ELECTROMAGNETIC FIELD CORRELATIONS
AND SOUND WAVES

A.lL Sokolovsky and A.A. Stupka

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine;
e-mail: stupka a@mail.ru

Statistical operator of the many component plasma has been found on the basis of the Bogolyubov reduced
description method and quasi-relativistic quantum electrodynamics. Calculations were carried out in the Hamilton
gauge up to the second order of a perturbation theory in interaction. Closed system of equations for binary
correlations of electromagnetic field and hydrodynamic variables of medium has been obtained and investigated
near equilibrium. Classical Maxwell plasma approximation was studied. Coupled states of sound waves and waves
of transversal correlation of the field were predicted. Waves of correlations of electromagnetic field can be excited

by sound waves in plasma.
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1. INTRODUCTION

Recent theories of electromagnetic (EM) processes,
which take into account fluctuations, are based on the
Langevin equations and are semiphenomenological [1].
Besides, wusual quasi-relativistic theories consider
effective direct Coulomb interaction between charged
particles [2] and use the Coulomb gauge of the vector

potential divA=0. Our purpose is to build kinetics of
EM field in hydrodynamic medium based on the
Hamilton gauge ¢ =0 and quasi-relativistic quantum

electrodynamics using. In the framework of this gauge
one does not need to introduce the scalar potential ¢

and the Maxwell equations have the form of the
Hamilton equations. The medium (plasma) consists of a
few components of charged and neutral particles.

Description of nonequilibrium states of the system is
based on the Bogolyubov reduced description method
(RDM) [3]. For the first time this method was applied
to the considered system in our paper [5]. In the present
paper we pay the main attention to the study of the
influence of binary correlations of the field on dynamics
of the system. Mass densities of a neutral and charged
components, mass speed and temperature of the plasma,
electric field, vector potential and their binary
correlations are chosen as variables that describe time
evolution of the system (reduced description
parameters). Therefore, in the considered model usual
plasma waves (longitudinal EM waves) are absent
because of equilibrium between particles of the
components. Besides, following to [6] we restrict
ourselves by consideration of the ideal liquid
approximation. In the framework of the RDM statistical
operator of the system is built using the Bogolyubov
condition of the complete correlation weakening.
Additional convenience in the consideration is possible
because the field variables satisfy the Peletminsky-
Yatsenko commutation condition [3].

As a small parameter of the theory A ratio of the
plasma frequency Q and Cherenkov’s frequency of
absorption of the field kv, (v, is a characteristic

equilibrium velocity) is chosen, that is equivalent to
consideration of wave vectors bounded from the bottom
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other hand, in quasi-relativistic theory wave vectors of
the field are bounded from the above too k<k_, . For

by inverse Debye radius k >k

min >

our purpose one can estimate k,  as reverse average
. . . 1
interparticle distance £k, ~7 . As a result closed

system of equations of hydrodynamics and fluctuation
electrodynamics is built within the first order of the
perturbation theory for statistical operator.

2. REDUCED DESCRIPTION
OT THE SYSTEM

We will describe our system by electric field
E (x,t), vector potential A (x,¢), their binary

correlations (E,(x)E,(x")),, (E,(x)4,(x"),,
(A4,(x)A4,(x")), (variables 7,(#)) and densities of mass
o,(x,t) (a is the component number), momentum
7, (x,t) and energy &(x,t) of the medium (variables

¢, (x,1)). Exact definition of the correlations is given

by the relation of the type 2(E, 4,), = {E,, 4} —2E, 4.
In the Hamilton gauge quasi-relativistic Hamilton
operator of the system has the form

1§T=I:10+1f[int =(f1m+ﬁlf)+(l}l+l72),

H, :éjd%{éz@“ﬁﬁ(")} ,

A 1 A n ~ 1 ~ N
V== [d'x 4,(0],,(0).V, =— [d'x £ (1) #(x) ;
c 2c

N A A o 2
H=rotd, E=—14; 7)=3 % 6,(x).
C a a
2 e, »
Jo0)= 2 (), M

where H is the Hamilton operator of free medium
particles. Formulae (1) contain a non-gauge invariant
density of momentum 7%0“ (x) . Gauge invariant densities
of momentum and energy can be introduced by usual
way. It is easy to check that gauge invariant mass

velocity u,(x,t) is given by the formula
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u,(x,t)=u, (x,t)— A L (x,0) p(x,1)

(p=3p., p.=~20,), )

a

non-invariant

velocity. This allows us to wuse the GGalilei
transformation for the medium and cast the results in a
gauge invariant form.

Equations of motion for operators of reduced
description parameters in the terms of the gauge
invariant densities have usual form [5]

where u, (x,t)=x, (x,t)/co(x,t) is

on

OE =cA,4—-4zx] , 0,4 =—E,

OAE Ely=cA, (A E}+cA| {E A}~

~4r({j,.Ey+{E,. J})

OME, Ay =cA, (A, Ay —ciE, B} -4r{], A},

DA EN=—c{E, Ey+cA) (A, A} —4x{d,, ]},
E};

0 4A, Ay =—clE,, A} —cl{4,,

~

.o ~__ 94, 1. A
= __4an =4 E
G,Ga axn 5 az‘g : + 2 {j"’ "}
. op, 1
a[ﬂ[ = 3 +pE +— glnm {jn’rOt A} (3)
ox, 2c
where
. A Lr s
Anl = an6/ _511/A s ]n (x) = JO" (x)_ZA” (x)z(x) ’

({];“n,];“[’}E{Eﬂ(x),]%,(x')} and so on; ]A’"(x) is gauge

invariant current; here 0, is the Schrédinger time deri-

t
vative). Averaging equations (3) with nonequilibrium
statistical operator (SO) of the system p(f](t),é’o (t))
we obtain a closed system of equations for parameters
describing its state (it is convenient to do this using non-
gauge invariant medium variables ¢, (x,7)).

To construct SO p(n(t),§0 (t)) for this case one can
use the RDM [3-5] starting from the Liouville equation

0.0(n(1):6,(1) == 1112 (n(1).£,(1)1=
=Lp(n(1).€,(1)). @

This consideration is simplified by the remark that
operators of the EM field and its correlations satisfy the

Peletminsky-Yatsenko condition L 7, = —izi, c;M, . In
this work we do not introduce direct interaction among
charged particles and in the leading approximation the

medium is described by the local equilibrium
distribution of ideal gas

w(¥) =explF ()= Y. [d’xY,(x)¢,, ()} .

Using boundary condition of the complete
correlation weakening according to [3-5] we obtain the
following integral equation for statistical operator

p(n.¢,)
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P(1.$,) = p, (WY (G )+ [ dze™ {Li p(n.£,)

op(n.<,) »
TLI-(’LCO)

+p4,(f7)LmW(Y(§o))—Z _
(1., )
S [l
Z.[ 3, (%) M, (xn.¢, )}
M, (1.¢,)=-Spp(n.¢, )L, »
M, (x1.¢,)==Spp(n.¢,) (L, +L,)S,, (x) 5
SpP(1.£,)5,,(x) =&, (x). (5)

Here pq(r]) is statistical operator of the free field,

yemieTy
n

which satisfy the Liouville equation

ap, ()
IZ,: aqni icyn, =L,p,(1). (6)
The last equation in (5) allows to find functions
Y,(x,¢,) .

Equation (5) is solvable in perturbation theory in
small interaction. In the Baryakhtar-Peletminsky picture
in the frame of the local rest its solution has the form
[3-5]

P (w1.8,) = P, (M)W (€, ) - j dr| COIIC)

AL (N ], (x'—x,r)+/3(x'—x,r)u0n<x>)]

+w’ (¢, (x))p(x)uan(x)z i Spf p, [0t +0%, (7)

where
w'(C,) =exp BIQ(B. ) - H, + > 1M}

(B=T"). Here zero and first order contributions in

interaction are given in zero approximation in gradients
of hydrodynamic variables. The Dirac picture for

operators 1:1,1 (x) and j (x) was introduced in (7) by
usual formulae

Axr)y=e ™A (x va,(r)n, , ®)
T )= (%), )

( /Aln x)=7n,, E"n (x)=7,, ) where entering first relation
Fourier components of v, (r) are given by expressions

w,(k,v) =k k + 5! cosw,t

v, (k,7) = —ctk k- &, Sm}:"” :

( Vznx,llx' (7'-) = an (‘x - x,’ 7’-) H Vznx,zlx' (7'-) = lunl (‘x - x,’ T) 5

lgn:kn/k’ 5’:125’11—];”];1 ) (10)
3. EQUATIONS OF MOTION

Let us consider averaging of relations (3) with
statistical operator (7). The first term in (7) can be
transformed with the help of formula [1,7]



ﬁfdxl MERWIW:

0oy (3,7 A
or

[, (x.7), W

zhﬁjd/l (11)

(A(A)= w"’vAwo *). Integrating by parts and taking into
account, that lower limit vanishes due to the principle of
correlation weakening, we obtain instead of (7)

.0
o _ 0 L P o 0
P =p,w + ch_J;er‘dx[An (%.7),0,1 ), (x,7)W
0 0 R .
+ﬂ‘[ dr'[dxj dAE,(x,7) ), (x,7,2) p,w
-0 -1
+£de]1 dA /Alﬂ (x)]A'ﬂ (x,4)p,w
c ’ ?
_Lpuon jl dz'jdx’[p wo,[)(x' —x,r)/zln(x',z')]
ch i !
+O(A%). (12)
Further we restrict ourselves by consideration of
classical medium. Waves of correlations will be studied
on the basis of equations of motion linearized near
equilibrium, therefore, we will drop terms, which vanish
after linearization, and only indicate them. Then

formula (12) leads to the following expression for
average gauge invariant current

j,(x)=p j de[dx'T, (x—x',~7)E,(x',7)
Idx’l" (x—x',7=0)4,(x') - lAn(x))(+O(u§),
C

Ly(x,7) =Sp,, W (£, (X)) ], (x,7) ], (0).. 13)
According (1), (9), (10) the Dirac picture for operator
E, (x) has the form

E (x,t)=e ™E (x)= Idx’{un, (x—x",7)E (x")

Ay (x=x D)4},
Ak, 7)= (14)
It the considered case correlation function /7 ,(x,7) in

o ksinw,r .

nl

(13) corresponds to the Maxwell plasma and their
Fourier transform can be written in the form

I (k,0) = 27IZe§na [dvv,0,f,W)5(—kD),

15;(x2r=0)=’ﬁ‘ 5,6() ([dvf,w)=1) (15

(f.(v) is the Maxwell distribution;
x= Zaejna /m, ; here for simplicity we do not
B, x on x). This leads
to the following material equation

Ju(0) = [ ' {M ) (x = XV E, (x) + Njy (= x) 4, ()}
(16)

show dependence of »

a?’

+0(uf) s

with material coefficients

0
My (k)= B [ dely(k,7)p, (k,7)

Ny (k) =p j dely, (k,7) A, (k7). (17)

Analogous to (16) calculation gives field-current

correlations
(4 ) = [ax"iM;; (x' =x") (4°E}))
N (8 =X (AT A} + S (= x)+ Owy)
(i) = [ax" My, (x=x") (B 47)+
+ND (x=x") (AL A+ S5 (x=x" )+ 0],

(B j) = [ax" My, (x' =x")(EE}))

N, (3 =X EAD T (x=x') + Owy)

GrES) = [ax"iM), (x=x")(E) E)
+N? (x x")(AXEX)}+T1(x x)+0(u ),

nm

(18)

where the functions S’ (x), 7 (x)are also expressed

through M., (x), N};(x)
SHORELE (19

(in  (22) and  further  notation of the
type (E,(X)E,(x"), = (E'E;)=(E,E]) are used for
binary correlations). Relations (18) are additional
material equations of the developed theory.

Material coefficients (17) determinate electromag-
netic properties of the medium. In homogenous and
isotropic media all second rank tensors can be presented
as sum of longitudinal and transversal parts

C,.u(K) = k £, C' (k) + (8, — kK, ) C" (k). (20)
Using correlation function (15) and formulas (10), (14)

we obtain the expressions for nonzero components of
tensors M, (k,w)and N, (k,®)

N; (k) , T (k) =—-82T(x) M, (k)

2
M (k)y=0, M™ (k) ==Y " 1mJ (£,
(*) (h=-3 % mJ ()
2
ir n.e 4
N*"(k)y=) —+*ReJ (), 21
(=3 Re . () @
where the function J, (%) is given by integral [7]
2
dSU [ ] _ Sl
I S ) —ko+i0 m,c ( )
(v, E«BT/ma ); J (+0)=1. (22)

In the considered here nonrelativistic approximation
¢/uv, > 1relations (21), (22) give

M*"(k)=0, N*" (k)= Q*/4xc (23)
(Q=./4my 1is the plasma frequency). So, introduced

material coefficients do not depend on wave vector and
temperature.

Operator equations (3) after averaging over
nonequlibrium statistical operator lead to the following
set of electrodynamic and hydrodynamic equations [5]

atEn = CAnlAl _47Z.jn > atAn = _CEn 2
0,(E,A)) =cA,,, (4, 4)—c(E,E))—4n(j,4]) ,
0;(4,E}) =—c(E,E})+ A}, (4,4"),, —47(4,)]) ,
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0;(A4,4)) =—c(E, 4))—c(4,E]),
3,(E,E]) = cA (A E}) + A}y (E, AL)
—47{(j,ED)+(E,j)} 5

ot 1 . .

0,7 = -+ (PE)+ pE, +—¢,, {(j,B,)+j.B,},
ox, c

0,6 = %4, +(j,E)+J.E,, 0,0, = Oy, 24)
ox 0

Material equations (16), (18) express the right hand
sides of these equations through independent variables
of the present theory by the relations
jX Q(x) AX S +0(M )

4rc

n

- x x Q X ’ x,tr px'
GED =2 (4 B )+ 0,

(Ex ;)—Q(x) (E A\'lr)_"_O(u )

(A= Q(x) (A A4+ S5 (x=x")+ 0@ ,

4 f)—Q(x) (A A7)+ S5 (x -2+ OW?)

2T (x)Q(x)” =
nl(k) - %é}l

(Ank = A’V + AI{Ik > A)Zc - A 5nl > nk = Alk ~n ~l ) (25)

4. SUBDYNAMICS
OF ELECTROMAGNETIC CORRELATIONS

OF ZERO RADIUS

In this section it will be demonstrated an influence
of correlations of the electromagnetic field on dynamics
of the system. It is convenient [6] to introduce auxiliary
field Z (x) by its Fourier transform

Zkng

nlm

electromagnetic field in the terms of (E E)), (£, Z)),
(Z,Z)) . Equations (24), (25) must be linearized close to
the equilibrium. We will restrict ourselves by a zero
correlation length approximation, in which deviations of
correlations have the structure

S(EE')=0(E,E) 0(x—x"),

S(Z'E ) =68(Z,E), 5(x—X),

5(Z:Z2)=6(Z,Z)).5(x—x") (26)
(similar formulas are true for equilibrium correlations of
the field). Simple calculation leads to following closed
set of equations with full mass density as an

independent variable
0,00, =—ik,ocou,, ,

=—ikA"™ and discuss correlations of the

0,6T, =

n“~n

0,0u,, =—ik, (a oo, + aréTk) +

20

+i—;
r

kA0(Z,Z), —4noT,} ;

00(Z,2,), =ickd(E,Z,)),,
0,0(E,2,), =~ick3(Z,2,),
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Q <
—i—k{ﬁ(ZnZ,)k -270,0T,}, 27
c
where
k., 3 Ko 37070
Tdk o dkk
q_]ZI ,k,r_lzjf”_.;
. ke o Ar|k'—k|o
T 1 3 2T
(Zg=—,0(T=—,8T=—G,W=—. (28)
mo m 2m
Accordlng to the mentioned above here k  ~7,',
k..~ ' (r, is the Debye radius, 7, is the average

interparicle distance). Equations (27) are based on non-
dissipative hydrodynamic fluxes and expressions for
energy density and pressure &€ =307T/2m, p=0cT/m in
ideal gas approximation.

The Maxwell equations from (24), (25) are absent in
(27) because in the considered approximation they are
not connected with hydrodynamic variables and
correlations of the field. They describe transverse
electromagnetic =~ waves  with  dispersion  law

(k) =NQ* + k> . Equation for 5(E,E,), from (24),
(25) can be solved after consideration of the set (27) and
does not lead to new branches of oscillations.
Hydrodynamic equations (27) without correlations
of the field describe sound waves with dispersion law

@, (k)=ku (sound velocity u=+/5T/3m ). Equations
for correlations (27) contain only transversal 6(Z2);,

SO(EZ)] parts of the field correlations. In the case of

equilibrium medium these equations describe waves
with dispersion law @, (k) .

5. CONNECTED SOUND AND
CORRELATION OF THE FIELD WAVES

Equations (27) in the terms of variables oc,,
Suy =k,du, , ST, 5(22) , S(EZ)] give

0,00, = —ikodu, ,
0,6T, = —ikwsu!
, 200
0,0, = ~ik(@r, 00, +0;8T,) + i~ (8(22)] =270}
2
0,6(EZ) = {c2k2+Q 162z +i 2 s
C

0,6(Z22); = zck&(EZ)k . (29)
The matrix of coefficients of this set of linear equations
for 6o,, Sul. =kdu, , 5T,, 26(EZ)!, 25(ZZ)! has

nk 2

the form

R 0 0 0

2 2

cikap 0 kag-ibreo— 0 it
rc rc

) (30)
0 —ikw 0 i 0
qc
2 2
0 0 1470 0 =ik

kc kc
0 0 0 i ke 0




Nonzero eigenvalues of this matrix, which correspond
to frequencies of own oscillations in the system, can be
written as it follows

A= iL{ !
V2 kgr

Hr Q (K qw+rQ*) £ {(’ kK gr(c® +u®)

+kq(*r + 4kaw)Q* + 47zrQty

4P qr(c i gru® + Ckq(ru® + 4krw)Q?

+ama,r QY (31)
In general solution of equations (30) all combinations of
the signs must be used. In the leading order in ¢’
dispersion laws is given by formula

w(k)=2"{k*( +u’)+Q* £

(K2 (S —uP)+ Q) 167wk’ [r)2}V2

(c*lgr+ckgr(k’u® + Q%)

(32

In the small interaction limit field correlation and sound
frequencies (32) take the form

QZ
(k) =ck+—
(k)=c ok

N c(167k — q)r + qru® +16zqwk —167a,rok
8 qr(c® —u*)k?
2w’

czru

Q'+ OQY),

o, (k) = uk +

2.2 2 2 2 2,04 2
rquwk —c{qruw+mgwk+r-(u —ouo)}
+27 4 23,2 272 - o
cqrou’(c” —u )k
+O(QY) . (33)

In the leading approximation in ¢ these expressions
can be written as

2 p—
wf(k):ck+2§2—k+%ﬁ4+0(95),
14 c’q
2
o, (k) = uk + 2’; :”m? (34)
2 2 204 2_0
oy T wH+rzgwk+r (u' —au o )Q4+ oY) .

4 2. 372
cqrouk

6. CONCLUSION

Obtained on the base of the Bogolyubov reduced
description method results [5], were applied to the
system of the electromagnetic field in hydrodynamic
plasma considered as an ideal gas [6,7]. A closed
system of equations (24), (25) for density, mass velocity
and temperature of plasma and field correlations was
built, which linearized near the equilibrium. The
subdynamics of correlations with zero radius was
considered. New modes of oscillations in this system
were studied (31), which correspond to coupled due to
electromagnetic interaction sound and transversal
correlation modes. The case of small interaction (33)
was considered.

This work was supported by the State Foundation
for Fundamental Research of Ukraine (project No.
2.7/418).

REFERENCES

1. Electrodynamics of Plasma. Editor A.l. Akhiezer.
M.: “Nauka”, 1974, 720 p. (in Russian).

2. D.Bohm.  General Theory of  Collective
Coordinates. London: “Methuen”, 1959.

3. A.L Akhiezer, S.V.Peletminskii. Methods of
statistical physics. M.: “Nauka”, 1977, 368 p. (in
Russian).

4. M.Yu. Kovalevsky, S.V. Peletminskii. Statistical
mechanics of quantum liquids and crystals. M.:
“FizMatLit”, 2006, 368 p. (in Russian).

5. A. Sokolovsky, A. Stupka. Equations of electro-
dynamics in hydrodynamic medium with regard for
nonequilibrium fluctuations //Ukrainian Mathe-
matical Journal. 2005, v. 57, N.6, p. 1004-1019.

6. A.Sokolovsky, A.Stupka. Waves of electro-
magnetic field correlations in hydrodynamic plasma
/IProc. Of the 11th MMET Conf. 2006, p. 434-436.

7. A.Sokolovsky, A. Stupka. Linear fluctuation
electrodynamics //Journal of Physical Studies. 2006,
N1, p. 12-23 (in Ukrainian).

KOPPEJISAIIMU DJIEKTPOMAT'HUTHOI'O 11OJISA U 3BYKOBBIE BOJIHbBI
A.HU. Cokonosckuii, A.A. Cmynka

CraTuCTHYECKHH onepaTop MHOTOKOMIIOHEHTHOW IJIa3Mbl HAll/ICH HA OCHOBE METO/Ia COKPALIEHHOTO OITUCAHHS
BoronmtoboBa ¥ KBa3MpPEIATUBHCTCKON KBAaHTOBOM 3JIEKTPOJMHAMHKH. BBIUHMCIEHHS NPOBENCHBI B KaJIHOPOBKE
I'aMunbTOHA € TOYHOCTBIO J0 BTOPOIO MOPSAJIKAa TEOPUU BO3MYILEHHH MO B3auMoneicTBuio. ITonydeHa 3amMKkHyTast
CHCTEMa ypaBHEHHH Ui OMHAPHBIX KOPPENSLMN 3JIEKTPOMArHUTHOTO MOJS M THIPOAMHAMHYECKUX EPEMEHHBIX
cpembl M HCCIEAOBaHA OKOJO paBHOBeCHs. 3ydeHO NpuOMIKEHHE KIACCHYECKOM MAaKCBEJIOBCKOM ILIA3MBI.
IIpenckasaHbl CBA3aHHBIE COCTOSIHUS 3BYKOBBIX BOJIH U BOJIH IIONIEPEYHBIX KOPpEJsILMKA 1oJis1. BoyiHbl Koppensauuit
3JIEKTPOMArHUTHOT'O TOJISI MOTYT OBITH BO30YX/I€HB! 3BYKOBBIMHU BOJTHAMH B IIJIa3Me.

KOPEJISAIIT EJTEKTPOMATHITHOI'O ITOJISI TA 3BYKOBI XBUJIT
O.H. Coxonoscokuii, A.A. Cmynka

CraTucTU4HUI oneparop 0araTOKOMIIOHEHTHOI IIa3MM 3HAi/IeHO Ha OCHOBI METOJa CKOPOUYEHOTO OIHCY
boronroboBa Ta KBa3ipesATHBICTCHKOI KBAaHTOBOI eleKTpoanHaMikd. OOYKCIEHHS NPOBENCHO Yy KasliOpoBI
I'aMizbTOHA 3 TOYHICTIO 1O APYroro MOPSAKY Teopii 30ypeHb 3a B3aemojier. OjepikaHO 3aMKHEHY CHCTEMY
PiBHSIHB JUIs GiHAPHUX KOPEJALIl MO Ta TigpOJUHAMIYHUX 3MIHHHMX CEpelIOBHIIA 1 JOCHIIIKEHO Oinsl piBHOBArH.
BuBueHO HaOMIKEHHS KJIAaCHYHOI MakKCBeJUTIBChKOI miasmu. I[lepenbadyeHo 3B’s3aHi cTaHM 3BYKOBHX XBHIIb Ta
XBWJIb TONEPEYHHX KOpeNsmid mons. XBHJII KOpeJslid eleKTPOMAarHiTHOTO NOJsS MOXYTh OyTH 30yIUKeHi
3BYKOBHMH XBHJISIMH Y IDIa3Mi.
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