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The results of investigations of condensed matters with internal structures are presented. Additional macroscopic
parameters connected with this internal structure in the case of uniaxial and biaxial nematic liquid crystals and bio-
logical tissue are introduced as the definite functions of distortion tensor. Thermodynamics of such states is formu-
lated and non-linear equations of hydrodynamics in alternating external field for these condensed matters are de-
rived. Acoustic spectra of collective excitations are found out and their angular dependences are investigated. Low-
frequency asymptotics of two-time Green functions are obtained.
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1. INTRODUCTION

Nowadays investigation of liquid crystalline matters
is of great interest. These condensed states possess the
property of liquid — fluidity and anisotropy — property of
solid state. The essential feature of liquid crystals is
presence of internal anisotropic ordered structure of
mesoscopic or nanoscopic sizes, which is shown on
macroscopic level as the certain physical phenomena
and processes.

The purpose of the given work is the investigation of
dynamics and establishment of spectra of collective
excitations in uniaxial and biaxial nematic liquid crys-
tals with the structural elements size and shape taken
into account in the presence of external alternating
fields. The basis of investigation is use of the concep-
tion of reduced description of multiparticle states, appli-
cation and development of Hamiltonian mechanics for
condensed matters with structure.

As the application of the approach developed by us
the model of blood dynamics which takes into account
erythrocytes size and shape on the macroscopic level is
constructed. Hemodynamic equations with regard to the
dissipation processes are derived. It is clarified that tak-
ing into account size and shape of the erythrocytes leads
to the appearance of the two new kinetic coefficients of
percolation, besides the coefficient of heat conduction
and two coefficients of viscosity. Acoustic spectrum of
collective excitations is obtained and structure of the
damping factor of sound is clarified.

2. UNIAXIAL NEMATIC
2.1. ROD-LIKE MOLECULES

Using Hamiltonian approach of Refs. [1, 2], we ob-
tained dynamic equations of uniaxial nematic with rod-
like molecules in an external alternating field. The
Hamiltonian of the system consists of Hamiltonian of
medium and interaction with an external field

H=H+V, H= jd3xg(; (x). V() 1),

V= jd3x§xtB(£ an( )l(x))
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Here ¢, =0,7;,p are the densities of mass p, mo-
mentum 7, , entropy o and energy &; n; is unit vec-
tor of spatial anisotropy, / is length of a molecule,
§(x,t) is external field, B(Qa,n[,Vn,-,l) is arbitrary
local physical quantity, which at large enough times
becomes function of reduced description parameters.
For dynamic quantities equations are obtained

p=-Vimi+np, i ==Vl +1y,,

o= —Vk(O'Vk)+T]O- P

l = —stsl—lé‘l.#‘ (ﬂ)VJVl +n7,

nj=-vgVgn; +5ij-(fl)nkvkvl~ +1n; >

where v;=m;/p is  macroscopic  velocity,

51% (ﬁ): Oy —n;ny, and sources caused by an external

field have the following form
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The expression for the flux density of momentum looks
like
on k 6V oy

oe oe
k() 25 v,
on ny 6V jha

os os oe
where P=-¢c+7 - +n i + o-a— is pressure.
7y n o

Vi’l;L

65 1
+ oy 10 )=

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 380-384.



We investigate spectra of collective excitations on
the basis of Egs (1). Their linearization leas to the two
linear acoustic spectra
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where A = B/c >0, B—£i>0

p ol
c:((')P/ Gp)l/2 is the velocity of sound in isotropic
phase; @ polar angle specifying direction of a wave
vector k in relation to an anisotropy axis and
T =0e /00 temperature.
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Fig. 1. Angular dependence of the velocity c, at
A=0.1 (a)and c_ at 1 =0.1 (b)

From the system of Egs. (1), (2), using the approach
[3], the general expression of the low-frequency asymp-
totics of Green functions is obtained

Gaplk,0)= L (E.0)Dj (F.0)E (-F0), ()
where the following designations are introduced
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Given low-frequency asymptotics do not contain peculi-

arities like 1/ k2 ,1/k . The reason is connected with the

fact that as against cases considered before (see Refs.
[3, 4]), set of reduced description parameters does not
include density of generator of broken symmetry. In
given case this quantity is orbital moment, which is con-
jugated in relation to anisotropy axis. In given works set
of hydrodynamic parameters contained both density of
generator of broken symmetry (mass or spin density),
and corresponding conjugated quantity, as resulted at
the end to above-stated peculiarities.

2.2. DISC-LIKE MOLECULES

The dynamic behavior of condensed matter with
such form of molecules is carried out similarly with the

earlier considered case. The dynamic equations of uni-
axial nematic with disk-like molecules in an external
alternative field look like

P=-Vimi+np, t; ==Vitig +Nz,,

o =—Vilovi )47, ,

d= —vVd —dngm Vv +n4,

nj= —stsl’lj —nié'jJ;l (ﬂ)VﬁVi +77’lj , %)

where d is the disc diameter, and the sources look as
follows
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Linearization of Egs. (5) in this case also leads to the
two anisotropic velocities of acoustic waves
¢
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Fig. 2. Angular dependence of the velocity c, at
A=3 (a)and c_ at 1=1 (b)

With the help of Egs. (5), (6) we obtain the general

expression of the low-frequency asymptotics of Green
functions

GAB(E,a))=Lf(l?,w)Dyfl(E,w)L?(—l?,—w), 7

where the following designations are introduced
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Comparing the formulas (4) and (8), we see, that the
low-frequency asymptotics of Green functions are dif-
ferent in the case of uniaxial nematics with the rod-like
and disc-like molecules. Also it is easy to see, that in the
given case Bogolyubov theorem about singularity like

1/k? is violated, because orbital moment does not en-
ter the set of reduced description parameters.

3. BIAXTIAL NEMATIC
3.1. ROD-LIKE MOLECULES

In the case of biaxial nematics with the ellipsoid-like
molecules set of thermodynamic variables contains two
unit and orthogonal vectors of anisotropy and three con-
formational parameters describing size and shape of a
molecule. Acting further similarly to previously consid-
ered case of uniaxial molecules, it is easy to obtain
equations of ideal hydrodynamics of biaxial nematics
with rod-like molecules

p=-Vizi, iy ==Vity, &=-Vilon),
nj :_stsnj_FiﬁjVﬂVi,
m] =—stsmj_Gl'ﬂJ'VﬂVi,

u=-vVau—-F;V v,

v=—v,Vov=G;V v,

p=—vVsp—HpVyv. ©
Here n;,m; are unit orthogonal vectors of spatial ani-
sotropy, conformational parameters p,u,v determine

the sizes of long and short axes of molecule and an an-
gle between them. The expression for the flux density of
momentum looks like

tl'k = PSik +£T{i + o Vl-nx + O Vimk
61'ck 6ank 6Vkmk
oe oe oe oOe ot
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where the designations are entered
Fiﬂ,j = _”15$(ﬁ)+ pm [nimi +”imi] 5
Gipj :_mi5ij'_(’77)+(1_17)”j [2im +nym; ],
Fi =ulog )+ (= p)lmg +mm;).
G =0 () P = )iy +mm;),
Hy =2p(1=p)ning —m;my).

Linearization of the Egs. (9) leads to the dispersion
equation

0)616( k,e,(P )+(0414( k,e,(P )

+0° 1, (k,0,0)+1y(k,0,0)=0. (10)
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Here coefficients 7, in terms of azimuthal and polar
angles are as follows

Ig=1,14 =—k2c2(1+ 1,0,(0,0)),

I =k447;%;(60,0),

1>

d)l(ﬁ,(p)z 1-sin2 @sin2 (p+%sin2 9+%sin2 Osin2¢,

@2(9,¢)= 1-sin2 @ cos? (p+%sin2 0—%sin2 fsin 2,

=—+cos? gpcos? 9—%sin2¢,
=sin? 49(1—sin2 0 cos? Z(p),

\PZI(QJP): %sin‘* O cos? Hsinz[Z—Z(Pj ,
\P31(5, (ﬂ) =sin? Ocos2 Bsin4(z _wj’

‘{’32(9,¢>):sin4 O cos? 90054(Z—¢7j, (11)

where three dimensionless parameters are entered

A = u22 62‘9’ 5= v2 62‘9’
poc ou? pc2 ov2
pc= op

Polar and azimuthal angles 6, ¢ specifying a direction
of the wave vector é =k /k in relation to anisotropy
axes are entered by ratio

em=sinf@cosp,en =sinfsing, el =cosf.

The vectors m, 7,/ form such a rectangular Cartesian
coordinate system, that two anisotropy axes mi,n coin-

cide with an axes direction in considered nematic liquid
crystals in nondeformed state. Eq. (10) can be trans-
formed to as follows

P Ewy+z=0,
where

1 2

1

w=Ily—=12, z=—[3——LI1,+1.
SR 2774 370

Three real solutions corresponding to three values of

velocity of oscillations

yp =2s cos(p+2(n—-1)7)/3, n=12,3

exist when the inequality for discriminant D is valid
D=(w/3) +(z/2)* <0,

where the designations are entered

s=~—-w3/27.

The solutions of the initial Eq. (10) accordingly will
take accordingly a form

cosp=—z/2s,



o (k,0,0) =y, ~1413= 3 (0.0)k>.
Here ¢, (0, (p) are three velocities of propagation of

collective excitations in the given condensed matter.

When D >0, then the cubic equation has one real
solution and two complexly conjugated. In this case
nematic is characterized by one branch of collective
excitations, which looks like

1(k.0.0)=3-2+:/D +3-2 /D
= (0.pk2 +1473.

In the area of changing of thermodynamic parame-
ters, where inequalities A3 >> A, 4, are valid, the for-

mulas for velocities of acoustic waves become simpler
and get a kind

012 = 02(1 + 2,3<D3(9, qo)),

c% = 02/13‘1’3 (9,@) , c3=0.

Thus, in nematic with rod-like molecules with three
conformational degrees of freedom taken into account
the propagation of one up to three branches of acoustic
spectra is possible.

3.2. DISC-LIKE MOLECULES

The equations of ideal hydrodynamics of biaxial
nematic with disc-like molecules and with three con-
formational degrees of freedom look like

p=-Vizi, #;=-Vty, 6==V(ov),
= fiyVavis
mj=—vsVemi—gizVivi,
c}:—v Vu—fi;V v

Vv Vev—g;V v,
pP==vVip=hyVivy,

nj=-vsVen;

(12)
where the quantities ¢,¢ determine change of length of

both axes of anisotropy. The expression for the density
of momentum flow looks like
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where the designations are entered

Sk = "i5ﬁ1 (77)— pm j(n;my +nzm;),

gizk =mi6 % (m)=(1=pln;(mim +nym;),
Sik = Q(ni”k —p(=p)(n;my +nym, ))
gik =f(m'mk +m(nimk tngm; )),
hig = 2p(1=pXmimy =niny.).

Linearization of Egs. (12) leads to dispersion equa-
tion like Eq. (10), where the coefficients I¢,7,,/, are

the same as well, as in formula (11), and 74 looks as
follows

14(k,0,0)=—k2c2(1+ ;@

<D19<0=(

©;(0.0).

(p sin @ cos goj sin2 9,

.h
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Here three dimensionless parameters are entered
2 92 2 72
q- 0%¢ 12 0%
MN=—F—5,4 , 14
| = 22 og2 2= o o (14)
2 32
A3 = p—za% .
pc op

The further analysis is performed similarly the pre-
viously considered case. It is shown, that also in given
case the condensed matter is characterized by one up to
three spectra of collective excitations. By virtue of dis-
tinction of coefficients 7, for nematics with disc-like

and rod-like molecules angular dependences of these
spectra for these cases are different.

4. HEMODYNAMICS

In this section we will use the results of developed
dynamic theory to describe movement of blood taking
into account erythrocytes size and shape on the macro-
scopic level. It can be shown, that the equation of dissi-
pative hemodynamics are as follows

p=-Vizi, (15)
ai :_Vk(tgg +tilk)

TTi7T oe
t9 =Py + -7k +3bTab§,k,

2
th :_Wl(vkvz +Vivk - 3 5ikvlvlj_7725ikvl"l s

o=-Vilib + il 1, % =ovi.

. 1
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K 2 1 2
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1 2
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+%§1 (V4T +TVb) +%§2F2(ka)2 >0

b=-v Vb %bvkvk +& VTV, b+ %E_,]bAT

+(1 G+& IN( Vib )
+§( & +& )b( rab+Ty( Vib )’ )

Here b — erythrocyte diameter; x — coefficient of
heat conduction; 7; u 17, — coefficients of the first and

second viscosity; & u £, — kinetic coefficients of per-
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colation. For the quantities I' and I the following
designations are entered
2 2 3
r=lipdé plpde lpde
3 ap? 3w 3’

Linearization of Egs. (15) allows us to obtain the
expressions for modes propagating in given condensed
matter

1 2
w1 =0, w34 =—l;771k ,

velocity increase. This fact is in accordance with the
experimental data obtained before [5].

Note, that in the limit of isotropic liquid
(b=0,8,=0,& =0), we will obtain known results
valid for unstructured liquid [6].
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is speed of sound in a blood. We can see that taking into
account size and shape of erythrocytes leads to sound

JJMHAMMYECKASI TEOPUSI KOHJAEHCUPOBAHHBIX CPEJ] C BHYTPEHHEN CTPYKTYPOM
M.IO. Kosaneeckuii, JI.B. J/lozéunoea, B.T. Mayxesuu

[IpencraBneHsl pe3yibTaThl WCCICAOBAHMA ITWHAMHUKH KOHICHCHPOBAHHBIX Cpell ¢ BHYTPEHHEH CTPYKTYpO.
JlomoTHUTEIbHBIE MAKPOCKOITMYECKHE MapaMeTphl, CBSI3aHHBIE CO CTPYKTYPOH, B CIIy4ae OJHOOCHBIX U JBYXOCHBIX
HEMAaTHYECKHUX JKHIKUX KPHUCTAJIIOB M OMOJOTMYECKUX CpPel BBEJICHBI KaK OnpeerneHHble (YHKIMH TeH30pa JUC-
topcuu. ChopmynupoBaHa TepMOJINHAMHUKA TAKUX COCTOSIHUHN M MOJTyYEHbI HEIMHEHHbIE YPaBHEHHS THIPOHHAMHU-
KU BO BHEIITHEM IEPEMEHHOM Irojie. HalineHbl akycTiyecknue CeKTphl KOJUIEKTHBHBIX BO30YXK/IEHUH W HCCIieioBa-
HBI MX YTIJIOBBIE 3aBUCUMOCTH. [10JTy4eHbl HU3KOYAaCTOTHBIE aCUMIITOTUKH JIBYXBpeMeHHbIX QpyHKuuii ['puHa.

JANHAMIYHA TEOPISI KOHIAEHCOBAHUX CEPEJOBHUIIL 3 BHYTPIINIHBOIO CTPYKTYPOIO
M.IO. Koeanescovkuit, JI.B. Jlozéinosa, B.T. Mauxeeuu

[TpexacTaBneHo pe3ynbTaTd AOCHIIKEHb KOHACHCOBAaHUX CEPEJOBHII 3 BHYTPIIIHBOIO CTPYKTYpolo. /logaTkosi
MaKpOCKOIIIYHiI apaMeTpH, OB’ s3aHi 3 BHYTPILIHBOIO CTPYKTYPOIO, Y BHIIAJIKy OHOBICHHX Ta JIBOBICHMX HEMaTH-
YHUX PIIKAX KPHUCTAIIIB 1 O10JIOTIYHHUX CEPEOBUIN YBEACHI K Bu3HaueHi QyHKIT TeH3opa nuctopceii. Chopmyiibo-
BaHa TEPMOJMHAMIKa TaKUX CTaHIB Ta OTPUMAaHI HENiHIIHI PIBHSHHA TiIpOJANHAMIKY Y 30BHIIIHHOMY 3MIHHOMY I10-
7i. 3HaliieH] aKyCTHYHI CIIEKTPH KOJEKTUBHHX 30y/DKEHb Ta JIOCII/PKEHI X KyToBi 3anexHocTi. OTpuMaHi HU3bKO-
YaCTOTHI aCHMITOTHKH JIBoYacoBuX (yHKuil ['pina.
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