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The mean random field approach [1,2] is generalized to the case of random (with certain distribution) values of 

tunneling matrix elements and double-well potential asymmetries and applied to account for the dipole interaction 
between two-level systems in glasses. The obtained mean random field distribution function is used to calculate the 
interaction-modified density of states of the two-level system ensemble. Taking the realistic values of phenomenol-
ogical parameters, only a minor correction to the low-energy density of states is found. 
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1. INTRODUCTION 
In the sub-Kelvin temperature range nonmetallic 

glasses display a variety of universal physical properties, 
which are usually attributed to the specific low-energy 
excitations, present in all amorphous solids. A model of 
tunneling systems (TS) is very popular for description of 
a variety of interesting phenomena, related to thermal, di-
electric and acoustic properties of glasses in this tempera-
ture range [3]. Though the microscopic origin of TS in 
glasses remains not completely clear (see however, results 
of the recent simulations [4]), it is assumed that in glasses 
they are present with a low (about 10-6…10-4 per atom) 
concentration due to the possibility of realization of two 
(or more) spatial configurations in a group of several at-
oms, with the mean variation of bond length aa 1.0≤∆  
( a
∆ϕ

 being the mean bond length) and bond angle 
 in the group. It is also assumed that these 

structure configurations are separated by the low potential 
barriers V  ( k  being the Boltzmann’s con-
stant) and that the differences of energies in the potential 
minima of these configurations 

o10≤

K 100/ ≤Bk B

VUU ji <<− minmin . At 

low temperatures only the ground states in each potential 
minimum are relevant. In this way, in the simplest case a 
TS can be introduced as an effective particle moving in a 
double-well (W) potential, in which in the temperature 
range  the quantum tunneling transitions be-
tween the potential minima are dominant. That is why the 
TS ensemble is governed by the Gibbs statistics in the 
whole temperature range if the characteristic time of per-
turbation change is greater then the inverse value of the 
minimal tunneling frequency. 

V≤TkB

Due to the overlap of the ground-state (GS) wave-
functions in two wells the GS energy level splits into a 
doublet with a gap, which in the quasiclassical approxi-
mation (see e.g. [5]) equals to: 

22 JU +∆= , (1) ≥T
where 

)exp(0 λ
π
ω

−=J  (2) 

and 

/2mVl≈λ , (3) 
∆

0ω

 is a difference of the GS energies in two wells;  is 
a tunneling matrix element between GS’s in two wells; 

 is a frequency of GS oscillations (of the order of 
Debye frequency), λ  is an overlap phase; m  is an ef-
fective TS mass; V is a height of potential barrier above 
the GS energy level; l is a width of classically inacces-
sible region between the potential minima. 

J

The introduced above quantum system is usually 
called a two-level system (2LS). The 2LS concept for 
amorphous solids was introduced by Phillips [6] and 
Anderson et el. [7] to account for their low-temperature 
anomalous behavior. 

Due to the difference of relative spatial locations of 
(at least partially) ionized particles, corresponding to the 
2LS states in minima of a W-potential, these states can 
be assigned to the eigenvalues of 2-state electric dipole 
moment operator (pseudospin-1/2). 

Due to the structural disorder on the atomic scale in 
glasses the 2LS parameters  and  are believed to 
have a wide distribution.  

∆ λ

The 1-particle distribution function over the parame-
ters  and  for non-interacting 2LS is usually con-
sidered as uniform in the whole range (see e.g. [3]): 

∆ λ

( ) ( ) ( ) ( ) ( minmaxmax
1

0 , λλλλλ −Θ−Θ∆Θ∆−∆Θ=∆ PP ) , (4) 
which after transformation to variables ( , J) takes the 
form: 

∆

( ) ( ) ( ) ( ) ( minmaxmax
1

0 , JJJJ
J
PJP −Θ−Θ∆Θ∆−∆Θ=∆ ) , (5) 

where P  is a material constant, Θ  is a step function.  ( )x
The 2LS volume concentration  is related to the 

distribution function (5) in the following way: 
n

( )
min

max
max

1
0

0

ln,
min

min

max

J
JPJPdJdn

J

J

∆=∆∆= ∫∫
∆

. (6) 

The non-interacting 2LS model in the temperature 
range  is satisfactory to describe most of 
the phenomena occurring in cold glasses, e.g. the linear 
term in the temperature dependence of heat capacity, the 
minimum (maximum) in the temperature dependence of 
dielectric susceptibility (sound velocity), the electro-
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magnetic and ultrasound absorption, polarization ech-
oes, relaxation processes, etc.  

However, the recent experiments displayed some 
discrepancies with the predictions of non-interacting 
2LS model in the temperature range T . For 
example, the temperature dependence of both the low-
frequency dielectric susceptibility and the sound veloc-
ity after passing the extremum towards low tempera-
tures is less steep, with a tendency to saturation at ul-
tralow temperatures [8]. The temperature dependences 
of internal friction and of decay time of spontaneous po-
larization echo are also unexplainable from these grounds. 
Even more surprising, there was found a sort of phase 
transition in amorphous BaO-Al

mK 100≤

2O3-SiO2 at the tempera-
ture 5.84 mK, accompanied by a kink on the temperature 
dependence of dielectric constant [9]. 

It is natural to try to account for the discrepancies 
mentioned above by considering dipole-dipole (electric 
or elastic) interaction in the 2LS ensemble. The effect of 
dipole interaction on TS density of states was first con-
sidered in the pair approximation by M. Klein [10] for a 
set of randomly distributed symmetric TS with equal 
tunneling amplitudes, the model which is applicable for 
the case of off-center impurities in crystals. It was found 
that strong interaction between a pair of TS gives rise to 
low-energy excitations with the gap of order , 
J and U being the tunneling matrix element and the inter-
action energy respectively. Later A. Burin [11] considered 
interaction in the ensemble of 2LS obeying distribution 
Eq. 5 with random spatial distribution and found a de-
crease in the low-energy DOS, the so-called pseudogap 
effect. A. Würger [12] used the Bloch’s equations for 2LS 
polarization components to consider the interaction-
induced collective excitations in the 2LS ensemble. The 
interaction effect is shown to decrease the resonant and to 
increase the relaxation part of susceptibility. This result is 
consistent with the data for temperature dependence of di-
electric constant (see e.g. a review paper Ref. [8]).  

UJE /2≈

However, both Klein’s [10] and Würger’s [12] ap-
proaches have a common shortcoming of considering 
only the symmetric 2LS, the assumption inapplicable to 
glasses. The Burin’s work [11] employs the approach 
elaborated for disordered Coulomb systems. These sys-
tems also allow the description in terms of two-state 
variables (corresponding to the occupied and empty 
state of a site), but there the conception of tunneling 
matrix elements is meaningless. And the way of taking 
interaction into account is similar to that of Klein [10] 
in using the pair approximation (see Eq. (19) in 
Ref. [11]). So, the result for DOS obtained there is 
really applicable to the non-tunneling 2LS, which is not 
a good approximation for glasses. It would be useful to 
perform calculations of DOS in the pair approximation 
[10] for the case of random asymmetries and tunneling 
matrix elements.  

The present work employs the approach developed 
for description of systems undergoing orientation glass 
transition (see [13,14] and refs. therein). It uses the 
method of mean random field (MRF) [1,2], elaborated 
for crystals with off-center impurities. The distribution 
function is constructed for the random fields, induced 

by the dipole moments of the neighboring 2LS at a site 
of arbitrary chosen 2LS, averaged over the distribution 
(5) and over the uniform and independent spatial and 
orientation distribution of 2LS. Then the self-
consistency condition is applied, i.e. the distribution func-
tion is taken to be the same for all 2LS in the ensemble. 
The obtained MRF distribution function is subsequently 
used to calculate the renormalized 2LS DOS.  

Though the application of this method to orientation 
glasses finds numerous objections due to neglecting in-
teraction-induced mutual orientation correlations of 
spins (see e.g. Ref. [14] and refs. therein), we apply it 
here to the 2LS ensemble for the next reason. As it was 
mentioned above, even non-interacting 2LS in glasses 
have random asymmetries of W potentials and hence 
each 2LS has random static polarization at any finite 
temperature. It means that the 2LS ensemble has a 
property of initially randomly broken symmetry. That is 
why this system does not possess a critical point of ori-
entation glass transition, as the off-center impurities or 
dilute spin systems do, but rather demonstrates a continu-
ous increase of interaction energy as the temperature is 
decreased (see Fig. 1 below). So, the critical point, which 
is thought to be sensitive to interaction-induced orienta-
tion correlations, is avoided here. For the case of random-
field 3D Ising model this result is confirmed in Ref. [16]. 

Below we consider the case of electric dipole-dipole 
interaction. Since the elastic interaction between 2LS 
can be included in the same formal way [3], the gener-
alization of our approach is straightforward. 

2. MEAN RANDOM FIELD DISTRIBUTION 
FUNCTION 

Consider a set of N+1 2LS randomly distributed 
over the volume V of weakly polarizable medium. 

The Hamiltonian of arbitrarily chosen 2LS with 
number i may be represented as a sum of non-
interacting term and the term due to interaction with 
neighboring 2LS: 

iii HHH int0 ˆˆˆ += . (7) 

The explicit form of Hamiltonian (7) in the pseu-
dospin-1/2 representation is: 

i
i
xi

i
zi JH 000 2

1
2
1ˆ σσ +∆= , i

i
ziH dipint 2

1ˆ ∆≈ σ , (8) 

where 

( iii
i

i
i

ede
e e

⋅≡













⋅

∂
∆∂

=∆
=

22
0

dip ) , (9) 

id  being the electric dipole moment of 2LS i; еi being 
the strength of electric field, induced by all the other 
2LS at the site of 2LS i. 

In Eq. (8) we neglected the effect of interaction on 
the off-diagonal elements of 2LS Hamiltonian, because 
in most cases ee ∂∆∂<<∂∂ //J . This means that di-
agonal elements of the dipole momentum operator in 
the coordinate representation have much greater abso-
lute values compared to the off-diagonal ones: 

∫∫ ΨΨ>>ΨΨ rrrr dd jiii
** , , LRji ,, =
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the fact which follows from the condition of small over-
lap of single-well wavefunctions: 

∫∫ ΨΨ>>ΨΨ rr dd jiii
** , i . LRj ,, =

Hamiltonian (7) may be rewritten as: 

i
i
xi

i
zi JH 02

1
2
1ˆ σσ +∆= , . (10) ( iiii ed ⋅+∆=∆ 20 )

In the energy representation Hamiltonian (10) takes 
the form: 

i
i
zi UH σ

2
1ˆ = , ( )( ) 2

0
2

0 2 iiiii J+⋅+∆= edU . (11) 

Using (11), the single-particle free energy of 2LS 
may be written as: 



















−=

Tk
UTkF

B

i
B 2

cosh2lni . (12) 

The expression for 2LS polarization may be ob-
tained by differentiation of the free energy (12) with re-
spect to the electric field strength (see e.g. [15]): 

i

i
i

F
e

p
∂
∂

−= , (13) 


3
j j

or in the explicit form: 
( )( )








⋅+∆
=

Tk
U

U B

i

i

iiii
i 2

tanh20 dedp . (14) f

Then the expression for thermodynamic average of 
the electric field strength, induced by the dipoles of 
neighboring 2LS at the site r  has the form: i

( )[∑
≠

⋅−=
ij

ijijjj
ij

i
r
b rrppe ˆˆ33 ]. (15) where ( )ef  is

Here  and  denote the distance between 2LS i 
and j and the unit radius-vector between them respec-
tively; 

ijr ijr̂

mb εε01=  stands for the constant of Coulomb 
interaction in a given medium. 

Suppose that 2LS coordinates are distributed over 
the volume V randomly and independently. Then the N-
particle 2LS coordinate distribution function can be rep-
resented as: 

{ }( ) NN V −=Γ r  (16) 
and the normalized to unity N-particle distribution func-
tion of dipole moments, potential asymmetries and tun-
neling matrix elements has the form: 

{ }( ) ( )
N

norm
N

Jn
PJP 








−=∆ d

4
,, 00 dd δ

π
, (17) 

where the factor of  in the denominator means that 
the vectors d , which have equal absolute values d, have 
a uniform angular distribution. 

π4

Given the definite values of parameters of all the 
neighboring 2LS , the induced field 

 at the site r  is a definite value and 
may be calculated with the formula (15). 

{ J,,,, 0∆rde
}) 0

}
{( J,,,, 00 ∆rdee

In this case the distribution function of induced 
fields has the form: 

( ) ( )[ 








⋅−−= ∑
≠0

00jj
0

0 ˆˆ3 jj
r

bf rrppee δ . (18) ]

)  (19

To calculate the self-consistent (averaged over the 
2LS ensemble) distribution function of induced random 
fields  one has to take into account that at transi-
tion between different 2LS the parameters { } 
of neighboring 2LS change as random values, obeying 
the distribution function: 

( )e
J,,,, 0∆rde

{ }( ) { }( ) { }( ) (( )N
norm

NN fJPJP edrrde ,,,,,, 000 ∆Γ=∆ , ) 

 the sought distribution function of in-
duced mean random fields. 

Then, by averaging Eq. (18) over the distribution 
function (19) and also applying the standard representa-
tion of Dirac δ -function in the form of Fourier integral 

( )
( )

( ) ρρxx di∫
∞

∞−

⋅= exp
2

1
3π

δ , 

one obtains an integral equation for the self-consistent 
mean random field distribution function: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )[ ] ( )
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.ˆˆ3exp∆
4

exp2 3

∆

0
0

3
max

min

max
N

J

JV
f

r
bid

J
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′

−

edρ
erρrppρeddreρρe δ

π
π  (20) 

The procedure of obtaining Eq. (20) from Eq. (18) is called the mean random field (MRF) approximation. Con-
sider Eq. (20) in the form: 

( ) ( ) ( ) ( )
( )
∫ 






 −⋅⋅= −

ρ

ρeρρe
N

N
Nidf 1exp2 3π , (21) 

where 

( )
( )

( ) ( ) ( )( )[ ] ( )
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∫∫∫∫∫
′

∆
′⋅
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ed
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r
bid

J
dJddddPN

J

JV

ˆˆ3exp1∆
4 3

0
0

max

min

max

δ
π

. (22) 

 
Assume  to be the direction of axis z. Let θ  

be the angles between r  and ρ , p  and , p  and  re-
spectively. 

ρ θθ ′′′,,
rρ

Then, according to [1], the angles θ  obey the 
relation: 

θθ ′′′,,

( ϕϕθθθθθ ′−′+′=′′ cossinsincoscoscos ) . (23) 
Let 

( )
( ) ([ ].cossin2sin3cos2cos312

1
,,

ϕϕθθθθ

ϕϕθθ

′−′+′+−

=′−′F

)
 (24) 
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We introduce the new variables:  

( ) 3,, −⋅′−′= rpbFz ρϕϕθθ , (25a) 

( ) 3
11 ,, −⋅′−′= RbpFz ρϕϕθθ , (25b) 

( ) 3
00 ,, −⋅′−′= RbpFz ρϕϕθθ . (25c) 

Here R0 is the minimal distance allowed between 
2LS, R1 satisfies 3

134 Rπ=V . 
Then, using (23) – (25), one obtains from (22): 
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Since  

( ) ( ) 0sgn,,sin
0

2

0

=⋅′−′∫ ∫
π π

ϕϕθθϕθθ FFdd , (27) 

and 

∞→−∫→ 1120
ln~ln~sinlim

0

1
1

Rzdz
z

zz

z
z

, (28) 

the value of  in Eq. (26) is ambiguous, depend-
ing on the order of integration. If one first integrates 
over the angles, and then allows , then 

, in the opposite case . We 
consider the next physical reasons. The value of integral 
(27) may be considered (neglecting the constant factor) 
as an average value of function (24) with respect to the  
 

( )ρNIm

∞→1R
( ) 0≠ρN( ) 0Im =ρN Im

arguments . Consider an ensemble of finite number 
N of 2LS. For this ensemble the condition 

 will hold. And the mean 

square fluctuation of this value over the ensemble will be  
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,
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Taking this value as an upper limit of (27) and mul-
tiplying it by (28), one obtains in the limit  
zero. That is why . 

∞→1R
( ) 0Im =ρN

Now we let V , . Taking into account 
that , we obtain from Eq. (21) 
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Here ϑ  is an angle between  and d . e′
Let us introduce the next notation: 

( ) t
t
tdz

z
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t

si1coscos1g
0

2 +
−

≡
−

= ∫ , (31) (<ρ

where we denote ∫≡
t

dy
y

yt
0

sinsi . 

As the next approximation we substitute the argu-
ment of function g in Eq. (29) by infinity: 

( )( ) ( )
2

gg 0
π

ρ ∞→⋅′ Fbnp e = . (32) 

This is reasonable for ( )
( ) 1~ 00 >>
′
′

n
n

p
np

e
e , since 

function g in Eq. (31) significantly depends on its ar-
gument only in the vicinity of zero and at 

( )( 1
0

−′> Fpbn eρ

( )
)  is close to its limit value 

2g π=∞

( )
. Approximation (32) fails at 

1
0

−′ Fpbn e

( )
, i.e. at the field strength 

Fpbne e′> 0 , which occurs for the close ( )  po-
sitions of 2LS. In this way, by using (32), we neglect 
such configurations. 
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Then we introduce notations: 
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πππ
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It is worth noting that, though the direction of vector 
р may differ from that of d ( )dp ↑↓  when 
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( ) 00 <⋅+∆ ed

ϕθ ′′,

( )

 for a given 2LS and, consequently, the 
spatial distribution of vectors р may not, in principle, be 
isotropic, as it (by the model assumption) does for vec-
tors d, it nevertheless may be, with a good accuracy, 
taken to be isotropic, since the result of integration over 

 in Eq. (33) weakly depends on the type of distri-
bution over these variables because 

( )ϕϕθθϕθθ
ππ

′−′= ∫∫ ,,sin
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00

Fdd
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 weakly depends on 
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), 
K

min

P1~

Then, using Eqs. (30)-(34), and performing integra-
tion over , one is able to rewrite Eq. (29) in the form: 

. (35) ( )f 1

Eq. (35) is the sought distribution function of in-
duced mean random field e. Since it depends only on 
the absolute value of е, the distribution obtained is 
spherically symmetric (isotropic). 

From Eq. (35) one can see that the value  
plays a role of characteristic width of distribution of in-
duced mean random field and is a measure of dipole in-
teraction in 2LS ensemble at a given temperature. 
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Fig. 1.  The plot of t d , 

,  and 

( )T

 K

D  a mQ10 5.29 ⋅= −

 K10 6−=J 1max =J 322
max m 10 −=P  ∆

The plot of interaction strength  at two different  ( )TD

sets of values ( , such as )max,∆P constmax =∆P  (which 
corresponds to the constant volume density of 2LS, see 
Eq. (6)), is given in Fig. 1: 

From Fig. 1 one can see that the temperature of co-
operativity onset strongly depends on the value of W 
potential asymmetry dispersion in the 2LS ensemble. 
And the low-temperature saturation value of interaction 
strength is mainly determined by the volume concentra-
tion of dipoles, being comparatively weakly sensitive to 
the W potentials’ asymmetries. 

From Eq. (35) it is possible to obtain the distribution 
function of the mean random field projections e  on the 
arbitrary chosen axis z: 

z

( )
( )( )TDe

TDe
z

z 22 +
=
π

. (36) 

3. INTERACTION-MODIFIED DOS 
Interaction in the 2LS ensemble should lead to the 

change of its density of states (DOS) (4). 
We shall calculate the 2LS DOS (4), modified by 

the interaction in the mean random field approximation 
using the MRF projection distribution function Eq. (36), 
calculated in the previous section. 

The normalized to unity one-particle DOS for 
noninteracting 2LS (4) in the limit  can be 
represented as: 
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To account for the interaction, one should consider 
the additional induced asymmetry of the double-well 
potential , obeying the distribution function (36). 
Then, by analogy with (37), one obtains: 
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The plot of 2LS DOS, given by Eq. (38), for two 

different values of interaction strength d , is 
shown in Fig. 2. Due to the “smearing” by the induced 
random fields, the values of asymmetries of W poten-
tials allowed belong now to the interval . This 

result can be qualitatively understood in the next way. 
The distribution function of ’s for noninteracting 2LS 
is a step, which begins at  and ends at . 

( )TD⋅

( )∞∞− ;

∆
0=∆ max∆=∆

Including the interaction between 2LS leads to the 
smearing of the step’s edges by the characteristic value 
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( )TDd ⋅
0<∆

∆

. This causes the emergence of non-zero DOS 
at  (it corresponds to the DOS of W potentials 
which change their asymmetry sign due to interaction) 
and at , and within the range  
DOS decreases due to the normalization condition 
Eq. (6). 

max∆> max0 ∆≤∆≤

-1 0 1 2
0

1

2

3

D
O

S,
 a

.u
.

∆, K

 High T
 Low T

∆
 

Fig. 2.  Plot of 2LS DOS vs. , Eq. (38), in the lim-
its of high  and low  
temperature 

( )( )0=∞⋅Dd ( )(  K057.00 =⋅Dd )

From Eq. (39) one can see that the 2LS excitation 
spectrum is practically insensitive to the interaction in 
the MRF approach, provided that 

( )TDdJU ⋅<<−−∆ 22
max . (40) 

The condition given by Eq. (40) is satisfied (for the 
standard value ) for any thermal 2LS in the 
temperature range T , where the discrepan-
cies with the standard 2LS model are found. 

K 1max ≈∆
100≤ mK 

So, we conclude that the ultra-low-temperature de-
viations of some physical properties of glasses from 
predictions of the standard 2LS model can not be ac-
counted for by including mutual dipole interaction, at 
least in the static MRF approach. 
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ПЛОТНОСТЬ СОСТОЯНИЙ ВЗАИМОДЕЙСТВУЮЩИХ ДВУХУРОВНЕВЫХ СИСТЕМ  

В АМОРФНЫХ ТВЕРДЫХ ТЕЛАХ В ПРИБЛИЖЕНИИ СЛУЧАЙНОГО СРЕДНЕГО ПОЛЯ 
А.А. Борисенко 

Метод случайного среднего поля [1, 2] обобщен для случайных (с определенной функцией распределения) величин 
туннельных матричных элементов и асимметрий двухямных потенциалов и применен для учета дипольного взаимодей-
ствия между двухуровневыми системами в стеклах. Найденная функция распределения случайного среднего поля ис-
пользована для расчета модифицированной взаимодействием плотности состояний ансамбля двухуровневых систем. 
При использовании реалистичных величин феноменологических параметров найденная поправка к низкоэнергетической 
плотности состояний является весьма малой. 

 
ЩІЛЬНІСТЬ СТАНІВ ДВОРІВНЕВИХ СИСТЕМ, ЩО ВЗАЄМОДІЮТЬ В АМОРФНИХ ТВЕРДИХ 

ТІЛАХ В НАБЛИЖЕННІ ВИПАДКОВОГО СЕРЕДНЬОГО ПОЛЯ 
О.О. Борисенко 

Метод випадкового середнього поля [1, 2] узагальнено для випадкових (з певною функцією розподілу) величин ту-
нельних матричних елементів та асиметрій двоямних потенціалів та застосовано для врахування дипольної взаємодії 
між дворівневими системами в стеклах. Знайдену функцію розподілу випадкового середнього поля застосовано для роз-
рахунку модифікованої взаємодією щільності станів ансамблю дворівневих систем. При використанні реалістичних ве-
личин феноменологічних параметрів знайдена поправка до низькоенергетичної щільності станів є вельми малою. 
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