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The numerical research is carried out for different approximations of likelihood-function and Fisher's matrix 

with reference to maximum-likelihood algorithm at determination of impurity profile of certain chemical element in 
researched sample by PIXE. It is shown, that the testing of this algorithm, previously led, points to a basic opportu-
nity of its application for restoration of impurity profile by PIXE. However, its practical application causes difficul-
ties, and the expression offered earlier for likelihood-function does not allow determining accuracy of restoration of 
impurity profile. The problems preventing from opportunity of practical use of algorithm are studied. 

 
INTRODUCTION 

PIXE (proton induced x-ray emission) method is 
widely used for analysis of element composition of ma-
terials, it possess good metrological characteristics and 
allows to investigate space distribution of elements. At 
the basis of such measurements there is X-ray registra-
tion under different angles to the sample surface, mea-
surement of lines intensity ratio in multyplete (Kα/Kβ), 
measurement of X-ray radiation yield for different ener-
gy of incident particles. Mathematically, this procedure 
is described by integral equation of the first kind which 
will be considered further. Experimental scheme as well 
as algorithm of profile reconstruction (iterative maxi-
mum-likelihood algorithm) of impurity in case of ener-
gy variation of incident radiation is given in the work 
[1]. Besides, additional aspects of this algorithm appli-
cation are considered in the work of authors [2]. 

The maximum-likelihood algorithm for impurity 
profile reconstruction in the investigated sample by 
means of characteristic X-Ray radiation is given in the 
work [1]. However, its sufficient mathematical basis is 
not given. This algorithm refers to mathematical statis-
tics. Analysis of accuracy of results reconstruction from 
the point of view of this region of mathematics is not 
given in [1]. Only results of computational simulation 
which should be recognized as satisfactory are given in 
this work. We have carried out a detailed testing of the 
offered algorithm, results of which are given in [2]. At 
that, there have been discovered circumstances which 
were not mentioned in the work [1], and we do not 
know whether its authors faced this. The authors [1] did 
not give the basis of that type of likelihood function 
which follows from its exact expression. According to 
our opinion, in the work [1], in the expression which is 
used for probability function, one item is emitted. 
Therefore, the algorithm is built on the basis of trun-
cated type of likelihood function. 

The algorithm of profile reconstruction by means of 
the maximum-likelihood method is iteration. At that, 
each new approximation should be more close to exact 
solution than the previous one. During testing, we have 

faced with the fact that iteration process does not coin-
cide with initially given test profile. This appears in the 
following. In the algorithm the parameter is used: abso-
lute error of the algorithm Δαlg . It is a module of max-
imal deviation between two approximations obtained on 
successive iterations. At iteration process, this value 
reduces, and it was expected that obtained approxima-
tions will be tending to test variant. However, it turned 
out that this condition is not fulfilling. At the beginning, 
the obtained approximations are quasi to test profile, at 
some algorithm error they turn out to be close to it, but 
then increase of discrepancy is observed. At introduc-
tion of yield error of X-ray radiation, minimal deviation 
of computation and test variant was increasing with in-
crease of modeling error of X-ray radiation.  

Thus, question of stop criteria of algorithm work ap-
peared. It was not still clear weather the likelihood func-
tion reaches maximal meaning? What approximation is 
more close to real one? During the process of numerical 
simulation we have determined that maximum-
likelihood algorithm, theoretically, allows to obtain so-
lution with satisfactory quality of test profile restore. 
However, without a substantiated answer to the question 
of adequacy of the reconstructed profile to a real one, 
the practical use of algorithm turns out to be impossible. 
In the work [1] these questions are not considered. Their 
solution can be reached by using a mathematical statis-
tics. To do this, it is necessary, from the given in [1] 
simplified expression for logarithm of probability func-
tion, to obtain its approximation which, on the one hand, 
is suitable for practical use, and, on the other hand, 
would reflect the investigated process with maximal 
reliability. 

To determine quality estimations of profile recon-
struction it is necessary to obtain, first of all, Fisher ma-
trix. It is a set of negative secondary derivatives from 
logarithm of probability function per its arguments. In 
the point of maximal probability the Fisher matrix 
should be positively determined. The matrix, inverse to 
Fisher matrix, - is a covariance matrix, which contains 
information about error of the reconstructed profile. 
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Square roots from its diagonal elements give estimation 
to standard deviation of the obtained solution. In more 
details these questions will be considered below.  

In the present work, some approximations for loga-
rithm of likelihood function which could be obtained 
from results given in the work [1] are investigated. Be-
sides, performance of covariance matrix and Fisher ma-
trix corresponding to these approximations, and possi-
bility of their application to obtain quality estimations of 
profiles reconstruction are investigated. To solve set 
tasks the same three profiles are used: Gaussian, mono-
tone increasing and monotone decreasing which had 
been considered in [1, 2].  

  
1. MAXIMUM LIKELIHOOD ALGORITHM 

The experimental scheme to determine impurities 
concentration in the investigated sample according to 
characteristic X-Ray radiation is given in [1, 2] in more 
details. But the concentration itself can be obtained by 
solving an integral equation which looks like: 

Rcosθ
p

0
0

ηN Ω
Y(E ,θ, )= c(x)σ(E(x))exp(-μx/ cos )dx

4π
ϕ ϕ∫ ,   (1) 

where 0Y(E ,θ, )ϕ  is experimentally measured yield of 

X-Ray radiation; θ – angle between normal to surface 
of the investigated sample and incident protons beam; 
ϕ  – angle between normal to surface of the sample and 
direction of registration of characteristic X-Ray radia-
tion; Np – quantity of protons which have fallen on the 
target; η – proper detector efficiency with respect to the 
registered quanta; Ω – detector solid angle; c(x) – im-
purity concentration as a depth function x; σ(E(x))  – 
cross-section of excitation of characteristic X-Ray radia-
tion by protons with energyЕ; μ – factor of absorbing of 
X-Ray radiation in the investigated sample; R– protons 
track range with maximal energy in the investigated 
sample. In [2] it is noted that equation (1) is an integral 
equation of the first type, and the task of its solution is 
incorrect. Mathematical side of this question is shortly 
given in [2], and also in the literature which is quoted 
there. Discretization of equation (1) leads to the follow-
ing set of linear algebraic equations: 

i ij j
j

Y A c= ∑ , (2) 

where 

i 0iY =Y(E ,θ, )ϕ ,
j

j-1

x
p

ij
x

ηN Ω
A = σ(E(x))exp(-μx/cos )dx

4π
ϕ∫ .  

Matrix elements Aij are determined by experimental 
conditions and composition of the investigated sample. 
At small impurity concentration, its influence on 
bremsstrahlung loss of protons and absorption of X-Ray 
radiation in the sample can be neglected. In this case, 
integral equation (2) is a linear one, and matrix elements 
Aij do not depend upon cj. In many cases, due to matrix 

ijA  is ill-conditioned, the solution of the system (2) by 
conventional methods leads to oscillations and instabili-
ty. 

To overcome these difficulties, various methods of 
regularization are used. Some of them are given in 
works [3-7]. Experimental data iY  at practice are known 
with some error and have random character. Theoreti-
cally, the system (2) should be replaced by the follow-
ing: 

0i ij j
j

Y A c ς= +∑  (2a) 

where 0ς  – random background, specific realization of 
which is not known. In general case, matrix elements 

ijA j are also random. Substantively, specific meanings 
of the value cj are deterministic but as a result of ran-
domness Yi those values Cj which are under determina-
tion from the set of equations (2), we are forced to con-
sider them as random. Thus, to solve (2) statistical me-
thods could be used. Such a method is a maximum-
likelihood method which is used in [1,2], is given in 
details, for instance, in [8,9]. In its basis is use of like-
lihood function which depends upon cj concentration as 
well as experimental data Yi. Statistical property of Yi 
are described by conditional density of probability 
f(Y|c) for experimental data Y at c concrete realization. 
But this density of probability can be considered as a 
function from c at Y meanings which have been specifi-
cally obtained in the experiment. In this case it named 
likelihood function. The sense of algorithm is: set of cj 
values at which function of probability has maximum is 
searched for.  

In [1], algorithm of construction of likelihood func-
tion for the considered task is offered. Yi detecting value 
is an overall quantity of X-Ray quanta which have come 
on the counter and can be shown as: 

i ij
j

Y X=∑ , (3) 

where ijX  is a flux of X-Ray radiation from j-slice of 
the sample which is situated between depths xj – 1 and xj 
for energy meaning of the incident proton beam equal to 

iE . The values Xij are random Poisson and have densi-
ty of probability; 

( )
( , ) exp( )

!

ijX
ij j

ij ij j ij j
ij

A c
h X c A c

X
−

= − . (4) 

Aijcj is an average meaning of Xij. Density of proba-
bility for the whole set of Xij is equal to 

( , ) ( | )h X c h X c≡ . Density of probability 
( , ) ( | )h X c h X c≡  is a function from X at given c  

meanings upon which it depends as from parameter. If 
to consider it as a function from c  then we obtain the 
likelihood function. The task is to determine such set 

{ }jc c=  for given Yi at which the likelihood function is 
maximal. For practical purposes, logarithm of probabili-
ty function is usually used: 
ln ( , ) ln( ) ln( !)ij j ij ij j ij

i j
h X c A c X A c X⎡ ⎤= − + −⎣ ⎦∑∑ .  (5) 
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ijX  values are not directly registered, they are con-
nected with Yi correlation (3). Maximal likelihood solu-
tion for matrix equation (2) can be obtained as set of 
such jc  at which the conditional density of probability 
(or its logarithm) has maximum at condition (3). The 
task of determination of maximum of conditional densi-
ty of probability at fulfilling (3) and current meanings 

( )m
jc  (which correspond to m -th iteration and are used 

to find the following approximation ( 1)m
jc + ) can be 

solved by iteration method. In [1], without obtaining, it 
is offered an expression for ijX  at given iY  and current 

meanings of ( )n
jc   which looks like the following: 

( )
( )

( )

m
ij jm

ij ij im
ip p

p

A c
M X Y

A c
= =

∑
. (6) 

And for logarithm of conditional density of probabil-
ity the expression is used: 

( 1) ( )ln ( , | , ) ln( )m m
ij j ij ij j

i j
h X c Y c A c M A c V+ ⎡ ⎤= − + −⎣ ⎦∑∑ ,(7) 

where 
,

l n ( ! )i j
i j

V X= ∑
. New approximation for jc  is 

obtained by maximization of likelihood function (7) for 
which its partial derivatives with respect to jc  are equal 
to zero: 

( 1)ln 0ijn
ij

ij j

M
h A

c c
+

⎛ ⎞∂
= − + =⎜ ⎟⎜ ⎟∂ ⎝ ⎠
∑  (8) 

whence it is evident: 

( 1)
ij

m i
j

ij
i

M
c

A
+ =

∑
∑

. (9) 

As initial approximation it is taken constant which is 
equal to meaning averaged according to all results of 
measurements: 

(0)

1

1 /
n n

j i ik
i k

c Y A
n =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,  (10) 

where n is a number of measured yields of X-Ray radia-
tion. 

As it is clear from (7)-(9), addendum ln( !)ijV X=  
in algorithm of approximated type of likelihood func-
tion is not used. Besides, likelihood function depends 
from previous approximation. Such an approach in the 
work [1] is not substantiated. Instrument of mathemati-
cal statistics allows to make estimation of standard dev-
iation for the found optimal meanings of jc . To do this, 
first of all, it is necessary to determine informational 
Fisher matrix (see, for instance, [8, 9]) which must be 
positively determined and looks like: 

2

, ( ) lnk l
k l

I c h
c c
∂

= −
∂ ∂

, (11) 

where angle brackets mean averaging along all Y reali-
zations. Matrix which is inverse to Fisher matrix (C =  
I-1) is called a covariance matrix. Square roots from its 
diagonal elements determine-mean-square deviation of 
the found jc  values. As it is clear from the given type 
of likelihood function (5)-(7), the yield of X-Ray radia-
tion is a random value ( iY ) which is to be determined 

experimentally, i.e., addendum 0ς  in equation (2a) is 
equal to zero – this is not taken into account. So, further, 
at computation of Fisher matrix averaging is not carried 
out. Account of random background in equation (2a) 
with reference to the given task requires separate con-
sideration. In literature on mathematical statistics (see, 
for example [8,9]) is usually considered the very ma-
thematical formulation for the task (2)-(2a) in which it 
is presupposed that approximately given only the right 
part of the set of linear algebraic equations which has 
Gaussian scattering, whereas matrix elements are 
known precisely. In the task which we are considering, 
values ij jA c  are presupposed as random. 

 
2. ANALYSIS OF POSSIBLE VARIANTS  

OF LIKELIHOOD FUNCTION 
Approximation of likelihood function which is used 

in [1] and determined by expression (7) depends upon 
current meanings of jc  as well as previous approxima-

tion ( )m
jc , however, such approach is not coordinated 

with the one which is accepted in mathematical statis-
tics. Since its substantiation in the article [1] is not giv-
en, then to solve the problems given in introduction, we 
modify expression (7) for likelihood function by using 
the results given in [1]. First of all, express likelihood 
function only through current meanings of jc . To do 

this, consider that ijM  which is determined by formula 

(6) depends upon current jc , and V  which is a part of 
(7) and is not used in algorithm of probability, present 
like this: 

ln( !)ijV M= . (12) 

Then, expression for likelihood function will look 
like this: 

ln ( | ) ln( ) ln( !)ij j ij ij j ij
i j

h Y c A c M A c M⎡ ⎤= − + −⎣ ⎦∑∑   (13) 

and for ijM  

ij j
ij i

ip p
p

A c
M Y

A c
=
∑

. (14) 

Then, in formula (13) it is necessary to transform 
expression ln( !)ijM . To do this, we use generalization 
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of factorial in case of continuous quantities: 
! ( 1)ij ijM M= Γ + , where ( )xΓ  is gamma-function, 

and for transformation of ln ( 1)ijM⎡ ⎤Γ +⎣ ⎦  we will use 

asymptotic series of Stirling [10]: 

[ ]

1 2 3
3 5

1 1ln( !) ln ( 1) ln(2 ) ln
2 2

...
2 12 30

x x x x x

B B B
x x x

π ⎛ ⎞= Γ + = − + + +⎜ ⎟
⎝ ⎠

+ − + −

 (15) 

where 1 2 31/ 6, 1/ 30, 1/ 42...B B B= = = . – numbers 
of Bernully. Absolute error of series is less than the first 
rejected member. This series is not a convergent one. Its 
application is problematic at 1x < , i.e., 1ijX  or 

1ijX < . Such a situation is possible in the field of 
large depths or very small concentrations of impurities 
when X-Ray radiation can be unregistered. 

Expressions (13) – (15) are used for analytical com-
putation of informational Fisher matrix (11) which, due 
to its lengthiness, is not given here. Theoretically, it can 
be found by means of using computation differentiation. 
However, such a procedure itself is incorrect and unsta-
ble (similarly to solution of integral equation (1)). In 
case of large number of variables for computation of 
secondary derivatives, it is necessary to use differential 
formulas of high preciseness. But in this case, the task 
of averaging in the formula (11) which is to be carried 
out numerically complicates essentially, and this can 
require unacceptably huge costs of calculation time. 

Thus, the final goal of our research is computation 
of covariance matrix and determination of root-mean-
square error for profile reconstruction. As it is clear 
from the mentioned above, various variants of likelih-
ood function which are determined by number of ad-
dendum that contain factors iB  in asymptotic series of 
Stirling can be offered. Let’s note, that algorithm which 
is determined by formula (9) is used for profiles recon-
struction. It is not connected with those variants of like-
lihood function which are determined by expressions 
(13), (14) and (15). The results given below are needed 
to be considered as preliminary researches. They allow 
to determine the ways of solution of problems which are 
mentioned in the introduction. Investigation of likelih-
ood function and covariance matrix has been carried out 
by means of numerical simulation using three profiles of 
distribution of phosphorus impurities in silicon sample 
which have been considered in [2], Gaussian, monotone 
increasing and monotone decreasing. Use of algorithm 
(9) can be justified in this case by the fact that at differ-
ent variants of likelihood function it was increasing.  

Our task is (to): 
a) to obtain type of likelihood function which is 

mathematically substantiated, approximated, suitable for 
practical use but adequate to experimental conditions; 

b) informational Fisher matrix, which was generat-
ed by it, should be positively determined; 

c) make sure on test tasks that error estimation of 
reconstructed profiles which was obtained by cova-

riance matrix decreases with decrease of error of yield 
of X-Ray radiation. 

The last item is a criterion of practical applicability 
of algorithm. At that, such an conclusion can be made 
according to results of considerable volume of numeri-
cal simulation and processing of experimental results 
with previously known distribution of impurity profile. 
Information weather such investigations have been car-
ried out by the authors of the work [1] is not available 
for us. Motives of formulating the very tasks come from 
results of preliminary numerical simulation. 

 

3. NUMERICAL INVESTIGATION  
OF VARIOUS VARIANTS OF LIKELIHOOD 

FUNCTION 
3.1. GENERAL ISSUES OF COMPUTATIONAL 

MODELING 
At numerical simulation of likelihood function, as it 

was mentioned before, three test profiles were used as 
well as in the work [2]. At that, it was checked weather 
Fisher matrix and covariance matrix are positively de-
termined. Positive determines of Fisher matrix was de-
termined by computation of its eigenvalues which, in 
this case, should be positive. Type of likelihod function 
was changed by equalization to zero of factors 

, 1, 2, 3iB i =  in expression (15). At that, the corres-
ponding addendum were rejected. At the beginning, all 
three factors were equal to zero, and then in series to 
each of them the initial meaning was given back. During 
the process of numerical simulation, deviations of the 
right part which was reconstructed by current m -th 
approximation ( )m

jc  was controlled 

( ) ( )m m
i ij j

j
Y A c= ∑  (16) 

from given iY . To do this, three types of error were 

used: maximal absolute error ( )max m
abs i ii

Y YΔ = − , 

maximal relative error ( )( )max /m
r i i ii

Y Y YΔ = − , and 

also summarized absolute error ( )m
i i

i
Y YΣΔ = −∑ . 

The profile reconstruction was usually beginning from 
the meaning of absolute error of algorithm 

( )(n) (n 1)
a lg j jj

max c cδ += −  which made (0.1 – 1)% 

from average density of impurity and was decreasing in 
2 or 2.5 times, and in each decade of orders 10l  was 
taken in correspondence to series (5, 2, 1). Concentra-
tion of jc  was, in fact, density which was expressed in 
atomic units (number of atoms in sm3). With sample 
density 1022…l1023 sm-3, characteristic values of jc  
have order 1020…1021 at concentration of impurity in 
several atomic percentage. For all investigated profiles, 
with decrease of lgaΔ  the decrease of all mentioned 
three types of error was happening.  
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3.2. INFLUENCE OF THE WAY  
OF CALCULATION OF THE RIGHT PART  
OF THE TASK ON RESULTS OF PROFILE 

RECONSTRUCTION 
In introduction it was mentioned that while testing 

of (see [2]) maximum-likelihood algorithm for all three 
types of profile, there is optimal value of algorithm error 

lgaΔ  at which the reconstructed profile was mostly 
close to the testing one, could have been mentioned. At 
further decrease of this parameter the calculated approx-
imation was beginning to deviate from the test profile. 
The reason for this lies in the following circumstance. 
Likelihood function (5) and numerical algorithm (9) 
have been obtained not for initial integral equation (1) 
but for matrix equation (2) (for the set of linear alge-
braic equations). In the work [2] the right part of matrix 
equation (2) have been computed without connection 
with elements of matrix ijA , but by means of thorough 
calculation of integral in the left part (1) by the method 
of trapezium with preciseness up to 5-6 decimal digits. 
However, such data for matrix equation (2) are less pre-
cise. “Correct” are only those iY   values, which are ob-

tained at substitution in the left part (2) of test jc  val-
ues. We have checked this variant for all three profiles. 
Fig. 1 shows the reconstructed Gaussian profile which is 
the closest to the test one, for yield of X-Ray radiation 
computed by numerical integration.  

 

0 1 2 3 4 5 6 7 8
0,0

2,0x1020

4,0x1020

6,0x1020

8,0x1020

1,0x1021

1,2x1021

1,4x1021    Calculation
       test

C
on

ce
nt

ra
tio

n,
 c

m
-3

Depth, mcm  
Fig. 1. Algorithm error 5.0⋅1016 .The reconstructed 

Gaussian profile which is the closest to the test one. iY  
has been computed by formula (1) 

 
With decrease of absolute error of algorithm lgaΔ , 

the reconstructed profile begins to deviate from the test 
one in maximum region and for depths more than 3 
mkm. It is shown at fig. 2. Fig. 3 and 4 show the result 
of reconstruction of Gaussian profile in case when com-
putation of yield of X-Ray radiation iY , for identical 

values of jc  is carried out by formula (2). Values of 
parameter Δa lg, at fig. 3 and 4 are identical to those, 
which are used for profiles that are shown at fig. 1 and 2 
correspondingly.  
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Fig. 2. Algorithm error 5.0⋅1015. Decrease of lgaΔ , 
parameter leads to deformation of the reconstructed 

profile relatively to the test one. iY  has been computed 
by formula (1) 

 
As it is clear from fig. 3-5, with precise enough ini-

tial data of the task, the of maximum-likelihood method 
allows to find solution of the given task reliably and 
without deformations. If iY  is computed by formula (1) 
and to use matrix equation (2) for the profile reconstruc-
tion, then, at condition of Δa lg <(2…5)⋅1016, the recon-
structed profile is distorted essentially. Similar results 
have been obtained for other test profiles also.  
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Fig. 3. Algorithm error 5.0⋅1016. Gaussian profile which 

has been reconstructed for data of iY  computed  
by formula (2) 
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Fig. 4. Algorithm error 5.0⋅1015. The profile has been 

computed according to data which are identical 
to fig. 3, but with other meanings of lgaΔ  
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Fig. 5. Algorithm error 5.0⋅1012. The profile which has 

been reconstructed according to data that has been 
computed by formula (2) but with other meaning of 

lgaΔ  which is more (essentially) less than at fig. 3, 4 
 
The results of iY  computation which has been ob-

tained by both ways for Gaussian profile, are shown in 
the table 1.  

Table 1  
Yield of X-Ray radiation for test tasks which have 

been computed by two ways 
# Energy, 

MeV 
Yield of X-Ray 
radiation of iY  
which has been 
computed by 
formula (1) by 
means of inte-
gratio 

Yield of X-Ray 
radiation of iY  

which has been 
computed by 
formula (2) 
using ijA  

matrix 
1 0.6 8.223⋅102 1.721⋅103

2 0.7 3.646⋅103 5.281⋅103

3 0.8 1.180⋅104 1.314⋅104

4 0.9 3.010⋅104 3.326⋅104

5 1.0 6.637⋅104 7.074⋅104

6 1.1 1.268⋅105 1.320⋅105

7 1.2 2.101⋅105 2.160⋅105

8 1.3 3.0856⋅105 3.148⋅105

9 1.4 4.121⋅105 4.186⋅105

10 1.5 5.132⋅105 5.200⋅105

11 1.6 6.078⋅105 6.149⋅105

12 1.7 6.945⋅105 7.019⋅105

13 1.8 7.735⋅105 7.812⋅105

14 1.0 8.459⋅105 8.540⋅105

15 2.0 9.127⋅105 9.211⋅105

 
As it is clear from this table, there are differences in 

yield of X-Ray radiation which has been computed by 
two ways, they are the most essential in small energies 
of probing beam. 

During the process of numerical simulation, devia-
tions of the restored values ( )m

iY  (16) from given iY  

were controlled. For values iY  which have been com-

puted by expression (1) the maximal relative error rΔ  
at which the reconstructed profile was the closest to the 
test one made 0.00004 for monotone decreasing profile, 
0.0026 for monotone increasing one, 0.04 for Gaussian 

one. Further, with increase of deviation of the recon-
structed profile from test one, this error was decreased. 
Such regularity was observed for Δabs and ΔΣ. For initial 
data which has been computed by formula (2) rΔ  made 

10-5…10-6 at minimal values of lgaΔ  which were used 
in this case.   

 
3.3. CHARACTER OF PERFORMANCES  

OF LIKELIHOOD FUNCTION, FISHER MATRIX 
AND COVARIANCE MATRIX AT ITERATION 

PROCESS 
With respect to the mentioned results, the question 

about character of behavior of likelihood function in 
iteration process appears. Let’s pay attention to the cir-
cumstance that algorithm (9) directly is not related to 
the investigated variants of likelihood function (13)-
(15), and the task of this stage of investigation is, first of 
all, in obtaining of preliminary results on the problem 
we are interested in. Practically for all studied profiles 
and for both ways of computation of the right part dur-
ing iteration process the increase of likelihood function 
in the all used range of parameters has been observed. 
The exception was only increasing profile with initial 
data iY  which has been obtained by formula (2). In this 
case, with values Δa lg from 2.0⋅1015 and less, gradual 
decrease of likelihood function has been observed. Such 
behavior was typical for all types of likelihood function 
(13)-(15). For all profiles with the sequence account of 
B1 factors in expression (15) difference between its cor-
responding values has been decreasing and for variants 
(B1 ≠ 0, B2 ≠ 0, B3 ≠ 0) and (B1 ≠ 0, B2 ≠ 0, B3 ≠ 0) dif-
ference has been observed in 5th and 6th decimal digit. It 
is followed from the mentioned above that despite nu-
merical algorithm (9) does not go directly from the used 
variants of probability function (13)-(15), nevertheless, 
it leads to its maximization.  

The other side of the problem we are interested in is 
to obtain covariance matrix which gives root-mean-
square estimation of error of the reconstructed profile. 
Covariance matrix and Fisher matrix have been consi-
dered for all three previously mentioned profiles, for 
different variants of likelihood function and for two 
types of initial data iY  which has been computed by 
formulas (1) and (2). For Fisher matrix (11), analytical 
expression has been obtained and it corresponds to all 
variants of likelihood function, and which, due to its 
inconvenience, is not given here. Fisher matrix by the 
sense of its definition should be positively determined. 
Covariance matrix has been obtained by numerical in-
verse of Fisher matrix. All diagonal elements of the last 
should obligatory be positive because likelihood func-
tion should have maximum. To find out, whether Fisher 
matrix is positively determined, its eigenvalues have 
been numerically determined, which, in this case, 
should be positive. 

In most cases which are given here, Fisher matrix 
had negative eigenvalues and its positive determines 
was rather an exception than a rule. The lowest number 
of negative eigenvalues of matrix was in the case when 
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all three B1 factors were not equal to zero. In a number 
of cases, when Fisher matrix was positively determined, 
covariance matrix could not have been computed due to 
ill-condition of matrix (11). In table 2 there are results 
of error computation for monotone increasing profile 
initial data for which have been modeled by formula (2). 

 
Table 2  

Reconstructed monotonically increasing profile 
for iY , calculated by formulae (2)  

with mean-square error 

 
For the case, which is given in the table 2, the initial 

data are precise enough. As it is clear from the table, 
monotone increasing profile is well reconstructed on 
depths up to 6  mkm, and further, deviation increases. 
On the other hand, error estimation here is rather large, 
especially in the middle of the table, whereas at the end 
where deviation between computation and testing in-
crease the error estimation is less than these deviations. 

The carried out investigation of Fisher matrix and 
covariance matrix coming from probability function 
(13) – (15) shows that they are not always have perfor-
mance of positive determination. With increase of num-
ber of items which are kept in formula (15) the number 
of negative diagonal elements of covariance matrix de-
creases. While keeping three last addendum in a asymp-
totic series (15) more variants at which Fisher matrix is 
positively determined are realized, and all diagonal ele-
ments of covariance matrix are positive. However anal-
ysis show, that not always it diagonal elements ade-
quately reflect error of profile reconstruction. An exam-
ple of this can be the table 2. With increase of number 
addendum which are kept in expression (15) the con-
vergence of likelihood function has been taken place. 
Results which have been obtained for informational and 
covariance matrices contrast with this.  

Presence of negative eigenvalue in Fisher matrix jus-
tifies that near the point of expected maximum of that 
approximation of likelihood function which we are in-
vestigating (the first derivatives are equal to zero) its 
profile in space of variables is not convex, and can have 
look saddles. To find it out, we have studied dependen-
cy of likelihood function from its variables near the ex-

pected maximum. In case of all studied profiles of im-
purity distribution density, the likelihood function had a 
convex parabolic character for some set of cj, where 1 ≤ 
j ≤ jmax < n, n is a task dimension. For j > jmax likelihood 
function did not have such explicitly expressed convex 
look. These likelihood of j  correspond to the most 
deep layers of the investigated sample, to which beam 
penetrates. Analysis of likelihood function and Fisher 
matrix shows that this region of the sample is objective-
ly the less informative to obtain reliable results of re-
construction. Physically it means that contribution of X-
Ray radiation from deep layers due to damping is consi-
derably less then from surfaces, and it turns out to be 
insufficient for a rather precise determination of impuri-
ty in maximal depths on which beam can spread. For the 
correct solution of the appeared mathematical problems 
mentioned above, first of all, it is necessary to use the 
most suitable approximation for Mij ! =  
Г(Mij + 1) in Mij ≤ 1. 

 
4. CONCLUSIONS 

1. The carried out investigations allow to explain 
“overshoot” of the reconstructed profile “pass” the test-
ing one in that case when the yield of X-Ray radiation is 
calculated by formula (1) by means of thorough numeri-
cal integration. The reason is that maximum-likelihood 
algorithm has been developed for matrix equation (2) 
and not for the integral one (1). 

2. The up-graded variants of likelihood function (13) 
-(15) have been offered and studied without a strict ma-
thematical substantiation. Algorithm (9) which is of-
fered in [1] and which do not comes from the investi-
gated variants of probability function has been used for 
this. However, the increase of likelihood function for all 
its variants at all test profiles and different ways of cal-
culation of yield of X-Ray radiation has been observed 
with its use. Convergence of series (15) which is used in 
likelihood function with increase of number of keeping 
addendum which contain iB  factors has been observed. 

3. Informational and covariance matrices which cor-
respond to different variants of probability function 
have been studied. Practical use of covariance matrix 
for error estimation of the profile restored with the sti-
pulated variants of probability function turns out to im-
possible. The reason of this lies in the fact that in many 
of the investigated variants they did not have positive 
determination. And in those cases when this condition 
was fulfilling the obtained error estimations of profile 
reconstructed did not correspond to the really obtained. 
It points out on necessity of correct account of influence 
of deep layers of the investigated sample on forming of 
probability function and matrices which are following 
from it.  
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ОЦЕНКА КАЧЕСТВА МЕТОДА МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ ПРИМЕНИТЕЛЬНО  
К ЗАДАЧЕ ОПРЕДЕЛЕНИЯ РАСПРЕДЕЛЕНИЯ ПРИМЕСИ ПО ХАРАКТЕРИСТИЧЕСКОМУ 

РЕНТГЕНОВСКОМУ ИЗЛУЧЕНИЮ, ВОЗБУЖДАЕМОМУ ПРОТОНАМИ 
 

И.К. Ковальчук, В.В. Левенец, А.А. Щур 
 
Проведено численное исследование для разных приближений функции правдоподобия и матрицы Фишера примени-

тельно к алгоритму максимального правдоподобия для определения профиля примеси некоторого химического элемента 
в исследуемом образце методом PIXE. Показано, что проведенное ранее тестирование этого алгоритма указывает на 
принципиальную возможность его применения для восстановления профиля примеси методом PIXE, однако, его прак-
тическое применение вызывает трудности, а предложенное ранее выражение для функции правдоподобия не позволяет 
определить точность восстановления профиля примеси. Изучены проблемы, препятствующие возможности практиче-
ского использования алгоритма. 

 
 
ОЦІНКА ЯКОСТІ МЕТОДУ МАКСИМАЛЬНОЇ ПРАВДОПОДІБНОСТІ ПРИ ЗАСТОСУВАННІ  

ДО ЗАДАЧІ ВИЗНАЧЕННЯ РОЗПОДІЛУ ДОМІШКУ ПО ХАРАКТЕРИСТИЧНОМУ 
РЕНТГЕНІВСЬКОМУ ВИПРОМІНЮВАННЮ, ЩО ЗБУДЖУЄТЬСЯ ПРОТОНАМИ 

 
І.К. Ковальчук, В.В. Левенець, А.О. Щур 

 
Проведено численне дослідження для різних наближень функції правдоподібності и матриці Фішера при застосу-

ванні до алгоритму максимальної правдоподібності при визначенні профілю домішку якогось  хімічного елемента в зра-
зку, що досліджується методом PIXE. Показано, що проведене раніше тестування цього алгоритму вказує на принципо-
ву можливість його використання для встановлення профілю домішки методом PIXE, однак, його практичне викорис-
тання визиває труднощі, а наведений раніше вираз для функції правдоподібності не дозволяє визначити точність встано-
влення профілю домішки. Досліджені проблеми, що перешкоджають можливому практичному використанню алгорит-
му.  

 


