{0001\}$ вдоль плотноупакованных прочных рядов <1120>. Типичными примерами таких металлов являются Zn и Cd (c/a=1,856 для Zn и 1,886 для Cd). Вследствие очень коротких и сильных связей каждого атома с шестью ближайшими соседями в базисной плоскости и гораздо более длинных и слабых связей между атомами в соседних плоскостях базисные плоскости оказываются наиболее прочными и сохраняются при скольжении. Легкий сдвиг по этим плоскостям обусловлен наибольшими расстояниями и слабой связью между базисными плоскостями по сравнению с плоскостями призмы $\{1010\}$ и пирамиды $\{1011\}$ [1,

16]. Направлению <1120 > отвечают плотноупакованные ряды с наиболее короткими и сильными связями и единичным сдвигом, равным длине металлической связи. Из систем скольжения, обычно вовлекаемых в деформацию ГПУ-металлов, наиболее своеобразна система скольжения {1122}(1123), которая называется пирамидальным скольжением второго рода. Замечательной особенностью её является боль-

шая величина вектора Бюргерса $\frac{1}{3}\langle 1123\rangle$, равного

сумме векторов a и c. Ещё большего удивления заслуживает тот факт, что эта система действует как вторичная система скольжения в цинке и кадмии, у которых значения отношения c/a самые большие [13].

Таким образом, при c/a>1,633 (в Zn, Cd) первичным и доминирующим является базисное скольжение [16], при этом в дополнение к базисному скольжению активно действует пирамидальное скольжение $\{1122\}\langle 1123\rangle$ [8, 12]. Величина критического

напряжения сдвига при комнатной температуре равна $\sim 0.055~\rm k\Gamma/mm^2$ для Zn и $0.040~\rm k\Gamma/mm^2$ для Cd [13]. Величина критического напряжения сдвига в этих металлах по призматическим плоскостям в 10-20 раз больше, чем для базисного скольжения [13].

c/a ≥ 1,633. При комнатной температуре деформация Mg (c/a=1,624) и сплавов на его основе происходит путем скольжения: базисного {0001} < 1120 > , призматического {1010} < 1120 > и пирамидального {1011} < 1120 > , а также путем двойникования {1012} < 1011 > [17]. При этом в Mg, имеющем отношение c/a, близкое к идеальному значению, первичным и явно доминирующим является базисное скольжение. В Со практически единственным вариантом скольжения является базисное скольжение.

с/а<1,633. В ГПУ-металлах, имеющих отношение с/а меньше идеального — Ті, Zr, Hf, Re и т.д., длина связей в базисных плоскостях больше, чем длина связей в плоскостях призмы {1010}. Вследствие этого скольжение преимущественно происходит вдоль более прочных плоскостей призмы {1010}. Главному направлению скольжения отвечает мини-

мальный вектор Бюргерса $\frac{1}{3}\langle 11\overline{20}\rangle$ [1]. Скольжение

по плоскостям $\{1010\}$ характерно для подавляющего большинства ГПУ-металлов, у которых c/a<1,633 (за исключением Re (c/a=1,615) и Be (c/a=1,568)). С повышением температуры отношение c/a возрастает и появляется тенденция к базисному скольжению. В общем случае в деформацию металлов с отношением c/a<1,633 (в том числе Zr, Ti и Hf) в зависимости от условий испытаний (температуры и скорости деформации, ориентации кристаллов относительно оси нагрузки) в той или иной степени вовлечены

следующие системы скольжения: призматическая $\{1010\} < 1120 >$, базисная $\{0001\} < 1120 >$, пирами- $\{1011\} < 1120 >$, $\{1011\} < 1123 >$, дальные: $\{1121\} < 1123 > и \{1122\} < 1123 >$, а также двойникование [3, 5, 8, 12, 18, 19]. При этом, как уже отмечалось, первичным и явно доминирующим для металлов с c/a < 1,633 (за исключением Ве и Re) является призматическое скольжение; вторичная система базисного скольжения активно действует только при высоких температурах (например, в Zr в условиях растяжения при температуре выше 850 °C) [19]. В работе [3] представлены результаты исследования деформации циркония и сплава циркалой-4 в усталостных испытаниях при разных температурах (скорость деформации 3×10^{-1} 1/c) (табл. 6).

Таблица 6 Плоскости скольжения и двойникования в цирконии и циркалой-4 (усталостные испытания при разных температурах) [3]

T, °C	Плоскость	Плоскость	
	скольжения	двойникования	
25	{1010}	{1121}, {1122}, {1012}	
400	{1010}, {1211}	{1121}	
600	{1010}, {0001}	-	

Только призматическое скольжение, имеющее две независимых моды деформации, действует в цирконии при комнатной температуре, при этом важную роль в процессе деформации играет двойникование. При температуре 400 °C в дополнение к призматическому скольжению действует пирами-

дальное скольжение {1211}⟨1123⟩, при этом вклад двойникования в деформацию циркония и циркалой-4 значительно меньше, чем это имеется при комнатной температуре. При температуре 600 °С наряду с призматическим скольжением в цирконии и циркалой-4 при усталостных испытаниях идёт и базисное скольжение, согласованное зернограничным проскальзыванием; в этом случае двойникование не является активной модой деформации.

В бериллии, имеющем самое низкое значение *c/a* (1,568), деформируемом при комнатной температуре, напряжение сдвига по базисным плоскостям раз в пять меньше, чем по призматическим [21]. Следует отметить, что с повышением температуры напряжение сдвига по базисным плоскостям увеличивается, в то время как по призматическим – уменьшается и при температурах 500...600 °C они сравниваются. Таким образом, при температуре выше 400 °C призматическое и базисное скольжения в бериллии становятся равновероятными.

Из приведенных выше данных видно, что отношение c/a – критерий, полезный для предсказания первичной системы скольжения. В интервале значений c/a от 1,571 до 1,600 система первичного скольжения призматическая. При c/a=1,615 активно действуют обе системы скольжения. Вне этого интервала базисное скольжение является первичным и доминирующим.

2.1.2. ДВОЙНИКОВАНИЕ

Основные системы двойникования в ГПУметаллах приведены в табл. 7 [4]. Факторы, которые могут повлиять на двойникование: отношение c/a, плотность упаковки, межплоскостное расстояние и энергия дефектов упаковки [22].

Таблица 7 Двойникование в ГПУ-металлах (γ =c/a; K_1 – плоскость двойникования; K_2 – вторая неискаженная плоскость; $\stackrel{\rightarrow}{\eta_1}$ – направление сдвига; $\stackrel{\rightarrow}{\eta_2}$ – ось основной зоны; S-плоскость сдвига; g – мощность простого сдвига) [4, 20]

К ₁	К ₂	$\stackrel{ ightarrow}{\eta_1}$	$\stackrel{\rightarrow}{\eta_2}$	S	g*
{1012}	{1012}	± ⟨1011⟩	± (1011)	{1210}	$\frac{3-\gamma^2}{\gamma\sqrt{3}}$
{1011}	{1013}	±\langle 1013 \rangle	⟨3032⟩	{1210}	$\frac{9-4\gamma^2}{4\gamma\sqrt{3}}$
{1122}	 {1124}	$\frac{1}{3}\langle 11\overline{23}\rangle$	$\frac{1}{3}\langle 22\overline{43}\rangle$	{1100}	$\frac{2(2-\gamma^2)}{3\gamma}$
{1121}	(0001)	$\frac{1}{3}\langle \overline{1126}\rangle$	$\frac{1}{3}\langle 11\overline{20}\rangle$	{1100}	$\frac{1}{\gamma}$

g* - абсолютное значение

Зависимость д→у (д – мощность сдвига, её абсолютное значение) для четырех систем двойникования в ГПУ-металлах показана на рис. 5. В представлении первичных элементов двойникования (К1 и $\vec{\eta}_1$) положительный наклон зависимости $g \rightarrow \gamma$ (рис. 5) относится к двойникованию, которое вызывает укорочение кристалла вдоль оси «с» (двойникование, имеющееся при сжатии вдоль оси «с», двойники «сжатия»); отрицательный наклон зависимости д-у отвечает двойникованию, которое вызывает удлинение кристалла вдоль оси «с» (двойникование, наблюдающееся при растяжении вдоль оси «с», – двойники «растяжения»). Таким образом, по отношении к оси с при обычных для ГПУ-металлов значений γ (1,5< γ <1,9) {1011} \langle 1012 \rangle и {1122} \langle 1123 \rangle являются двойниками "сжатия", в то время как двойники {1121} (1126) является двойниками "растяжения". Элементы двойникования по плоскости $\{10\overline{12}\}: K_1 = \{10\overline{12}\}, K_2 = \{\overline{1012}\}, \overline{\eta_1} = \langle\overline{1011}\rangle,$ $\overrightarrow{\eta}_2 = \overline{\langle 1011 \rangle}$, S= $\{\overline{1210}\}$ и $g = \frac{\sqrt{3}}{(c/a)} - \frac{(c/a)}{\sqrt{3}}$. Сдвиг,

связанный с двойникованием $\{1012\}\langle1011\rangle$, изменяет знак при $c/a=\sqrt{3}$. При $c/a<\sqrt{3}$ действие всех шести мод двойникования семейства $\{1012\}\langle1011\rangle$ приводит к удлинению кристалла для ориентаций, близких к оси «c», а для ориентаций, лежащих в базисной плоскости, — к укорочению [17, 20]. В соответствии с этим при $c/a<\sqrt{3}$ двойникование $\{1012\}\langle1011\rangle$ имеется при «растяжении» вдоль оси «c» и при сжатии — вдоль направлений, лежащих в базисной плоскости. В случае $c/a>\sqrt{3}$ в приведенных выше рассуждениях следует поменять местами слова «удлинение» и «укорочение», а также «сжатие» и «растяжение».

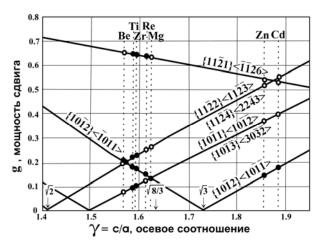
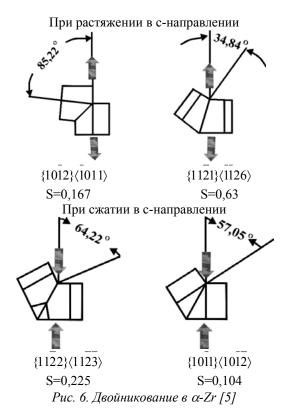



Рис. 5. Зависимость мощности простого сдвига при двойниковании ГПУ-металлов g от γ (γ=c/a). Черные точки на графике – активно действующие в рассматриваемом металле моды деформации [4]

Таким образом, в отношении двойникования решающим является критерий, согласно которому ГПУ-металлы подразделяются на две группы: 1) $\gamma < \sqrt{3}(1.732)$ и 2) $\gamma > \sqrt{3}$. В металлах первой группы ($\gamma < \sqrt{3}$), за исключением Ве, у которого отношения $\gamma = c/a$ значительно меньше $\sqrt{3}$, двойникование — активно действующая составляющая деформации. Это, в частности, свойственно и металлам группы IVB (Ti, Zr, Hf). Системы двойникования в α -Zr показаны на рис. 6 [5].

При растяжении вдоль оси «с» в α-Zr и α-Ti обычно происходит двойникование {1012}(1011) и значительно реже (обычно при криогенных температурах) -{1121}(1126) [5, 7, 23]. Степень вовлеченности каждой из систем двойникования в деформацию α-Zr и α-Ti зависит от температуры испытаний: двойникование $\{1012\}\langle 1011 \rangle$ доминирует в α -Zr и α -Ti при температуре 300 К, в то время как двойникование $\{1121\}\langle 1126\rangle$ доминирует в α -Zr и в α -Ti при температуре 4,2 К [23]. При относительно низких температурах при сжатии вдоль оси «с» в α-Zr и в α-Ti идёт двойникование {1122}(1123), а при повышенных температурах происходит двойникование {1011}(1012) [5]. В Be (c/a=1,568) и в металлах второй группы $(\gamma > \sqrt{3})$ действует только самая «легкая» из систем двойникования – {1012}(1011) [4,21]. Однако знак вызываемой при этом деформации в бериллии и металлах второй группы различен: в бериллии двойникование {1012}(1011) происходит при растяжении вдоль оси «с» [4,21]; в металлах второй группы (Zn) активное двойникование $\{10\overline{12}\}\langle\overline{1011}\rangle$ вызывает растяжение в направлениях, лежащих в базисной плоскости [4].

2.1.3. ПЛАСТИЧНОСТЬ

Пластичность – одна из основных характеристик, определяющих ресурс работы рассматриваемого материала, поэтому показателям пластичности уделяется большое внимание [24]. Как показатель пластичности Pugh [25] ввел отношение K/G (К - модуль объемной упругости, G - модуль сдвига). Значения этого показателя пластичности для ГПУметаллов, исходя из сведений о коэффициентах упругости и сдвига при комнатной температуре, приведены в табл. 8 [25]. И хотя в общем случае пластичность металла зависит от размера зерен, условий испытаний (температуры, скорости деформации и т.д.), подобный подход представляется полезным. Согласно показателю пластичности Pugh. чем выше значение c/a, тем больше пластичность металла и меньше его твердость.

Таблица 8 Показатель пластичности ГПУ-металлов [25]

Металл	G,	K,	K/G	Коэффициент	Удлинение,
	$\kappa\Gamma/\text{MM}^2$	$\kappa\Gamma/\text{MM}^2$		Пуассона	%
Be	13500	11700	0,867	0,08	1
Mg	1770	3390	1,917	0,28	16
La	1500	2840	1,90	0,28	-
Ti	3870	12500	3,23	0,36	37
Zr	3570	9100	2,58	0,33	40
Hf	3100	11100	3,58	0,37	-
Co	7630	18500	2,43	0,31	-
Re	21000	37000	1,76	0,26	-
Ru	17600	29000	1,65	0,25	-
Os	22800	38000	1,67	0,25	0
Zn	3790	6000	1,59	0,27	25
Cd	2460	5000	2,03	0,29	50
T1	280	2900	10,3	0,43	большая

Ещё один критерий пластичности был введен Rice и Thomson [26]. Они показали, что при широком ядре дислокаций и малом значении параметра $Gb/\gamma_s \le 7,5$... 10 (b – вектор Бюргерса, γ_s – поверхностная энергия) металлы пластичные, в то время как при узком ядре дислокаций и большом значении параметра Gb/γ_s металлы хрупкие. Согласно этому критерию пластичность Zr (Gb/γ_s =6,9), Ti (Gb/γ_s =7,31) и Hf (Gb/γ_s =9,16) – высокая, в то время как пластичность Zn (Gb/γ_s =11,73) и De (Gb/γ_s =26,12) – низкая [4].

Rice [27] показал, что можно использовать энергию нестабильного дефекта упаковки γ_{uf} и поверхностную энергию γ_s для расчета «параметра пластичности» D:

$$D = 0.3 \frac{\gamma_S}{\gamma_{uf}}$$

при D>1, у материала имеется тенденция к пластичности.

В числе прочих факторов свойство материалов пластически деформироваться определяется его механическим состоянием, т.е. схемой приложения сил и путями деформации. Пластичность ГПУ-металла зависит от числа вовлеченных в деформацию систем скольжения: если систем вовлечено мало - материал трудно деформируется (он хрупкий); а если достаточно - ГПУ-металл по пластичности не уступает ГЦК-металлам. Когда поликристаллический материал деформируется гомогенно, в каждом из зерен возникают внутренние напряжения: в каких-то зернах вдоль направления «с» действуют напряжения растяжения, в то время как в других зернах вдоль оси «с» действуют напряжения сжатия. Металлы, в деформацию которых вовлечено несколько систем скольжения и двойникования (образуются как двойники «растяжения», так и двойники «сжатия»), обычно имеют высокую пластичность. Исходя из условия Тэйлора и Мизеса для того, чтобы поликристаллический объект испытывал гомогенную пластическую деформацию без образования трещин, в нем должно действовать не менее пяти независимых систем скольжения [13, 28]. За исключением Ве (c/a=1,568), в металлах, у которых отношение c/aменьше идеального значения, к этому классу относятся и металлы группы IVB (Zr, Ti и Hf), преимущественным является призматическое скольжение, его дополняют базисное и пирамидальное скольжения. Кроме того, в этих металлах в деформации участвуют как двойники «растяжения», так и двойники «сжатия»; эти металлы имеют высокую пластичность. Ве (при комнатной температуре) и Zn с очень ограниченными возможностями скольжения и двойникования (в них преимущественно действует базисное скольжение и активно действует только са-«легкая» из систем двойникования $\{1012\}\langle 1011\}$) имеют низкую пластичность [4].

(1011/) umcrot huskyro imactuanocis [4]

2.1.4. ТЕКСТУРА ДЕФОРМАЦИИ

В данной работе не преследуется цель детально изложить сложную, зависящую от многих факторов (в том числе и от условий деформации), картину формирования текстуры деформации, это предмет особого рассмотрения. В рамках данного рассмотрения описаны только некоторые общие тенденции формирования текстуры прокатки в ГПУ-металлах трёх разных классов. Схематически текстура прокатки для металлов трёх классов представлена полюсными фигурами для полюсов (0001) и {1010} (рис. 7) [5].

В металлах с ГПУ-решеткой, близкой к идеальной (γ = $c/a\approx$ 1,633 - Mg и Co), преимущественно действующее базисное скольжение приводит к тому, что плоскости (0001) выстраиваются параллельно плоскости прокатки. При γ >1,633 (Zn (1,856) Cd(1,885)) действующее наряду с базисным скольжением пирамидальное скольжение $\{1122\}\langle1123\rangle$ приводит к формированию текстуры прокатки, у которой зона преимущественной ориентации полюсов (0001) отклонена на угол \sim ± $(15...25)^\circ$ от нормального направления (HH) к направлению прокатки (HП); при этом полюса $\{1120\}$

выстроены вдоль направления прокатки, а направления $\langle 10\bar{1}0 \rangle$ располагаются параллельно поперечному направлению (ПН).

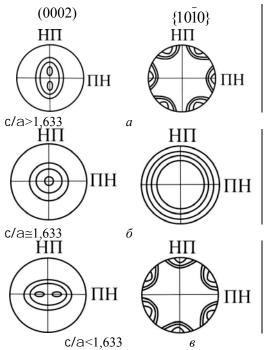


Рис. 7. Текстура полос из ГПУ-металлов при: a - c/a > 1,633; 6 - c/a ≈ 1,633; 6 - c/a < 1,633 [5]

При γ <1,633 (Ti, Zr и Hf) призматическое скольжение и действующее наряду с ним двойникование приводят к тому, что формируется текстура с зоной преимущественной ориентации полюсов (0001), отклоненной на угол ~ \pm (20...40)°от нормального направления к поперечному направлению, при этом полюса (1010) выстроены вдоль направления прокатки.

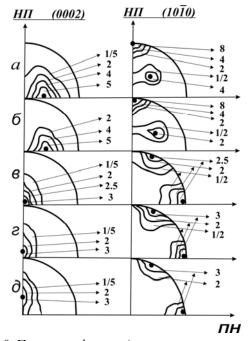


Рис. 8. Полюсные фигуры (полосы, прокатанные при комнатной температуре): а – титан; б – цирконий; в – магний; г – цинк; д – кадмий [29]

Согласно данным исследования текстуры прокатки в ГПУ-металлах, представленным в работе [29], с увеличением величины γ на полюсных фигурах для интерференции (0002) (рис. 8) наблюдается закономерное передвижение области максимальной плотности выхода нормалей к базисным плоскостям вдоль горизонтального радиуса к центру и через центр по вертикальному радиусу к периферии, что доказывает зависимость типа текстуры прокатки от γ (отношения c/a) в ГПУ-металлах.

3. САМОДИФФУЗИЯ

В металлах, у которых отношение c/a < 1,633 коэффициент самодиффузии вдоль направления «c» значительно меньше, чем в базисной плоскости, в то время, как в металлах, у которых отношение c/a > 1,633, диффузионная подвижность собственных атомов вдоль направления «c» значительно выше, чем в направлении, перпендикулярном ему (табл. 9) [30, 31].

Таблица 9 Анизотропия самодиффузии в ГПУ-металлах [30]

Металл	Отношение с/а	$D_{ c}/D_{\perp c}$
Cd	1,886	3,53
Zn	1,856	3,57
Mg	1,624	0,82
T1	1,598	0,55
Zr (α-Zr)	1,593	0,6
Ti (α-Zr)	1,588	0,65
Hf (α-Hf)	1,581	0,65
Be	1,568	0,34

4. ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ

Большой интерес представляет зависимость фундаментальных характеристик полиморфного превращения $\Gamma\Pi V$ -металлов (энтальпии превращения и гомологической температуры превращения) от отношения c/a.

Fisher E.S., Renken C.J заметили, что полиморфное превращение ГПУ-ОЦК имеет место только в металлах, у которых отношение c/a<1,6 [32]. Обычно ГПУ-ОЦК-превращение происходит в металлах, у которых первичной системой скольжения является призматическое скольжение [33]. Из ГПУметаллов, у которых первичным является призматическое скольжение, только Ru не претерпевает ГПУ→ОЦК-превращение [14] и только Ве, в котором при комнатной температуре первичным и явно доминирующим является базисное скольжение, претерпевает его. С повышением температуры в Ве активизируется призматическое скольжение [21] и высокую (практически предплавильную) температуру перехода ГПУ→ОЦК [34] можно связать с достаточно активным при высокой температуре призматическим скольжением.

На рис. 9 показана зависимость энтальпии превращения $\alpha \to \beta$ от отношения c/a [34]. Как видно из представленных данных, имеется тенденция к уменьшению энтальпии $\alpha \to \beta$ -превращения $(\Delta H_{\alpha \to \beta})$ с увеличением значения c/a.

Зависимость гомологической температуры полиморфного превращения для ГПУ-металлов группы IVB (Ti, Zr и Hf) от отношения c/a приведена на рис. 10. Видно, что для металлов этой группы стабильность ГПУ-состояния повышается с уменьшением значения c/a.

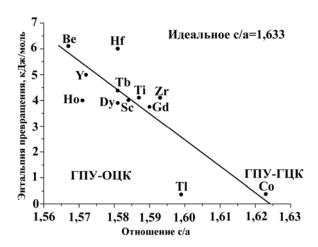


Рис. 9. Энтальпия ГПУ→ОЦК-превращения металлов в зависимости от отношения с/а. Для сравнения приведено значение энтальпии ГПУ→ГЦК-превращения в Со.

Прямая линия – результат подгонки методом наименьших квадратов [34]

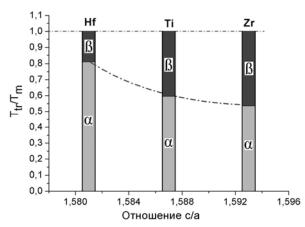


Рис. 10. Зависимость гомологической температуры превращения от отношения с/а для ГПУ-металлов группы IVB (Ti, Zr и Hf)

5. ПОВЕДЕНИЕ ПОД ОБЛУЧЕНИЕМ

От отношения *с/а* в значительной мере зависит конфигурация межузельных атомов, образующихся под облучением [35-37]; каскадная эффективность повреждения [38, 39]; диффузия точечных дефектов (DAD - дифференциальная анизотропия точечных дефектов) [40-42] и эволюция вторичных радиационных повреждений, образующихся под облучением (дислокационных петель, пор и т. д.) [42-47]; дифференциальная анизотропия диффузии межузельных атомов и вакансий (DAD), ответственная за радиационный рост некоторых металлов, в частности циркония [40-42, 47], и эластодиффузия, определяющая радиационную ползучесть ГПУ-металлов [40].

Критическим фактором, определяющим уровень повреждения облучаемого материала, является энергия смещения атомов из узлов решетки T_d [48]. В табл. 10 приведены значения энергии смещения атомов для T_i , Z_i

Таблица 10 Энергия смещения атомов в зависимости от ориентации для Ті, Zr, Mg, Zn и Cd [46,48]

01 opnentating 233 11, 21, 112, 21 in et [40,40						
Металл	Ориентация	Энергия смеще-				
		ния, Т _d , эВ				
Ti	[0001]	22,3±0,3				
	[0001]	25,5±0,5				
Zr	⟨11 2 3⟩	24,0±0,5				
	⟨1010⟩	24,5±1,0				
	⟨11 2 0⟩	27,5±1,0				
	[0001]	13,2±1,1				
Mg	⟨10 1 0⟩	9,9±1,1				
	⟨11 2 0⟩	<9,9				
	[0001]	11,0±0,5				
Zn	⟨10 1 0⟩	9,0±0,5				
	⟨11 2 0⟩	7,6±0,4				
	⟨20 2 3⟩	<11,0				
	[0001]	11,2±0,4				
Cd	⟨1010⟩	9,8±0,4				
	⟨11 2 0⟩	8,5±0,3				
	⟨20 2 3⟩	<11,2				

Согласно данным этой таблицы энергия смещения атомов в Zr и Ti (c/a<1,633) вдвое выше, чем в Zn и Cd, при этом ориентационная зависимость энергии смещения атомов в Zr, имеющем c/a<1,633, отличается от таковой для металлов, у которых c/a>1,633 [46, 48]. Значение энергии смещения атомов в Zr уменьшается в последовательности: $T_d\langle 1120\rangle > T_d[0001] > T_d\langle 1010\rangle > T_d\langle 1123\rangle$ [48]. Иная последовательность ориентационной зависимости энергии смещения атомов свойственна Zn и Cd (c/a>1,633): $T_d\langle 0001\rangle > T_d\langle 1010\rangle > T_d\langle 1120\rangle$ [46]. Различие в представленных выше последовательностях можно объяснить исходя из расстояний между атомами и расстояний между плоскостями [48]. Самые

короткие расстояния между атомами: $\frac{1}{3}\langle 11\overline{20}\rangle$ в Zn

(c/a=1,856) и $\frac{1}{6}\langle 20\overline{23}\rangle$ в Zr (c/a=1,593) и наибольшие из расстояний между плоскостями - (0001) в Zn и $(10\overline{10})$ в Zr. Эти факторы и определяют ориентационную зависимость энергии смещения атомов.

Обычно рассматривается восемь конфигураций межузельных атомов в ГПУ-металлах: базисная октаэдрическая (B_O), базисный краудион (B_C), базисная гантель (D_B), базисная тетраэдрическая (B_T), окта

таэдрическая (O), тетраэдрическая (T), небазисный краудион (C_N) и небазисная гантель (D_c) (рис. 11) [35, 36, 49].

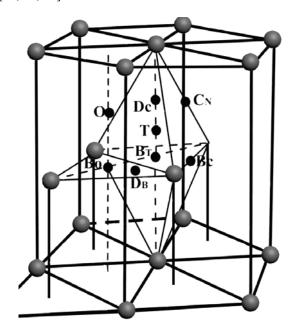


Рис. 11. Некоторые из вероятных конфигураций межузельных атомов в ГПУ-решетке [47]

Согласно результатам математического моделирования базисные конфигурации межузельных атомов, такие как D_B , B_C или B_O стабильны в ГПУ-металлах с c/a < 1,633 и небазисные конфигурации, такие как D_c (см. рис. 11) стабильны в Zn и Cd [36,49]. В работе [49] методом молекулярной динамики (МД) проведена оценка энергии образования межузельных атомов в Zr: она равна 3,76 эВ для базисной гантели (D_B), 3,77 эВ для базисного краудиона (B_C), 3,97 эВ для базисной октаэдрической (B_O) и 4,00 эВ для небазисного краудиона (C_N). Для Ti соответствующие значения энергии соответственно равны: 3,07, 3,09, 3,11 и 3,65. Энергия формирования вакансий согласно оценке, проведенной в работе [49], равна 1,79 эВ для Zr и 1,59 эВ для Ti.

Различие в поведении металлов разных групп под облучением особенно наглядно проявляется в эволюции дислокационной составляющей радиационного повреждения (дислокационных петель). Сведения о зависимости эволюции дислокационных петель в ГПУ-металлах от отношения c/a обобщены в работах Гриффитса [44, 45].

Один из первых и наиболее простых критериев, определяющих плоскость залегания дислокационных петель, образующихся в ГПУ-металлах при закалке и под облучением, согласно которому при c/a>1,732 дислокационные петли залегают на базисных плоскостях, при c/a<1,732 — на призматических, предложили Föll и Wilkens [43].

Согласно представлению, существующему на данном этапе исследований, два основных фактора предопределяют плоскость залегания дислокационных петель в ГПУ-металлах при закалке и под облучением: величина *c/a* (её положение относительно

1,732) и присутствие примесей [44-46, 50]. Представим кратко некоторые из результатов исследований в данном направлении.

c/a>1,732. В Zn и Cd под облучением в HVEM при температурах в интервале -130...25 °C образуются дислокационные петли, лежащие на базисных плоско-

стях; их вектор Бюргерса:
$$b = \frac{1}{2}[0001]$$
, $b = [0001]$,

 $b=\frac{1}{6}\langle 2023\rangle$ [50]. Характерной особенностью эволюции дислокационной структуры Zn и Cd (c/a>1,732) при потоке межузельных атомов выше критического является расщепление дислокационных петель с вектором Бюргерса b=[0001] и образование двойных дислокационных петель с векторами Бюргерса

$$b {=} \frac{1}{2} [0001] {+} \frac{1}{2} [0001] \ \ \text{и} \ \ b {=} \frac{1}{6} \langle 20\overline{23} \rangle \ \ {+} \frac{1}{6} \langle \overline{2023} \rangle \ .$$

В качестве примера на рис. 12 показаны дислокационные петли в Zn, облученном при разном уровне напряжения (200 и 400 кэВ).

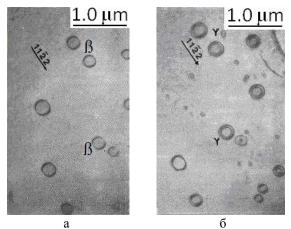


Рис. 12. Дислокационные петли в Zn, облученном в HVEM при напряжении 200 (a) и 400 кэB (б).

Вектор отражения g=[1123] [50]

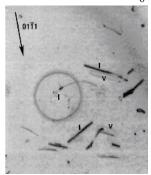
При уровне напряжения выше порогового (вызывающего более высокий поток межузельных атомов) наблюдается расщепление петель [0001] и об-

разование двойных петель с
$$b = \frac{1}{2}[0001] + \frac{1}{2}[0001]$$
.

Все петли, образующиеся в Zn и Cd при электронном облучении, межузельного типа [44-46].

Вакансионные петли в Zn и Cd образуются только при каскадном (например, при ионном) облучении, а также при закалке [43, 51]. Образующиеся при ионном облучении и закалке вакансионные петли залегают на плоскостях {0001} и имеют вектор

Бюргерса
$$\frac{1}{2}\langle 0001\rangle$$
; часть этих петель путем сдвига может трансформироваться в петли с вектором Бюргерса $\frac{1}{6}\langle 20\overline{23}\rangle$, имеющие более низкую энергию дефектов упаковки.


c/a<1,732. В ГПУ-металлах с *c/a*<1,732, облучаемых нейтронами, ионами и электронами, процесс развития дислокационной составляющей радиационного повреждения более сложный (при определенных условиях он может включать в себя образование и рост дислокационных петель как на призматических, так и на базисных и пирамидальной плоскостях) [44, 45]. В металлах этой группы (за исключением Ru) неотъемлемым и неизбежным является зарождение и рост дислокационных петель на призматических плоскостях, при этом процесс всегда начинается с образования дислокационных петель на призматических плоскостях (на плоскостях {1120} в Ве [52] и на плоскостях {1010} [44, 45] во всех остальных металлах). Относительно Ru информация неоднозначная - согласно некоторым сведениям плоскостями первичного зарождения дислокационных петель в нем являются базисные плоскости [44].

Одна из характерных особенностей ряда ГПУметаллов (Mg (c/a=1,624) (Zr (c/a=1,593), Ті (1,588)) – совместное развитие двух систем дислокационных петель на призматических плоскостях (на них зарождаются и растут как межузельные, так и вакансионные петли)) [44, 45]. Соотношение в концентрации межузельных и вакансионных петель на призматических плоскостях зависит от температуры облучения: при низких температурах преобладает межузельная составляющая, при высоких температурах – вакансионная [54, 55]. Кроме дислокационных

петель *a*-типа (обычно $b = \frac{1}{3} \langle 11\overline{20} \rangle$), на призматиче-

ских плоскостях в металлах с c/a<1,732 при определенных условиях (обычно это присутствие примесей или особое напряженное состояние) образуются c-компонентные дислокационные петли на базисных плоскостях. Базисные дислокационные петли в Mg, облученном в HVEM, имеют межузельную природу;

их вектор Бюргерса $b = \frac{1}{2} \langle 2023 \rangle$ (рис. 13) [44-46].

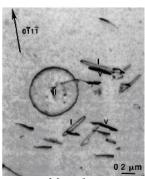


Рис. 13. Дислокационные петли в Mg, облученном электронами при комнатной температуре. Петли а-типа, как вакансионные (V), так межузельные (I), находятся на призматической плоскости. На снимке микроструктуры присутствует также с-компонентная, межузельная петля на базисной плоскости (I) [44, 55]

Геометрия расположения дислокационных петель в облученном и закаленном Mg очень чувствительна к присутствию примесей [44-46]. Базисные

дислокационные петли в Zr (1,593), Ti (1,588) и циркониевых сплавах, облученных нейтронами и в HVEM, имеют вакансионную природу, образуются при относительно высокой дозе, их образованию и росту способствует присутствие примесей и наличие напряжений (близость поверхности) [44, 45, 53]. В подавляющем большинстве случаев вектор Бюр-

герса базисных петель в цирконии $b = \frac{1}{6} \langle 20\overline{23} \rangle$, реже

$$b = \frac{1}{2} \langle 0001 \rangle$$
 [44, 45, 53]. Небазисные *с*-

компонентные дислокационные петли образуются как при нейтронном, так и при электронном облучении в циркалоях, и в меньшей степени в Zr низкой чистоты. Эти петли – межузельные, имеют вектор

Бюргерса $\frac{1}{3}$ $\langle 11\overline{23} \rangle$ и залегают на пирамидальных

{1011} или близко к пирамидальным плоскостям {1011} (между ними и призматическими плоскостями) [44, 53], обычно они не представляют значительной части общего повреждения, так как эти петли скользящие и в силу этого часто уходят на поверхность.

В бериллии (c/a=1,568), облученном нейтронами при 300 °C до флюенса 2×10^{24} нейтр./м², а также в закаленном от 1000 °C в воду, дислокационные петли преимущественно расположены на призматических плоскостях {1120} и имеют вектор Бюргерса $\frac{1}{3}\langle1120\rangle$, встречаются также немногочисленные дислокационные петли, залегающие на плоскостях

{1010}, {1011} и {1022} [52].

Подчеркнем ещё раз в высокочистых металлах: при с/а>1,732 дислокационные петли зарождаются на базисных плоскостях $\{0001\}$; при c/a < 1,732 в подавляющем большинстве металлов (за исключением Ru) плоскостями первичного и явно доминирующего зарождения дислокационных петель являются призматические плоскости - {1120} в Ве и {1010} во всех остальных металлах [44-46, 52-55]. В ГПУметаллах с c/a < 1,732, кроме дислокационных петель а-типа на призматических плоскостях, при определенных условиях образуются с-компонентные дислокационные петли на базисных и пирамидальных плоскостях, их образованию в значительной мере способствуют примеси. Влияние примесей очень сильно проявляется в Мg [44, 45]. Характерной особенностью радиационного повреждения Мg (1,624), Zr (1,593) и Ti (1,588) является одновременное развитие при нейтронном и электронном облучении на призматических плоскостях как межузельных, так и вакансионных петель, что может быть связано с DAD и особенностями упругонапряженного состояния (эластодиффузией), присущими данным металлам с характерными для них значениями отношения c/a [40, 42, 47].

ЗАКЛЮЧЕНИЕ

В качестве одного из основных и наиболее широко используемых критериев классификации ГПУ-металлов выбран геометрический параметр (аксиальное соотношение c/a). Опыт, накопленный при работе с ГПУ-металлами, засвидетельствовал правомерность такого подхода, позволяющего в подавляющем большинстве случаев по значению c/a достаточно близко представить характерные особенности их поведения при различных видах воздействия (при деформации, нагреве, под облучением).

ЛИТЕРАТУРА

- 1. В.К. Григорович. *Металлическая связь и структура металлов*. М.: «Наука», 1988, 296 с.
- 2. А. Уэллс. *Структурная неорганическая химия*. М.: «Мир», 1988, т. 3, 563 с.
- Lin Xiao, Haicheng Gu. Dislocation structures in zirconium and zircaloy-4 fatigued at different temperatures //Metallurgical and Materials Transactions A. 1997, v. 28A, N4, p. 1021–1033.
- 4. M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals //Metallurgical Transactions A. 1981, v. 12A, #3, p. 409–418.
- E. Tenckhoff. Review of deformation mechanisms, texture, and mechanical anisotropy in zirconium and zirconium base alloys //Proceedings of Fourteenth International Symposium: Zirconium in Nuclear Industry. West Conshohocken: ASTM STP1467, 2006, p. 25–50.
- 6. N. Munroe, X. Tan. Orientation dependence of slip and twinning in HCP metals //Scripta Materialia. 1997, v. 36, N 12, p. 1383–1386.
- Y. Higashiguchi, H. Kayano, T. Onchi. Effect of fast-neutron irradiation on deformation twinning in zirconium deformed at 77 K //Journal of Nuclear Materials. 1979, v. 80, N1, p. 24–34.
- 8. Y.N. Wang, J.C. Huang. Texture analysis in hexagonal materials //Materials Chemistry and Physics. 2003, v. 81, N1, p. 11–26.
- 9. O. Cazacu, B. Plunkett, F. Barlat. Orthotropic yield criterion for hexagonal closed packed metals //International Journal of Plasticity. 2006, v. 22, N7, p. 1171–1194.
- J.J. Dickson, A. Dedo, G.B. Craig. Etching dislocations in zirconium //Journal of Nuclear Materials. 1971, v. 38, N1, p. 116–117.
- 11. A.M. Kelly, S.R. Bingert, D.J. Thoma. Application of new tantalum metallographic preparation techniques to group IV and V metals //Microstructural Science. 1998, v. 26, July, p. 26–29.
- D.J. Bacon, V. Vitek. Atomic-scale modelling of dislocations and related properties in the hexagonalclose-packed metals //Metallurgical and Materials Transactions A. 2002, v. 33A, 33A, p. 721–733.
- 13. А. Келли, Г. Гровс. *Кристаллография и дефекты в кристаллах*. М.: «Мир», 1974, 496 с.
- 14. J.P. Poirier, G.D. Price. Primary slip system of εiron and anisotropy of the Earth's inner core //Physics of the Earth and Planetary Interiors. 1999, v.110, N 3-4, p. 147–156.

- 15. P.S. Legnard. Relations entre la structure electronique et la facilite de glissement dans les metaux hexagonaux compacts //Philosophical Magazine B. 1984, v. 49, N2, p. 171–184.
- 16. B. Wielke. Thermally activated glide of zinc single crystals from 4.2 to 373 K //Acta Metallurgica. 1973, v. 21, N3, p. 289–294.
- 17. A. Staroselsky, L. Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B //International Journal of Plasticity (article in press).
- 18. F. Povolo, J.D. Hermida. Evolution of texture during creep of zircaloy-4 at 673 K //Journal of Nuclear Materials. 1984, v. 125, N3, p. 249–257.
- 19. A. Akhtar. Basal slip in zirconium //Acta Metallurgica. 1973, v. 21, N1, p. 1–11.
- 20. Р. Бернер, Г. Кронмюллер. *Пластическая деформация монокристаллов* /Пер. с немецкого /Под ред. А.Н. Орлова. М.: «Мир», 1969, 272 с.
- 21. A.P. Green, J. Sawkill. Plastic anisotropy and fracture in beryllium //Journal of Nuclear Materials. 1961, v. 3, N1, p. 101–110.
- 22. K.L. Murty. Texture development and anisotropic deformation of zircaloys //*Progress in Nuclear Energy*. 2006, v. 48, N4, p. 325–359.
- 23. M.P. Biget, G. Saada. Effect of interstitial impurities on twinning of titanium and zirconium //Journal de *Physique III. France.* 1995, v. 5, N6, p. 1833–1840.
- 24. О.К. Белоусов. Об относительном удлинении поликристаллических металлов //*Металлы*. 1998, №1, с. 90–96.
- 25. S.F. Pugh. Relations between the elastic moduli and plastic properties of polycrystalline pure metals //Philosophical Magazine. 1954, v. 45, №367, p. 823–843.
- 26. J.R. Rice, R. Thomson. Ductile versus brittle behaviour of crystals //Philosophical Magazine. 1974, v.29, N1, p. 79–97.
- 27. J.R. Rice. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept //Journal of the Mechanics and Physics Solids. 1992, v. 40, №2, p. 239–271.
- 28. G.I. Taylor. Plastic strain in metals //J. Inst. Metals. 1938, v. 62, p. 307–324.
- 29. Д.И. Кожин. Текстура и анизотропия модуля Юнга металлов с ГПУ-решеткой //*Металлофизика*. 1978, в.71, с. 16–22.
- 30. C. Herzig, Y. Mishin, S. Divinski. Bulk and interface boundary diffusion in group IV hexagonal close-packed metals and alloys //Metallurgical and Materials Transactions A. 2002, v. 33A, N3A, p. 765–775.
- 31. И.И. Папиров, Г.Ф. Тихинский. *Физическое металловедение бериллия*. М.: «Атомиздат», 1968, 452 с.
- 32. E.S. Fisher, C.J. Renken. Single crystal elastic moduli and hcp→bcc transformation in Ti, Zr and Hf //Physical Review A. 1964, v. 135, N2A, p. A482–A494.
- 33. P. Regnier, J.M. Dupouy. Prismatic slip in beryllium and ease of slip in HCP metals //Physica Status Solidi. 1970, v. 39, N1, p. 79–93.
- 34. H. Kleykamp. Highlights of experimental thermodynamics in the field of nuclear fuel development

- //Journal of Nuclear Materials. 2005, v. 344, N1-3, p. 1–7.
- 35. F. Willaime. Ab initio study of self-interstitials in hcp-Zr //*Journal of Nuclear Materials*. 2003, v. 323, N2-3, p. 205–212.
- D.J. Bacon. Point defects and clusters in hcp metals // Journal of Nuclear Materials. 1993, v. 206, N2-3, p. 243–265.
- 37. D.J. Oh, R.A. Johnson. Relationship between *c/a* ratio and point defect properties in hcp metals *//Journal Nuclear Materials*. 1989, v. 169, comple, p. 5–8.
- 38. M.L. Jenkins, M.A. Kirk, W.J. Phythian. Experimental studies of cascade phenomena in metals //Journal of Nuclear Materials. 1993, v. 205, comple, p. 16–30.
- W.J. Phythian. Displacement collision cascade damage in hcp metals //Journal Nuclear Materials. 1988,
 v. 159, comple, p. 219–224.
- C.H. Woo, C.B. So. The effect of stress on point-defect diffusion in hcp metals and irradiation creep //Philosophical Magazine. 2000, v. 80, N6, p. 1299–1318.
- 41. W. Hu, B. Zhang, B. Huang, F. Gao, D.J. Bacon. Analytic modified embedded atom potentials for HCP metals //Journal of Physics: Condensed Matter. 2001, v. 13, N6, p. 1193–1213.
- F. Christien, A. Barbu. Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamic modelling //Journal of Nuclear Materials. 2005, v. 346, N2-3, p. 272–281.
- 43. H. Föll, M. Wilkens. Transmission electron microscope studies of dislocation loops in heavy-ion irradiated H.C.P. cobalt //Physica status solidi (a). 1977, v. 39, N2, p. 561–571.
- 44. M. Griffiths. Evolution of microstructure in hcp metals during irradiation //Journal of Nuclear Materials. 1993, v. 205, comple, p. 225–241.
- 45. M. Griffiths. Microstructure evolution in hcp metals during irradiation //Philosophical Magazine A. 1991, v. 63, N5, p. 835–847.

- 46. A.S.A. Karim, M.E. Whitehead, M.H. Loretto, R.E. Smallman. The determination of the threshold displacement energy in Zn, Cd, Mg and Ti //Acta Metallurgica. 1978, v. 26, N6, p. 975–981.
- 47. M. Wen, C.H. Woo, Hanchen Huang. Atomic studies of stress effect on self-interstitial diffusion in α-titanium //*Journal of Computer-Aided Materials Design*. 2000, v. 7, N2, p. 97–110.
- 48. M. Griffiths. Displacement energies for Zr measured in a HVEM //Journal of Nuclear Materials. 1989, v. 165, N3, p. 315–317.
- 49. S.J. Wooding, L.M. Howe, F. Gao, A.F. Calder, D.J. Bacon. A molecular dynamics study of highenergy displacement cascades in α-zirconium //Journal of Nuclear Materials. 1998, v. 254, N2-3, p. 191–204.
- 50. M.E. Whitehead, A.S.A. Karim, M.H. Loretto, R.E. Smallman. The nature of the defect clusters in Zn and Cd formed by irradiation in the HVEM //Acta Metallurgica. 1978, v. 26, N6, p. 983–993.
- 51. P.B. Price. Direct observations of ion damage in cadmium //Physical Review. 1961, v. 6, N11, p. 615–617.
- 52. G.P. Walters, C.M. Van Der Walt, M.J. Makin. Observation and analysis of slip dislocations and prismatic loops in beryllium //*Journal of Nuclear Materials*. 1964, v. 11, N3, p. 335–340.
- 53. M. Griffiths, D. Gibbon, C. Regnard, C. Lemaignan. HVEM study of the effects of alloying elements and impurities on radiation damage in Zr-alloys //Journal of Nuclear Materials. 1993, v. 205, comple, p. 273–283.
- 54. O.T. Woo, G.J.C. Carpenter. Dislocation loops in bismuth-ion irradiation in alpha-titanium //Journal of Nuclear Materials. 1982, v. 105, N2-3, p. 326–330.
- 55. C.H. Woo. Defect accumulation behaviour in hcp metals and alloys //Journal of Nuclear Materials. 2000, v. 276, N1-3, p. 90–103.

ХАРАКТЕРИСТИКИ ГЩУ-МЕТАЛІВ, ЩО ВИЗНАЧАЮТЬ ЇХ ПОВЕДІНКУ ПРИ МЕХАНІЧНОМУ, ТЕРМІЧНОМУ І РАДІАЦІЙНОМУ ВПЛИВАХ

Т.П. Черняєва, В.М. Грицина

Проведено систематизацію й аналіз відомостей щодо впливу одного з геометричних параметрів ГЩУ-гратки (осьового співвідношення c/a) на поведінку ГЩУ-металів при термічному, деформаційному й радіаційному впливі. З урахуванням наших інтересів особлива увага приділена ГЩУ-металам підгрупи IVB (Ті (c/a=1,588), Zr (c/a=1,593) і Hf (c/a=1,581)).

CHARACTERISTICS OF HCP METALS DETERMINING THEIR BEHAVIOR UNDER MECHANICAL, THERMAL AND RAIATION EXPOSURE

T.P. Chernyayeva, V.M. Grytsyna

There were systematized and analyzed data on the effect of one of HCP lattice parameters (c/a axial relation) on HCP metals behavior under thermal, deformation and radiation exposure. In the context of our interest we focused on IVb Subgroup HCP metals (Ti (c/a=1,588), Zr (c/a=1,593) and Hf (c/a=1,581)).