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The response of the ideal gas consisting of hydrogen-like atoms to the perturbation by the external electromag-

netic field in low temperature region is studied. Consideration is based on using the Green functions formalism [1] 
and the second quantization method in the presence of bound states of particles [2]. As the most interesting phe-
nomenon, the perturbation of system in Bose-condensation state is studied. The dispersion characteristics of such 
system at frequencies close to the energy interval between alkali atoms energy levels are investigated. 
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1. INTRODUCTION 
In the process of describing a behavior of many-

particle systems a class of problems appear, that are 
concerned with the system response to the perturbing 
action of the external, in particular, electromagnetic 
field. Widespread approach to solving such kind of 
problems is based on using the Green functions formal-
ism (see in that case e.g. Ref. [1]). 

It is well known that the most convenient method of 
describing physical processes in quantum many-particle 
theory is the second quantization method. Thus, within 
the framework of the second quantization it is the sim-
plest way to formulate an approach to a description of 
the system response to the perturbation by the external 
field that is based on Green functions. However, if we 
try to realize such an approach, we can come across an 
essential difficulty, connected with the possible occur-
rence of the particle bound states. 

As it has been shown in [2] for a system that con-
sists of two types of fermions (e.g. ions and electrons) 
and bound states (atoms or molecules) in low kinetic 
energies region we can use the approximate formulation 
of the second quantization method. It makes the mathe-
matical description of such kind of systems rather sim-
ple, but preserves the required information concerning 
internal degrees of freedom for the bound states. 

If the creation and annihilation operators for the dif-
ferent kind of particles are constructed, it is not difficult 
to broaden this theory on the external fields’ existence 
situation. In this case the physical quantities operators 
(such as charge and current density operators) and the 
Maxwell-Lorentz system of equations that includes con-
tribution of neutral bound states can be constructed (see 
Ref. [3]). 

In order to simplify the following mathematical de-
scription it is convenient to consider such system (ideal 
low-temperature hydrogen-like plasma) in the equilib-
rium state (including its photon component). In this case 
(as it has been shown in Ref. [4]) we can neglect of free 
fermions contribution in the different physical processes 
that are observed in the system at extremely low tem-
peratures.  

2. BASIC OPERATORS 
As we consider the system in low temperature re-

gion, the creation and annihilation operators for the hy-
drogen-like atoms (as the bound states of two different 
particles, see Ref. [2]) can be written as 
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Here m1, x1 and m2, x2 are the atomic core and the outer 
electron masses and coordinates, respectively, α is the 
set of quantum numbers of the atom in the certain state, 
characterized by the wave function ,  is 
the annihilation operator of boson in α state. 

(x)αϕ ˆ (X)αη

The expression for the Hamiltonian of non-
interacting atoms can be written as: 
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where ,  is the energy of an 
atom in  quantum state ( ), M is the bound state 
mass,  is the system volume. Using Eqs. (1)-(2) one 
can find the expressions for the charge and current den-
sity operators (accordingly to Ref. [1]), which in the 
Heisenberg representation take the form:  

2 2(p) p / Mα αε ε= +
α αε

V

αε
0<

( )

1

1

2

− −− − −

+

− −− − −

+ +

=

× −

=

× − + −

∑∑

∑∑

iti

iti

M

V e e

V e e

( (p) (p '))x(p p ')

p,p ' ,

( (p) (p '))x(p p ')

p,p ' ,

(p p')

ˆ (x)

ˆ ˆ                    (p p') (p) (p'),
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Here for the compactness we have introduced the 
charge density σαβ(k) and the current density Iαβ(k) ma-
trix elements, which can be represented in terms of the 
atomic wave functions by the following formulas (see 
also Ref. [2]): 
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where e corresponds to the absolute value of electron’s 
charge. 

 

3. MAXWELL EQUATIONS AND GREEN 
FUNCTIONS 

We have introduced the operators of charge 
and current density of ideal gas that consists of 
neutral atoms, and then it is not difficult to build 
the Maxwell-Lorentz system of equations that can 
describe the system response to the perturbation 
by the external electromagnetic field. These equa-
tions for the mean values of operators have the 
following form: 
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where values σ(e) and J(e) are the external charge 
and current densities. If to assume that the pertur-
bation of the system by the external field source 
is rather small, and the Hamiltonian of interaction 
is linear in respect to the external electromagnetic 
field, the mean values for the charge and current 
densities in Eq. (5) can be represented in terms of 
the Green functions (see Ref. [1], [3]) 
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Here  are retarded scalar, vector 
and tensor Green functions respectively. Introduc-
ing the equilibrium state distribution functions for 
the ideal gas of hydrogen-like (alkali) atoms 
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where  is the atomic chemical potential,  is 
the temperature in the energy units, the Fourier 
transforms of these Green functions, according to 
Ref. [3], can be written as follows: 
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4. THE IDEAL GAS IN THE BEC STATE 
As the hydrogen-like atoms obey the Bose-statistics, 

our system can also exhibit different properties peculiar 
only to Bose-gases. The most interesting feature of such 
systems (for our opinion) is a capability to produce the 
Bose-Einstein condensate (BEC) at extremely low tem-
peratures (see more in that case in Ref. [4]). Moreover, 
analyzing most of experiments with dilute gases of al-
kali atoms in BEC state (see e.g. Refs. [5], [6]) it is 
clear that interaction of such system with an external 
field plays one of the main roles in the investigated 
phenomena. 

4.1. MACROSCOPIC PARAMETERS 
To find the macroscopic parameters of the system in 

BEC state ( T ) we shall consider the case of zero 
temperature that is equivalent to the assumption when 
we can neglect the over-condensate particles contribu-
tion. Therefore, one can state that the bound states dis-
tribution functions  are proportional to the Dirac 
delta-function. According to (8) after integration over 
momentum p the scalar Green function of the ideal gas 
in BEC state will take the form: 
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where  is the density of condensed atoms in the cer-
tain state,  is the energy interval and the 

quantity  (we shall neglect it below). Note, 
that analogously to Eq. (9) the vector and tensor Green 
functions (see Eq. (8)) for the system in BEC state can 
be found. 

nα

ε
αβ α βε ε ε∆ = −

2 2/k k M=

If the Green functions are known, it is not difficult 
to find out the macroscopic parameters (see, for exam-
ple Ref. [1]), characterizing the system response to the 
perturbation by the external electromagnetic field (e.g. 
the laser radiation). The expressions for the permittivity 
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and magnetic permeability in terms of the Green func-
tions can be written as follows: 
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where  and  are longitudinal and transversal con-
ductivity coefficients, respectively: 
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where  is the Kronekker symbol.  ijδ

4.2. LIGHT DELAY PHENOMENON 
As it is known from the experiments (see Ref. [6]), 

if to set the frequency of the laser (as an external field 
source) close to some of the atomic levels, the group 
velocity of such signal can be slow down to the ex-
tremely little values. We assume that the developed the-
ory also can describe such kind of peculiarities.  

Let us demonstrate it on the system that is close by 
the energy structure to alkali atom’s levels (see Fig. 1). 
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Fig. 1.  Three-level system. Atoms are occupying 

mostly the first and the second states (hyperfine struc-
ture levels); the third state (non-occupied) corresponds 
to the dipole-exited state. The laser frequency (arrow 
vertical line) is dephased relatively to the energy inter-
vals  and  13ε∆ 23ε∆

In that case (when we can neglect the contribution of 
the other states of atoms), using Eqs. (9)-(10), one can 
find the following expression for the permittivity: 
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where the quantities  and  are linewidths related 
to the probability of the spontaneous transition from the 
dipole-excited state to the lower and upper states of 
hyperfine structure levels, respectively. As it is easy to 

see from Eq. (11), the permittivity in general 
case is the complex quantity 
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one can find the refractive index and the intensity of 
passed light dependencies (see Fig. 2,3) 
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Fig. 2.  Refractive index behavior for the three-level 

system. . Left and right steep slopes 
( ) correspond to the frequen-
cies  and , respectively 
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Fig. 3.  Relative intensity of the passed light de-
pendence on the relative frequency. At the frequencies 

 and  the dissipation is large and 
light doesn’t propagate. At frequencies that is dephased 
relatively to the energy intervals, the transparency win-
dow can exist 

13ω ε= ∆ 23ω ε= ∆

In the regions where the dissipation is not large one 
can use the expression for the group velocity: 

( / )g
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n dn dω
=

+ ω
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From the Fig. 2, Fig. 3 and Eq. (12) it is clear that the 
group velocity depends greatly from the steepness of 
the central slope. If the levels marked by 1 and 2 (levels 
of hyperfine structure for alkali atoms) are situated suf-
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ficiently close to each other, the light can be slow down 
to the extremely little values (see Ref. [6]). Note, that 
such phenomenon cannot be observed for the frequen-
cies  and  because of large dissipa-
tion (see Fig. 3). 

13ω ε= ∆ 23ω ε= ∆

Finally, one can conclude that if the frequency of the 
illuminating laser is dephased relatively to the energy 
intervals, and ground state levels (marked here by num-
bers 1 and 2) are situated close to each other, the light 
delay phenomenon can be observed. 
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ОТКЛИК ИДЕАЛЬНОГО ГАЗА ВОДОРОДОПОДОБНЫХ АТОМОВ НА ВОЗМУЩЕНИЕ 
ВНЕШНИМ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ 

Ю.В. Слюсаренко, А.Г. Сотников 

Изучен отклик идеального газа, состоящего из водородоподобных атомов, на возмущение внешним элек-
тромагнитным полем в низкотемпературной области. Исследования основаны на формализме функций 
Грина [1] и методе вторичного квантования в присутствии связанных состояний частиц [2]. В качестве наи-
более интересного явления изучено возмущение системы, находящейся в состоянии бозе-конденсации. Ис-
следованы дисперсионные характеристики такой системы в области частот, близких к интервалам энергий 
между уровнями атомов щелочных металлов. 

 
 

ВІДГУК ІДЕАЛЬНОГО ГАЗУ ВОДНЕВОПОДІБНИХ АТОМІВ НА ЗБУРЕННЯ ЗОВНІШНІМ 
ЕЛЕКТРОМАГНІТНИМ ПОЛЕМ 

Ю.В. Слюсаренко, А.Г. Сотніков 

Вивчено відгук ідеального газу, що складається із водневоподібних атомів, на збурення зовнішнім елек-
тромагнітним полем у низькотемпературній області. Дослідження базуються на використанні  формалізму 
функцій Гріна [1] та методу вторинного квантування, що враховує можливість утворення зв’язаних станів 
частинок [2]. Як найбільш цікаве явище вивчено збурення системи, яка знаходиться у стані бозе-
конденсації. Досліджені дисперсійні характеристики бозе-конденсату в області частот, близьких до 
інтервалів енергій між рівнями атомів лужних металів. 
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