INTERMITTENCY IN HAMILTONIAN SYSTEMS
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We consider 2D map with the singularity. Here we observe an intermittency behavior. This system can be inter-
preted in two ways. In the first way this map can arise like a result of quantization of the continuous Hamiltonian
system with one degree of freedom. In the second way we can interpret this map like a Poincaré section of some 2D
Hamiltonian system. As is well known the behavior of a Poincaré section defines the system behavior as a whole.
We investigate the mechanism of the chaos generation near singularity. We show that singularity can generate a
stochastic sea in Hamiltonian systems under any value of a perturbation. Originating modes have intermittent struc-

ture.
PACS: 82.40.Bj, 05.45.-a

1. MAP WITH SINGULARITY
We consider conservative map R? > R?:

Xp+l = Xyt aVy,

)

Ynel = Yp =Xyt

n+l1

It is easy to find that the map conserves the phase
volume. It can be an exact Poincaré¢ map of some Ham-
iltonian system with higher dimension. Then informa-
tion obtained under the exploration can be transferred to
properties of continuous Hamiltonian systems. In an-
other case we can interpret it like a result of approxi-
mate quantization of a continuous Hamiltonian system
[1,2]. New properties of this map would correspond to
effects of quantization. Such duality of nature of the
maps occurrence expands the possibilities of its proper-
ties interpretation.

Map has two parameters a u b . But we can assign
b= a, since substitution

~_ \/Z X
g=by
transforms the map (1) to the universal form

Xn+l = Xptayy,

2

Ynel = Yp—aXyy 1t

Xn+1
Singularity line is a main object, which defines
structure of the map phase space. This line forms an
angle a = arctg(a)~a with ordinate axis. Let us con-

sider map of the line intersecting the ordinate axis under
angle a . We get that its image has asymptotic rays,
which have angles ¢ n [ with ordinate axis at the
infinity

3
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Thus, the map rotates at the angle o at large dis-
tance from the infinity and the structure of phase space
would have [27/a] order symmetry under small values

of a.

2. STRUCTURE OF PHASE SPACE

The phase portrait of the map is shown it Fig. 1.
Singularity in the phase space allows the trajectories to
reach the infinity under finite number of steps. Original
coordinates of such trajectories lie on preimages of the
singularity line. Singularity and series of its preimages
provides the absence of classical behavior of systems in
a large region of phase space. Thus it is naturally to
divide the phase space into regions (F ig 3).

Fig. 1. Phase portrait of the map

The first region does not include points from pre-
images of the singularity. Therefore here we can ob-
serve the situation typical for Hamiltonian systems. This
region consists of separate islands. It gathers around it
fixed elliptical points of different orders. Each elliptical
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point is surrounded by invariant trajectories. On the
border of such region we can observe classical situation
of chaos rise in Hamiltonian systems. We can observe
ordinary stochastic layers which are isolated from the
outer stochastic sea and therefore do not interact with it.
The most outer layer overlaps with surrounding it re-
gion of the overall chaos. Therefore transitions between
them become possible. Such overlap becomes possible
thanks to specific structure of the phase space (Fig. 4).
Similar structure of the phase space leads to the restric-
tion on the diffusion process. Leaving trajectories to the
region of the overall chaos is possible only from the
small neighborhood of unstable points and in the nar-
row range of the direction which is slightly differentt
from the direction of the unstable manifold.

The second region contains preimages of the singu-
larity line. Computer calculation of the large number of
such preimages shows that region of the overall chaos is
everywhere dense and is overlapped by points which
run to the infinity for a finite number of iterations.

Building of a set of preimages of the singularity line
allows to find the overall chaos border (Fig. 2).
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Fig. 2. Stochastic sea region obtained by computer
modeling

Fig. 3. Phase portrait (black points) with superimposed preimages of the singularity line (gray points)

I
Computer modeling shows that all trajectories in the

region of overall stochasticity are unlocalizated. Diffu-
sion of this trajectories to infinity has anomalous char-
acter.

Number and relative position of islands of the clas-
sical Hamiltonian behavior in the phase space defines
its coarse structure. Such structure remains invariant in
some interval of parameter a values. With its change
the system bifurcates.

For systems with singularity exists criterion of its in-
tegrability [3]. One of such criterion is Painlevé test forI

S

Fig. 4. Structure of the phase space on the
border between the stochastic sea and the
region of the classical Hamiltonian behavior
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checking singularity confinement property. In our sys-
tem such test is successful only for ¢ =0.

X, =X,

Xn+l1 =&

X400 = a*le—x.
The set of the parameter a values which exists un-

der that singularity disappears at the some step. But as a
whole the system is not integrable.
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Fig. 5. Intermittency behavior of the map trajectory



3. SCENARIO OF CHAOTISATION

The presence of the singularity in the map phase
space can bring to the appearance of not typical dynam-
ics of Hamiltonian systems. A classical scenario of the
chaos rise in Hamiltonian systems [4,5] consists in the
formation of stochastic layers in the neighborhood of
separatrixes. These layers overlap and form large region
of phase space where system has a chaotic behavior.
Usually such region is called a stochastic sea. Regular
trajectories are saved only in the small neighborhood of
elliptical points. Phase portrait of such system is sto-
chastic sea with stability islands around the elliptical
points.

In the map with singularity in addition to general
chaotisation mechanism another mechanism of stochas-
ticity rises. It is based on the phase flow break in the
map phase space. This break corresponds to singularity
line. Phase drop which is crossed by singularity line
will be divided into a few not connected drops. The map
dynamics can be reduced to rotation and some deforma-
tion connected with the singularity. Therefore any drop
which was divided once would be divided unlimited
number of times under further iterations. At the same
time intermixing in single parts of the drop is not appre-
ciable. Thus the trajectories complication is happened
thanks to the step-by-step fragmentation of the phase
drop. Such chaotisation mechanism strongly differs
from the classical mechanism of resonances destruction
and stochastic layers overlapping.

Jump process of the map dynamics complication
brings to concentration of trajectory chaotic regions into
short chaotic bursts. System behavior is regular on in-I

tervals between these bursts. As a whole we can con-
sider such behavior like intermittency (Fig.5). Any
chaotic phases in such regime are reduced to the single
iteration. It is a very important feature of such regime.
At the same time we can find that any trajectory from
the stochastic sea consists only from laminar phases.
Any phase differs from a previous one by the value of
the some parameter, which is invariant during the whole
laminar phase. Under the transition from one phase to
another this parameter changes stepwise.

3. MEASURE OF CHAOS

The Lyapunov exponent is a general measure of
chaos in maps. But results of the computer modelling
showed that both Lyapunov exponents are vanishing. It
indicates that the sensitivity to starting conditions is
lower then exponential. It is the result of the specific for
the map intermixing process.

For another argument of chaotic nature of the map
we can use the correlation function. In our case the gen-
eral correlation function diverges. Therefore, it is prac-
tical to calculate the correlation function by lower frac-
tional moments

T o
1 Va Va
K(r)= FI((x)—x(t+r)) (<x>—x(t)) dtj .
0
The deposit of large bursts decreases with the de-
crease of « . Therefore its divergence becomes better.
The results of calculation of the correlation function
under different values of the parameter o are shown in
Fig. 6.
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Fig. 6. Correlation function computed with different values of parameter ¢ . Left to right: o =0.5, a =0.25,
a =0.1. Fluctuations decrease with decreasing a

These results can be approximated by the expres-
sion

K — e—CX

Value d <1. It depends on ¢ . As well known, in
the system with such expression of the correlation
function Lyapunov exponent vanishes. Chaotic nature
of the system behavior becomes apparent in the de-
crease of the correlation function, in other words, in
time system loses the information of its initial condi-
tions.
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NEPEMEXKXAEMOCTb B TAMUWJIbTOHOBBIX CUCTEMAX
C.B. Cnunywenko, A.B. Typ, B.B. Anoéckuii

[IpencraBneHo McciIen0BaHNE CBOMCTB IByMEPHOI'O 0TOOpaKEHHs ¢ 0COOEHHOCTHI0. B TakoM o0TOOpaskeHnu Ha-
OmoaeTcs IepeMekaeMOoCTh. Takasi CHCTeMa MOXKET BO3SHHKATh ABYMs criocoOamu. Bo-TiepBBIX, OHa MOXKET pac-
CMATPHUBATHCS KaK Pe3yibTaT AUCKPETH3ALUN HETPEPHIBHON raMIJIBTOHOBON CHCTEMBI C OZHOM CTETNEHBIO CBOOO-
Ibl. BO-BTOpBIX, MBI MOXKEM paccMaTpHBaTh TaKOe OTOOpa)keHHe Kak cedeHue [lyaHkape HEKOTOpOH JBYMEpHOM
raMHIbTOHOBOH cucteMsl. Ilpu 3Tom noseneHue ceuenus IlyaHkape ompenenseT MOBEIEHHE CHCTEMBI B LIEIOM.
HUccrnenoBancs MexaHU3M BO3HHKHOBEHHSI TEepeMexaeMOCTH BONMU3M ocoOeHHocTH. [loka3aHo, 94To 0cOOEHHOCTH
MIPUBOANT K BOSHUKHOBEHHIO CTOXaCTUYECKOTO MOPSI B TAMIJIBTOHOBBIX CHCTEMaXx IPH JIOOBIX 3HAYEHHSIX BO3MY-
meHus. Bo3HuKaromye npyu 3TOM peXXKUMBI UMEIOT ITEPEMEKaEMYI0 CTPYKTYPY.

HNEPEMIKHICTHb BTAMUIBTOHOBUX CUCTEMAX
C.B. Cninywenko, A.B. Typ, B.B. Anoecvkuii

ITomano mocmimKEeHHS BIACTHBOCTEH IBOMIPHOTO BiOOpa)K€HHS 3 CHHTYIIPHICTIO. Y TakoMy BiloOpakeHHi
CIIOCTEPIraeThes epeMiKHICTh. Taka cucTeMa MOXe BUHUKATH ABoMa criocodamu. Ilo-miepiie, BoHa MOXe po3riisi-
JlaTUCs K pe3ysbTaT JUCKpeTH3alii Oe3rnepepBHOI raMiIbTOHOBOT CHCTEMH 3 OJIHUM cTyIieHeM cBoboau. [lo-apyre,
MU+ MOXKEMO PO3IIIIIATH Take BimoOpakeHHS sk nepepis [lyaHkape neskoi TBOBUMIpPHOI raMiIbTOHOBOI CHCTEMH.
[Ipu npomy noBexinka nepepisy [lyankape B mijoMy BU3Ha4Ya€ MOBEAIHKY Bciel cuctemMu. JloCmimKyBacss MEXaHi3M
BUHHMKHEHHS MEPEMDKHOCTI 1MoOIN3y CHHTYJsIpHOCTI. [loka3aHo, 10 CHHTYJSPHICTD NMPH3BOAUTH 10 BUHUKHEHHS
CTOXaCTUYHOT'O MOPSI y TaMUIbTOHOBHX CHCTEMax 3a OyAb-sKHX 3Ha4YeHb 30ypeHHs. Pexumu, 1m0 BUHUKAIOTH NPU
LBOMY, MAIOTh IIEPEMIXKHY CTPYKTYPY.
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