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The numerical research is carried out for different approximations of likelihood-function and Fisher's matrix
with reference to maximum-likelihood algorithm at determination of impurity profile of certain chemical element in
researched sample by PIXE. It is shown, that the testing of this algorithm, previously led, points to a basic opportu-
nity of its application for restoration of impurity profile by PIXE. However, its practical application causes difficul-
ties, and the expression offered earlier for likelihood-function does not allow determining accuracy of restoration of
impurity profile. The problems preventing from opportunity of practical use of algorithm are studied.

INTRODUCTION

PIXE (proton induced x-ray emission) method is
widely used for analysis of element composition of ma-
terials, it possess good metrological characteristics and
allows to investigate space distribution of elements. At
the basis of such measurements there is X-ray registra-
tion under different angles to the sample surface, mea-
surement of lines intensity ratio in multyplete (K,/Kg),
measurement of X-ray radiation yield for different ener-
gy of incident particles. Mathematically, this procedure
is described by integral equation of the first kind which
will be considered further. Experimental scheme as well
as algorithm of profile reconstruction (iterative maxi-
mum-likelihood algorithm) of impurity in case of ener-
gy variation of incident radiation is given in the work
[1]. Besides, additional aspects of this algorithm appli-
cation are considered in the work of authors [2].

The maximum-likelihood algorithm for impurity
profile reconstruction in the investigated sample by
means of characteristic X-Ray radiation is given in the
work [1]. However, its sufficient mathematical basis is
not given. This algorithm refers to mathematical statis-
tics. Analysis of accuracy of results reconstruction from
the point of view of this region of mathematics is not
given in [1]. Only results of computational simulation
which should be recognized as satisfactory are given in
this work. We have carried out a detailed testing of the
offered algorithm, results of which are given in [2]. At
that, there have been discovered circumstances which
were not mentioned in the work [1], and we do not
know whether its authors faced this. The authors [1] did
not give the basis of that type of likelihood function
which follows from its exact expression. According to
our opinion, in the work [1], in the expression which is
used for probability function, one item is emitted.
Therefore, the algorithm is built on the basis of trun-
cated type of likelihood function.

The algorithm of profile reconstruction by means of
the maximum-likelihood method is iteration. At that,
each new approximation should be more close to exact
solution than the previous one. During testing, we have

faced with the fact that iteration process does not coin-
cide with initially given test profile. This appears in the
following. In the algorithm the parameter is used: abso-
lute error of the algorithm Ay, . It is a module of max-
imal deviation between two approximations obtained on
successive iterations. At iteration process, this value
reduces, and it was expected that obtained approxima-
tions will be tending to test variant. However, it turned
out that this condition is not fulfilling. At the beginning,
the obtained approximations are quasi to test profile, at
some algorithm error they turn out to be close to it, but
then increase of discrepancy is observed. At introduc-
tion of yield error of X-ray radiation, minimal deviation
of computation and test variant was increasing with in-
crease of modeling error of X-ray radiation.

Thus, question of stop criteria of algorithm work ap-
peared. It was not still clear weather the likelihood func-
tion reaches maximal meaning? What approximation is
more close to real one? During the process of numerical
simulation we have determined that maximum-
likelihood algorithm, theoretically, allows to obtain so-
lution with satisfactory quality of test profile restore.
However, without a substantiated answer to the question
of adequacy of the reconstructed profile to a real one,
the practical use of algorithm turns out to be impossible.
In the work [1] these questions are not considered. Their
solution can be reached by using a mathematical statis-
tics. To do this, it is necessary, from the given in [1]
simplified expression for logarithm of probability func-
tion, to obtain its approximation which, on the one hand,
is suitable for practical use, and, on the other hand,
would reflect the investigated process with maximal
reliability.

To determine quality estimations of profile recon-
struction it is necessary to obtain, first of all, Fisher ma-
trix. It is a set of negative secondary derivatives from
logarithm of probability function per its arguments. In
the point of maximal probability the Fisher matrix
should be positively determined. The matrix, inverse to
Fisher matrix, - is a covariance matrix, which contains
information about error of the reconstructed profile.
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Square roots from its diagonal elements give estimation
to standard deviation of the obtained solution. In more
details these questions will be considered below.

In the present work, some approximations for loga-
rithm of likelihood function which could be obtained
from results given in the work [1] are investigated. Be-
sides, performance of covariance matrix and Fisher ma-
trix corresponding to these approximations, and possi-
bility of their application to obtain quality estimations of
profiles reconstruction are investigated. To solve set
tasks the same three profiles are used: Gaussian, mono-
tone increasing and monotone decreasing which had
been considered in [1, 2].

1. MAXIMUM LIKELIHOOD ALGORITHM

The experimental scheme to determine impurities
concentration in the investigated sample according to
characteristic X-Ray radiation is given in [1, 2] in more
details. But the concentration itself can be obtained by
solving an integral equation which looks like:

Rcosf
[ coEEpexpu/cosppax> (D

0
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Y(E,.0,p)=

where Y(E;,0,¢) is experimentally measured yield of

X-Ray radiation; @— angle between normal to surface
of the investigated sample and incident protons beam,;
@ — angle between normal to surface of the sample and

direction of registration of characteristic X-Ray radia-
tion; N, — quantity of protons which have fallen on the
target; 7 — proper detector efficiency with respect to the
registered quanta; (2 — detector solid angle; c¢(x) — im-
purity concentration as a depth function x; o(E(x)) —
cross-section of excitation of characteristic X-Ray radia-
tion by protons with energyE; i — factor of absorbing of
X-Ray radiation in the investigated sample; R— protons
track range with maximal energy in the investigated
sample. In [2] it is noted that equation (1) is an integral
equation of the first type, and the task of its solution is
incorrect. Mathematical side of this question is shortly
given in [2], and also in the literature which is quoted
there. Discretization of equation (1) leads to the follow-
ing set of linear algebraic equations:

Y=Y A, @
J

where
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Matrix elements A; are determined by experimental
conditions and composition of the investigated sample.
At small impurity concentration, its influence on
bremsstrahlung loss of protons and absorption of X-Ray
radiation in the sample can be neglected. In this case,
integral equation (2) is a linear one, and matrix elements
Ajj do not depend upon c;. In many cases, due to matrix

Aﬁ is ill-conditioned, the solution of the system (2) by

conventional methods leads to oscillations and instabili-
ty.
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To overcome these difficulties, various methods of
regularization are used. Some of them are given in

works [3-7]. Experimental data Y, at practice are known
with some error and have random character. Theoreti-
cally, the system (2) should be replaced by the follow-
ing:

Y, =) 4ic; +g (22)
7

where ¢, — random background, specific realization of
which is not known. In general case, matrix elements
A,.j i are also random. Substantively, specific meanings

of the value ¢; are deterministic but as a result of ran-
domness Y; those values C; which are under determina-
tion from the set of equations (2), we are forced to con-
sider them as random. Thus, to solve (2) statistical me-
thods could be used. Such a method is a maximum-
likelihood method which is used in [1,2], is given in
details, for instance, in [8,9]. In its basis is use of like-
lihood function which depends upon c; concentration as
well as experimental data Y;. Statistical property of Y;
are described by conditional density of probability
f(Y|c) for experimental data Y at ¢ concrete realization.
But this density of probability can be considered as a
function from c at Y meanings which have been specifi-
cally obtained in the experiment. In this case it named
likelihood function. The sense of algorithm is: set of ¢;
values at which function of probability has maximum is
searched for.

In [1], algorithm of construction of likelihood func-
tion for the considered task is offered. Y; detecting value
is an overall quantity of X-Ray quanta which have come
on the counter and can be shown as:

YFZXW 3)
j

where X i is a flux of X-Ray radiation from j-slice of

the sample which is situated between depths x;_; and x;
for energy meaning of the incident proton beam equal to

E. . The values Xj; are random Poisson and have densi-

ty of probability;

(4" (4)

h(X,,c;)=exp(—4,c,)
y g2l J Xl‘/' '

ij

Ajic; is an average meaning of Xj;. Density of proba-
bility for the whole set of Xj is equal to
nX,c)=h(X|c)- Density of probability
hX,c)=h(X|c) is a function from X at given ¢
meanings upon which it depends as from parameter. If
to consider it as a function from ¢ then we obtain the

likelihood function. The task is to determine such set
c=1{c,} for given Y; at which the likelihood function is

maximal. For practical purposes, logarithm of probabili-
ty function is usually used:

Inh(X,c)=Y Y [-4c, + X, In(4,c))~In(x, H]  ©)



X i values are not directly registered, they are con-

nected with Y; correlation (3). Maximal likelihood solu-
tion for matrix equation (2) can be obtained as set of

such ¢ ;- at which the conditional density of probability

(or its logarithm) has maximum at condition (3). The
task of determination of maximum of conditional densi-
ty of probability at fulfilling (3) and current meanings

cy") (which correspond to m -th iteration and are used

to find the following approximation C}mﬂ)) can be

solved by iteration method. In [1], without obtaining, it
is offered an expression for X ; at given Y, and current

meanings of Cﬁ") which looks like the following:

(m)
M —xm — Ay ¢j Y (6)

y (m)
ZAw c

And for logarithm of conditional density of probabil-
ity the expression is used:

A" (e Voe™) = 3 3 [~dye, + M, n(4,e) ] -7 (D
i

where . New approximation for ¢ ; is

= > In(X, 1
obtained by maximization of likelihood function (7) for
which its partial derivatives with respect to ¢ ; are equal

to zero:

0 M. 8
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whence it is evident:

2 M,
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As initial approximation it is taken constant which is
equal to meaning averaged according to all results of
measurements:

oo = Z[Y/ZAlkJ

i=1

(10)

where n is a number of measured yields of X-Ray radia-
tion.
As it is clear from (7)-(9), addendum J = In( X; 1

in algorithm of approximated type of likelihood func-
tion is not used. Besides, likelihood function depends
from previous approximation. Such an approach in the
work [1] is not substantiated. Instrument of mathemati-
cal statistics allows to make estimation of standard dev-

iation for the found optimal meanings of ¢ ;- To do this,
first of all, it is necessary to determine informational

Fisher matrix (see, for instance, [8, 9]) which must be
positively determined and looks like:

an

aZ
I, (c) = <— ~——n h>»
k=1

where angle brackets mean averaging along all Y reali-
zations. Matrix which is inverse to Fisher matrix (C =
I')) is called a covariance matrix. Square roots from its
diagonal elements determine-mean-square deviation of

the found ¢ | values. As it is clear from the given type

of likelihood function (5)-(7), the yield of X-Ray radia-
tion is a random value (Y;) which is to be determined

experimentally, i.e., addendum ¢, in equation (2a) is

equal to zero — this is not taken into account. So, further,
at computation of Fisher matrix averaging is not carried
out. Account of random background in equation (2a)
with reference to the given task requires separate con-
sideration. In literature on mathematical statistics (see,
for example [8,9]) is usually considered the very ma-
thematical formulation for the task (2)-(2a) in which it
is presupposed that approximately given only the right
part of the set of linear algebraic equations which has
Gaussian scattering, whereas matrix elements are
known precisely. In the task which we are considering,

values Ajj c; are presupposed as random.

2. ANALYSIS OF POSSIBLE VARIANTS
OF LIKELIHOOD FUNCTION
Approximation of likelihood function which is used
in [1] and determined by expression (7) depends upon
current meanings of ¢ ; as well as previous approxima-

(m)

tion ¢ PR however, such approach is not coordinated

with the one which is accepted in mathematical statis-
tics. Since its substantiation in the article [1] is not giv-
en, then to solve the problems given in introduction, we
modify expression (7) for likelihood function by using
the results given in [1]. First of all, express likelihood

function only through current meanings of ¢ ;- To do

this, consider that M i which is determined by formula

(6) depends upon current ¢, and V' which is a part of

(7) and is not used in algorithm of probability, present
like this:
=In(M,!). (12)

Then, expression for likelihood function will look
like this:

(Y |e)= ¥ Y [~Ae, + M, In(4,¢,)~In(, ] (13

7
and for Ml.j
A i€

T
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Then, in formula (13) it is necessary to transform
expression In(M;!). To do this, we use generalization

o (14)
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of factorial in case of continuous quantities:
M;!'=T(M; +1), where I'(x) is gamma-function,

and for transformation of In [F(M it 1)] we will use

asymptotic series of Stirling [10]:
In(x!) = ln[F(x+ 1)] = %ln(2ﬂ)—x+(x+%}lnx+ (15)

where B, =1/6, B, =1/30, B; =1/42... . — numbers

of Bernully. Absolute error of series is less than the first
rejected member. This series is not a convergent one. Its

application is problematic at x <1, ie., X i U1 or

X i < 1. Such a situation is possible in the field of

large depths or very small concentrations of impurities
when X-Ray radiation can be unregistered.

Expressions (13) — (15) are used for analytical com-
putation of informational Fisher matrix (11) which, due
to its lengthiness, is not given here. Theoretically, it can
be found by means of using computation differentiation.
However, such a procedure itself is incorrect and unsta-
ble (similarly to solution of integral equation (1)). In
case of large number of variables for computation of
secondary derivatives, it is necessary to use differential
formulas of high preciseness. But in this case, the task
of averaging in the formula (11) which is to be carried
out numerically complicates essentially, and this can
require unacceptably huge costs of calculation time.

Thus, the final goal of our research is computation
of covariance matrix and determination of root-mean-
square error for profile reconstruction. As it is clear
from the mentioned above, various variants of likelih-
ood function which are determined by number of ad-

dendum that contain factors B, in asymptotic series of

Stirling can be offered. Let’s note, that algorithm which
is determined by formula (9) is used for profiles recon-
struction. It is not connected with those variants of like-
lihood function which are determined by expressions
(13), (14) and (15). The results given below are needed
to be considered as preliminary researches. They allow
to determine the ways of solution of problems which are
mentioned in the introduction. Investigation of likelih-
ood function and covariance matrix has been carried out
by means of numerical simulation using three profiles of
distribution of phosphorus impurities in silicon sample
which have been considered in [2], Gaussian, monotone
increasing and monotone decreasing. Use of algorithm
(9) can be justified in this case by the fact that at differ-
ent variants of likelihood function it was increasing.

Our task is (to):

a) to obtain type of likelihood function which is
mathematically substantiated, approximated, suitable for
practical use but adequate to experimental conditions;

b) informational Fisher matrix, which was generat-
ed by it, should be positively determined,

¢) make sure on test tasks that error estimation of
reconstructed profiles which was obtained by cova-
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riance matrix decreases with decrease of error of yield
of X-Ray radiation.

The last item is a criterion of practical applicability
of algorithm. At that, such an conclusion can be made
according to results of considerable volume of numeri-
cal simulation and processing of experimental results
with previously known distribution of impurity profile.
Information weather such investigations have been car-
ried out by the authors of the work [1] is not available
for us. Motives of formulating the very tasks come from
results of preliminary numerical simulation.

3. NUMERICAL INVESTIGATION
OF VARIOUS VARIANTS OF LIKELIHOOD
FUNCTION
3.1. GENERAL ISSUES OF COMPUTATIONAL
MODELING

At numerical simulation of likelihood function, as it
was mentioned before, three test profiles were used as
well as in the work [2]. At that, it was checked weather
Fisher matrix and covariance matrix are positively de-
termined. Positive determines of Fisher matrix was de-
termined by computation of its eigenvalues which, in
this case, should be positive. Type of likelihod function
was changed by equalization to zero of factors
B,,i=1,2,3 in expression (15). At that, the corres-

ponding addendum were rejected. At the beginning, all
three factors were equal to zero, and then in series to
each of them the initial meaning was given back. During
the process of numerical simulation, deviations of the
right part which was reconstructed by current # -th

(m)
J

(m) __ (m)
Yy = ZAA.CA
J

approximation ¢; ~ was controlled

ey (16)
from given Y,. To do this, three types of error were

used: maximal absolute error A :max|}§—Yi(”')|,
i

abs

maximal relative error A = max (‘Yl _Yi(”’)
;

/YI,), and
also summarized absolute error Ay = Z‘Yl - Yi(m)‘.
i

The profile reconstruction was usually beginning from
the meaning of absolute error of algorithm

(51g = max|c{") — ¢ ) which made (0.1 — 1)%
j

a

from average density of impurity and was decreasing in

2 or 2.5 times, and in each decade of orders 10’ was
taken in correspondence to series (5, 2, 1). Concentra-

tion of ¢ ; was, in fact, density which was expressed in
atomic units (number of atoms in sm’). With sample
density 10%2...110% sm™, characteristic values of c;
have order 10%...10°" at concentration of impurity in
several atomic percentage. For all investigated profiles,

o the decrease of all mentioned

three types of error was happening.

with decrease of A,



3.2. INFLUENCE OF THE WAY
OF CALCULATION OF THE RIGHT PART
OF THE TASK ON RESULTS OF PROFILE
RECONSTRUCTION
In introduction it was mentioned that while testing
of (see [2]) maximum-likelihood algorithm for all three
types of profile, there is optimal value of algorithm error

Aalg

close to the testing one, could have been mentioned. At
further decrease of this parameter the calculated approx-
imation was beginning to deviate from the test profile.
The reason for this lies in the following circumstance.
Likelihood function (5) and numerical algorithm (9)
have been obtained not for initial integral equation (1)
but for matrix equation (2) (for the set of linear alge-
braic equations). In the work [2] the right part of matrix
equation (2) have been computed without connection

at which the reconstructed profile was mostly

with elements of matrix Ai/ , but by means of thorough

calculation of integral in the left part (1) by the method
of trapezium with preciseness up to 5-6 decimal digits.
However, such data for matrix equation (2) are less pre-

cise. “Correct” are only those Y, values, which are ob-

tained at substitution in the left part (2) of test ¢ j val-

ues. We have checked this variant for all three profiles.
Fig. 1 shows the reconstructed Gaussian profile which is
the closest to the test one, for yield of X-Ray radiation
computed by numerical integration.

—— Calculation
test

1,4x10%

1,2x10™

3

1,0x10°

8,0x10"

Concentration, cm

6,0x10"
4,0x10"

2,0x10"

0,0

Depth, mcm
Fig. 1. Algorithm error 5.0-10'° . The reconstructed
Gaussian profile which is the closest to the test one. Y,

has been computed by formula (1)

With decrease of absolute error of algorithm Aalg,

the reconstructed profile begins to deviate from the test
one in maximum region and for depths more than 3
mkm. It is shown at fig. 2. Fig. 3 and 4 show the result
of reconstruction of Gaussian profile in case when com-

putation of yield of X-Ray radiation Y, for identical
values of ¢ j is carried out by formula (2). Values of

parameter A, 1o, at fig. 3 and 4 are identical to those,
which are used for profiles that are shown at fig. 1 and 2
correspondingly.

—— Calculation
—-—-= test

1,4x10* 4

1,2x10* 4

3

1,0x10 4
8,0x10°

6,0x10%°

Concentration, cm

4,0x10° 4

2,0x10”

0,0

Depth, mcm

Fig. 2. Algorithm error 5.0-10". Decrease of A

parameter leads to deformation of the reconstructed

alg’

profile relatively to the test one. Y, has been computed
by formula (1)

As it is clear from fig. 3-5, with precise enough ini-
tial data of the task, the of maximum-likelihood method
allows to find solution of the given task reliably and

without deformations. If Y, is computed by formula (1)

and to use matrix equation (2) for the profile reconstruc-
tion, then, at condition of A, j, <(2...5)-1016, the recon-
structed profile is distorted essentially. Similar results
have been obtained for other test profiles also.

1,4x10% 4

—— Calculation
——-- test

1,2x10% 4
1,0x10° 4
8,0x10% 4

6,0x10° 4

Concentration, atoms/cm®

4,0x10*

2,0x10°° 4

0,0

Depth, mcm
Fig. 3. Algorithm error 5.0-10"°. Gaussian profile which
has been reconstructed for data of Y, computed

by formula (2)

1,4x10” —— Calculation
- —-- test

12X T
5
12}
£ 1,0x10™ A
[=]
T
S 80x10”
2
8 "
£ 6,0x07
[}
(5]
S 4,0x10°
o

2,0x10%

0,0 T
0 1 2 3 4 5 6 7 8

Depth, mcm

Fig. 4. Algorithm error 5.0-10". The profile has been
computed according to data which are identical

to fig. 3, but with other meanings of Aalg

177



1,4x10” o
—— Calculation
1,2x10™ o
. - - test
E 1,0x107 4
£
T 8,0x10”
€
[)
2 60x10°
o
o
4,0x10”
2,0x10”
010 T T T T T T T T T
0 1 2 3 4 5 6 7 8

Depth, mcm

Fig. 5. Algorithm error 5.0-10". The profile which has
been reconstructed according to data that has been
computed by formula (2) but with other meaning of

A le which is more (essentially) less than at fig. 3, 4

a

The results of Y,

1
tained by both ways for Gaussian profile, are shown in
the table 1.

computation which has been ob-

Table 1
Yield of X-Ray radiation for test tasks which have
been computed by two ways

# Energy, Yield of X-Ray Yield of X-Ray
MeV radiation of Yl radiation of Yl
which has been which has been
computed by computed by
formula (1) by formula (2)
meaps of inte- using Ai'
gratio - Y
matrix
1 0.6 8.223-10° 1.721-10°
2 0.7 3.646-10° 5.281-10°
3 0.8 1.180-10* 1.314-10*
4 0.9 3.010-10* 3.326-10*
5 1.0 6.637-10* 7.074-10*
6 1.1 1.268-10° 1.320-10°
7 1.2 2.101-10° 2.160-10°
8 1.3 3.0856-10° 3.148-10°
9 1.4 4.121-10° 4.186:10°
10 1.5 5.132:10° 5.200-10°
11 1.6 6.078-10° 6.149-10°
12 1.7 6.945.10° 7.019-10°
13 1.8 7.735.10° 7.812:10°
14 1.0 8.459-10° 8.540-10°
15 2.0 9.127-10° 9.211-10°

As it is clear from this table, there are differences in
yield of X-Ray radiation which has been computed by
two ways, they are the most essential in small energies
of probing beam.

During the process of numerical simulation, devia-

tions of the restored values Yi(m) (16) from given Y,

were controlled. For values K which have been com-

puted by expression (1) the maximal relative error A,

at which the reconstructed profile was the closest to the
test one made 0.00004 for monotone decreasing profile,
0.0026 for monotone increasing one, 0.04 for Gaussian
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one. Further, with increase of deviation of the recon-
structed profile from test one, this error was decreased.
Such regularity was observed for A,y and As. For initial

data which has been computed by formula (2) A, made

107...10° at minimal values of Aalg which were used

in this case.

3.3. CHARACTER OF PERFORMANCES
OF LIKELIHOOD FUNCTION, FISHER MATRIX
AND COVARIANCE MATRIX AT ITERATION
PROCESS

With respect to the mentioned results, the question
about character of behavior of likelihood function in
iteration process appears. Let’s pay attention to the cir-
cumstance that algorithm (9) directly is not related to
the investigated variants of likelihood function (13)-
(15), and the task of this stage of investigation is, first of
all, in obtaining of preliminary results on the problem
we are interested in. Practically for all studied profiles
and for both ways of computation of the right part dur-
ing iteration process the increase of likelihood function
in the all used range of parameters has been observed.
The exception was only increasing profile with initial

data Y, which has been obtained by formula (2). In this

case, with values A, i, from 2.0-10" and less, gradual
decrease of likelihood function has been observed. Such
behavior was typical for all types of likelihood function
(13)-(15). For all profiles with the sequence account of
B, factors in expression (15) difference between its cor-
responding values has been decreasing and for variants
(B, #0, B, # 0, B; #0) and (B; # 0, B, # 0, B; # 0) dif-
ference has been observed in 5™ and 6" decimal digit. It
is followed from the mentioned above that despite nu-
merical algorithm (9) does not go directly from the used
variants of probability function (13)-(15), nevertheless,
it leads to its maximization.

The other side of the problem we are interested in is
to obtain covariance matrix which gives root-mean-
square estimation of error of the reconstructed profile.
Covariance matrix and Fisher matrix have been consi-
dered for all three previously mentioned profiles, for
different variants of likelihood function and for two

types of initial data Y, which has been computed by

formulas (1) and (2). For Fisher matrix (11), analytical
expression has been obtained and it corresponds to all
variants of likelihood function, and which, due to its
inconvenience, is not given here. Fisher matrix by the
sense of its definition should be positively determined.
Covariance matrix has been obtained by numerical in-
verse of Fisher matrix. All diagonal elements of the last
should obligatory be positive because likelihood func-
tion should have maximum. To find out, whether Fisher
matrix is positively determined, its eigenvalues have
been numerically determined, which, in this case,
should be positive.

In most cases which are given here, Fisher matrix
had negative eigenvalues and its positive determines
was rather an exception than a rule. The lowest number
of negative eigenvalues of matrix was in the case when



all three B; factors were not equal to zero. In a number
of cases, when Fisher matrix was positively determined,
covariance matrix could not have been computed due to
ill-condition of matrix (11). In table 2 there are results
of error computation for monotone increasing profile
initial data for which have been modeled by formula (2).

Table 2
Reconstructed monotonically increasing profile

for K , calculated by formulae (2)

with mean-square error

# | Depth, | Test values, | Reconstructed |Standard error,
mkm cm™ values, cm™ cm™

1| 0268 | 1.370-10%° 1.371-10%° 0.118:10%°
2 | 0.805 | 3.747-10%° 3.744.10%° 0.523.1-%
3| 1.342 | 5.708-10% 5.715-10%° 0.992-10%°
4| 1.879 | 7.328-10%° 7.316-10%° 1.395-10%°
5| 2.416 | 8.665-10%° 8.688-10%° 2.685-10%°
6 | 2.595 | 9.768-10%° 9.712-10%° 4.986-10%°
7 | 3.490 | 1.068-10% 1.075-10%' 7.081-10%°
8 | 4.027 | 1.143-10% 1.146-10%' 6.536-10%°
9 | 4564 | 1.205-10* 1.193-10%' 3.909-10%°
10| 5.101 | 1.256-10 1.249-10%' 1.833-10%°
11| 5638 | 1.299-10% 1.332-10% 0.824-10%°
12| 6.175 | 1.334-10* 1.340-10%' 0.296-10"°
13| 6.712 | 1.362-10 1.317-10% 0.102-10%°
14| 7.249 | 1.386x107 1.392-10% 0.0538-10%°
15| 7.786 | 1.406-10 1.187-10%' 0.0302-10%°

For the case, which is given in the table 2, the initial
data are precise enough. As it is clear from the table,
monotone increasing profile is well reconstructed on

depths up to L1 6 mkm, and further, deviation increases.

On the other hand, error estimation here is rather large,
especially in the middle of the table, whereas at the end
where deviation between computation and testing in-
crease the error estimation is less than these deviations.

The carried out investigation of Fisher matrix and
covariance matrix coming from probability function
(13) — (15) shows that they are not always have perfor-
mance of positive determination. With increase of num-
ber of items which are kept in formula (15) the number
of negative diagonal elements of covariance matrix de-
creases. While keeping three last addendum in a asymp-
totic series (15) more variants at which Fisher matrix is
positively determined are realized, and all diagonal ele-
ments of covariance matrix are positive. However anal-
ysis show, that not always it diagonal elements ade-
quately reflect error of profile reconstruction. An exam-
ple of this can be the table 2. With increase of number
addendum which are kept in expression (15) the con-
vergence of likelihood function has been taken place.
Results which have been obtained for informational and
covariance matrices contrast with this.

Presence of negative eigenvalue in Fisher matrix jus-
tifies that near the point of expected maximum of that
approximation of likelihood function which we are in-
vestigating (the first derivatives are equal to zero) its
profile in space of variables is not convex, and can have
look saddles. To find it out, we have studied dependen-
cy of likelihood function from its variables near the ex-

pected maximum. In case of all studied profiles of im-
purity distribution density, the likelihood function had a
convex parabolic character for some set of ¢;, where 1 <
J <Jmax <n, n is a task dimension. For j > j..« likelihood
function did not have such explicitly expressed convex
look. These likelihood of j correspond to the most

deep layers of the investigated sample, to which beam
penetrates. Analysis of likelihood function and Fisher
matrix shows that this region of the sample is objective-
ly the less informative to obtain reliable results of re-
construction. Physically it means that contribution of X-
Ray radiation from deep layers due to damping is consi-
derably less then from surfaces, and it turns out to be
insufficient for a rather precise determination of impuri-
ty in maximal depths on which beam can spread. For the
correct solution of the appeared mathematical problems
mentioned above, first of all, it is necessary to use the
most  suitable approximation for My , =

4. CONCLUSIONS

1. The carried out investigations allow to explain
“overshoot” of the reconstructed profile “pass” the test-
ing one in that case when the yield of X-Ray radiation is
calculated by formula (1) by means of thorough numeri-
cal integration. The reason is that maximum-likelihood
algorithm has been developed for matrix equation (2)
and not for the integral one (1).

2. The up-graded variants of likelihood function (13)
-(15) have been offered and studied without a strict ma-
thematical substantiation. Algorithm (9) which is of-
fered in [1] and which do not comes from the investi-
gated variants of probability function has been used for
this. However, the increase of likelihood function for all
its variants at all test profiles and different ways of cal-
culation of yield of X-Ray radiation has been observed
with its use. Convergence of series (15) which is used in
likelihood function with increase of number of keeping

addendum which contain Bl. factors has been observed.

3. Informational and covariance matrices which cor-
respond to different variants of probability function
have been studied. Practical use of covariance matrix
for error estimation of the profile restored with the sti-
pulated variants of probability function turns out to im-
possible. The reason of this lies in the fact that in many
of the investigated variants they did not have positive
determination. And in those cases when this condition
was fulfilling the obtained error estimations of profile
reconstructed did not correspond to the really obtained.
It points out on necessity of correct account of influence
of deep layers of the investigated sample on forming of
probability function and matrices which are following
from it.
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OIIEHKA KAYECTBA METOJA MAKCUMAJIBHOI'O TIPABAONIOAOBUA NIPUMEHUTEJIBHO
K 3AJJAYE OIPEJAEJIEHUA PACTIPEJEJEHUA IPUMECH 11O XAPAKTEPUCTUYECKOMY
PEHTTEHOBCKOMY U3JIYYEHUIO, BO3BY KXKJAEMOMY ITPOTOHAMMU

HU.K. Kosanvuyxk, B.B. /leseneu, A.A. Lyp

IIpoBeneHo YMCIEHHOE MCCIEA0BAHNE IS PA3HBIX MPHOMIDKSHIH (GYHKINH MpaBAonono6us n MaTpunsl Oumepa npuMeHH-
TEIBHO K aJITOPUTMY MaKCHMAJBEHOTO IIPaBJOIOA00Hs TSl OIpeeIeH s TPOQHIIs IPUMECH HEKOTOPOTO XUMUYECKOTO dJIEMEHTa
B mccuenyeMoM obpasue Merogom PIXE. ITokasaHo, 4To ImpOBEAEHHOE paHee TECTHPOBAHHE TOTO ANTOPUTMA yKa3bIBaeT Ha
MIPUHLUINATIBHYIO0 BO3MOXKHOCT €r0o IPUMEHEHHUS U1l BOCCTAHOBIICHUs poduist npuMecn MetonoMm PIXE, onHako, ero mpax-
THUYECKOE NPUMEHEHHUE BBI3BIBACT TPYAHOCTH, a NMPEAJIOKEHHOE paHee BhIpaXeHHe Ul (QyHKIMU MpaBIONOA00Hs HE HO3BOJISET
OTIPEAEIUTh TOYHOCTh BOCCTAHOBJICHUS MPOGUIs npuMecH. M3ydeHsl mpoOiIeMsbl, MPENSTCTBYIONINE BO3MOXKHOCTH MpaKTHYe-
CKOTO HCTIOJIb30BaHUS AJITOPUTMA.

OIIHKA AKOCTI METOAY MAKCHUMAJIbHOI TPABAOTNIOAIBHOCTI INPA 3ACTOCYBAHHI
10 3AJAYI BUSHAYEHHS PO3IOALTY JOMIIIKY 110 XAPAKTEPUCTHYHOMY
PEHTTEHIBCBKOMY BUITPOMIHIOBAHHIO, IO 3BYKYETHCA IPOTOHAMU

LK. Kosanvuyk, B.B. Jleseneus, A.O. Llyp

IIpoBeneHo YMCIEHHE DOCITIPKEHHS JUlsl Pi3HUX HaOmmkeHb (QyHKIIT npaBmpononi6bHocti M Matpuni Pimepa npu 3acrocy-
BaHHI JI0 QJITOPUTMY MAaKCHMaJbHOI IIPaBJOIOAIOHOCTI IPU BU3HAYEHHI MPO(DLII0 JOMIIIKY SKOTOCh XiMIYHOTO eJIeMEHTa B 3pa-
3Ky, 1o gocuimkyerbes Merogom PIXE. ITokasano, 110 npoBeaeHe paHillie TECTYBaHHS L[bOTO AJITOPUTMY BKa3ye Ha MPHUHIIHUIIO-
BY MOXJIUBICTh HOrO BUKOPUCTAHHS [UIsl BCTAHOBJIEHHs npodiiro gomimku MeronoMm PIXE, oxgnak, Horo mpakTuuHe BHKOpPHC-
TaHHS BU3UBA€E TPYIHOIII, a HABEICHUH paHime BUpa3 Wil GYHKIIT MpaBIonoaiOHOCTI He JO3BOJISE BUZHAYUTH TOYHICTH BCTAHO-
BIIeHHS podinto gomimku. Jocmimkeri npo0ieMu, Mo MePemKoKAI0Th MOKINBOMY MPAKTUYHOMY BUKOPHCTAHHIO AJITOPUT-

My.
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