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We present, for general relativistic case, a theoretical investigation of the resonant two-photon emission of an
electron in the circularly-polarized electromagnetic wave. Resonances are related to a virtual intermediate particle
that falls within mass shell. We find condition when resonances occur and we derive the expressions for the reso-
nant amplitude and the differential probability when the invariant intensity of the wave is small (1 <<1). It is dem-

onstrated that the resonant two-photon emission probability may be several orders magnitude greater than the prob-
ability of the corresponding process out of the resonance.

PACS: 3450.Rk, 12.20.-m

1. INTRODUCTION

The theoretical study of the quantum processes of
the first order in the fine structure constant in the pres-
ence of the field of a plane electromagnetic wave dates
back to the 1960s and is connected with the creation of
lasers. Experimental testing of this study becomes pos-
sible with production of ultrahigh-power femtosecond
lasers. The results of series of experiments at SLAC are
found to be in general in agreement with the theoretical
predictions [1-3]. For interpretation of these experi-
ments becomes necessary to take into account the quan-
tum processes of the second order in the fine structure
constant in the wave field. The analysis of these proc-
esses in the wave field is complicated by computational
difficulties and a cumbersome form of results and in
works [2,3] the estimation result is only used. Charac-
teristic feature of the second order process in the wave
field is the appearance of the resonances which are re-
lated to a virtual intermediate particle that falls within
the mass shell (see the work [4] and review [5]).

The purposes of the present work are clarification of
a condition of resonant two-photon emission and calcu-
lation of a resonant probability.

The relativistic system of units, where fi=c=1, and
standard metric (ab) = a,b, —ab will be used through-

out this paper.
2. AMPLITUDE

Let us choose the 4-potential of an external circu-
larly polarized electromagnetic wave as

A(p) = a (e.cos ¢ + Je, sin @), e
where a = F /w; F and ® are the amplitude of the elec-
tric field strength and the frequency of the wave;
d==x1; ¢ =(kx) = of — kx is the phase; k = (»,k) and
e.=(0,e,), e,=(0,e,) are the four-momentum and the
polarization four-vectors of the wave meeting the stan-
dard condition: (exey)=(exk)=(e, k)=0,
el = eﬁ =-1.

The amplitude for the two-photon emission of an
electron in the field of a wave is represented by two
Feynman diagrams (Fig. 1).
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Fig. 1. Feynman's diagrams of two-photon emission of
an electron in the field of a plane electromagnetic wave.
The double lines correspond to the wave function of an
electron in the field of the wave (the Volkov functions),
and the dashed lines represent a photon

The amplitude of the two-photon emission of an
electron is given by the expression

S = —iezjdmdx'w,,r(m)y "Gz, 2" Wy Y, (")

x (A5 (K2)A; (kjz') + A (Kz') A, (k) )

where p =(g,p), p'=(e,p’) are four-momentums for
initial and final electrons; & =(ok,), k, =(®,k,)
are four-momentums of emitted photons;, y"
(1=0,1,2,3) are Dirac matrixes; 4, (k/,x), ¥, (x)
and G(x,x") are the wave function of the photon, the

wave function and the Green-function electron in the
field (1) [1,6]:

A, (klx) = /%e“ e, A3)

¥, (x)=Be"" ”{ B () =14+——Fkd,  (4)
J2g (kp)
"n o_ 1 4 é+m n ’
G(x,x") = n) jd q B,(x) - B, (x)
xexp(iS, (x)-iS, (x)) , )

where e, m are the charge and the mass of an electron;
quantities with caps represent scalar products of a four-
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vectors by Dirac matrixes; u, is Dirac bispinor; S, is

the classical action of an electron in the field (1):
(ke)

)~ s [0 - S 400 ©

The geometry of a two-photon emission of an elec-
tron is depicted on Fig. 2.

5, (z) =

wave direction

Fig. 2. The geometry for study of two-photon emis-
sion in the field of a plane electromagnetic wave

The analysis of quantum-electrodynamics processes
of the second order in the fine structure constant in the
wave field is complicated by computational difficulties
and a cumbersome form of results. Therefore we restrict
our consideration to the case when the intensity of the
wave meets the condition:

N=ev-A’/m=eF [(mn)<1. @)

With accuracy to ~m> the amplitude (2) can be

written as
S=D(n-(T0" + 1, "")6"(p+k—p' — K — k)
(0,~2) —1,-1) 2,0)
+77 (Tllp, + T + 1_;/;1 )

x(2m)' 6 (p + 2k — p' — K/ — k), (8)

where D =—ie’n /. \Jee ®/®] is normalization constant.

In Ex. (8) we introduce the notations:

XA *U % ! q +m
T = e, | MY (0 q) 2 MY (g, p)
q —m
/ q, +
M (0 0) 2 MO (g, p) |, 9)
‘IQ -—m
Here
ql =p kl }\.k p +k’ +}\.’k (10)
Gy =p—ky—Ak=p"+ky+A'k (11)

are 4-quasimomentums of the intermediate electrons.
Quasimomentum is equal to the momentum with addi-
tion which is caused by influence of external field [1,6]:

G=q+n*(2(kq)) " k. Taking into account the condi-

tion (7) in the expression (8) we may neglect these addi-
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tions in the item which is proportional to ~n2 . In the

expression (9) M ff') are the invariant amplitudes:

2

2 2,
© B v (p, 1) mn’ -
M (p“pQ)_[l_ » Jy“ +2(kp1 o

2 )(kp,)
_y(p;p2)(eixa,(:)(p1ap2)_e “q (plapz)) N (12)
1 l .
M (p,p,) =+ Ey(pupa)”‘vﬁa (P, 1) (13)
2 iy
" Y (p,py)e
M(z(p1ap2) %u
m2n2 . 1 ( )
+—— Kk +=y(p, P (p,p,), (14
) () 2y(pl p)eta (p,py), (14)
where
(?) ~(F)
(p17p2) kpz)( n - ku)
+m[ 1 j (15)
4 kp2 (kpl)
3(ge,)
Y(pp,) = maJ=9°(p,p,) , tany =——2;  (16)
ge,)
g: pl _ p2 (17)

(kp,)  (kp,) .

3. CONDITIONS OF RESONANT
TWO-PHOTON EMISSION

Hence we can conclude that probability (~| S [*) of
two-photon emission of an electron in the wave field is
proportional to ° and in comparison with one photon

emission [1] it contains additional factor e* =1/137
and therefore it is small. Still the situation changes
when virtual intermediate electrons fall within the mass
shell:

g =m, q,=m. (18)

Rigorously, the divergence of the amplitude of scat-
tering in the resonance range indicates that expansion
into a perturbation series is inapplicable in the situation
under study. Correct calculation of the scattering ampli-
tude requires an approach that would fall beyond the
framework of the perturbation theory. Specifically, we
can perform summation of a principal sequence of
Feynman diagrams. In practice, such summation is re-
duced to a consideration of radiative corrections to the
masses of particles involved in the process under inves-
tigation. This procedure leads to a finite width of a reso-
nance.

We use a resonant approach to obtain a resonant
amplitude and a differential probability. In accordance

with it in the nominator ¢, =m” and in the dominator

the mass of an electron in the wave field becomes com-
plex:

p=m—il/2, (19)
where the width of resonance I' is determined by the
total probability of decay of intermediate state, i.e., the
probability of the single emission [1]:



2
em

r el *Fu,), (20)

where u, =2(kp)/m’ is the invariant parameter and we

introduce the notation:

4 8 1
Fu)=|1-——— |In(l+u, )+—
(1) { u, uf} ( 1) 2
8.1 on
u, 2(1+u)

The width of the resonance in non relativistic case
(o/m<<1 in the frame of reference where the initial
electron remains at rest) is very small: T' ~10*n°w.
But it becomes significant in relativistic case. For ex-
ample for u,=0.5, n=0.1 we have ['~10"°m
(~0.1eV).

Conditions (18) satisfy A =A'=—1. In this case we
can rewrite a process as a sequence of two subprocesses
(see Fig. 3): an emission of the photon k' (%, ) by the
initial electron in the field of the wave and an emission
of the photon %, (k') by the intermediate electron in
the field of the wave. The conservation laws of four-

momentum which correspond to these subprocesses
have the following forms:

{p+k291,2+k1,,2;
g, +k=p'+k,. 22)
4 ' '
p (k)
2 2 \
q, =m \
/ \
A < <
’
Ve p

2 :mZ
ey BT

Fig. 3. Resonance of two-photon emission in the
field of a plane electromagnetic wave (four-vectors out
(in) brackets relate to the first (second) diagram on
Fig. 1)

The resonance conditions (18) can be written as:

. (kp)
Lores = o +(D_([p+k]n1"2) .

(23)

Here nj, are unit vectors of the directions of emitted

photons.
On the other side to exclude g, from (19) we get

conservation four-momentum law:
p+2k=p'+kl+k, . (24)

As it follows from (20) the frequency of the photon
k| lays in the interval:

050 2(kp)
€ +20 —([p+2kin;)

, (25)

and the frequency of the photon %, is connected with
the frequency ®, by the relationship:
' 2(kp) = (Lp + 2k]k/)

P g+20-0 —([p+2k-k/In})
We can consider resonances of the first and the sec-

ond diagrams separately with exception of a case when
it is executed an equation:

® 26)

(kp) _ 20)=(p+2kIK,.)

(lp+klny)  (Ip+2k—KTn}) o7

where kl’,res = (('01,,[‘(:'5 ’(’Ol,mesn;) 5 (’01,,1‘@5 is the resonant fre-
quency (20).

This is the condition of the interference resonant ampli-
tudes. The solution of Eq. (24) is the directions of an
emission of photons k, which satisfies the equation

(see Fig. 4):
cos L(H’zaj) = jO /|j| . (28)

Here

= Und) =) ke 29)

wave direction

Fig. 4. Interference of the resonant amplitudes

4. RESONANT PROBABILITY

Let us obtain probability of the resonant two-photon
emission in the absence of interference of resonant am-
plitudes. In the case of resonance of the first diagram
(see Fig. 1) the differential transition rate (per unit time)
is given by the expression:

dw _enm' |TF o0/o)
do/dQdQ, 32n’c|q —n’' [ (E,—En})

(30)

Here 7; = e’ /m is the classical electron radius,

T=e" S ity M (pq) (G +m)M (g, pu, s B1)
(32)
(33)

q=p—ki+k=p'+kj—k;
E=(Ey,E)=p+2k—Kk .

The resonant denominator in the expression (25) in the
vicinity of a resonance has the form

AN 2
Q) r
2 202 4| 2 1
gt - Prem® |l [ 1-21— +[—]
O o m

(34)
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The procedure of averaging and summation in the
polarization of the initial and the final electrons and of
the final photons yields

|T|2 :2m4(f(Uzaul)f(Ulaul)+g(Uzau1)g(Ulau1)
2v v, 142,

14+v) v, 14y
n 2u,v, v +u, 20, (35)
L+v)(d+v,) U u’

where v, = (kk/) /(kp) , u, =2(kp)m™ , v, = (kk,) /(kp") ,
v =([2k k1K) /([2k —k'1p") are invariant parame-

ters;

2
flopu) =24+ —1— 42 - D (36)
]‘+Ul ul 1
g(Ulaul) = (2+U1)(UI _2U1)U1 . 37)
2u, (14 v,))

In general relativistic case probability of resonant
two-photon emission of electron in the field of the low
intense electromagnetic wave cannot be effectively di-
vided into two subprocesses of the first order in the
fine-structure constant. However it is possible in the
non relativistic case

w <1 (38)
(all the rest invariant parameters in Eq. (32) are less or
equal to u,). In this case for direct amplitude we can

write

dw 5 w/
oo w1
dw/d2dS2,

de(vzaul) dw(v,,u,)
0 dwlds)

; (39)

where dw(v,,u,) is the differential probability per unit
time to emit the photon &' with absorption of one pho-
ton of the electromagnetic wave, dw(v,,u,) is the dif-
ferential probability per unit time to emit the photon £,

with absorption of one photon of the electromagnetic
wave.

5. CONCLUSION

Analysis of two-photon emission of electron in the
field circularly polarized wave has demonstrated that
this process may occur in a resonant region. The reso-
nance has a place when the frequency at least one of the
emitted photons approaches to the frequency one-
photon emission. Estimation shows that the resonant
probability of two-photon emission may be several or-
ders magnitude greater than the probability of the corre-
sponding process out of the resonance.
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PE3OHAHCHOE IBYX®OTOHHOE U3JIYYEHUE 3JIEKTPOHA
B ITOJIE DJIEKTPOMATHUTHOWM BOJIHBI

A.U. Bopowruno, C.II. Powynkun

B o0mem pensiTHBHCTCKOM CIIydae TEOPETHUECKH MCCIEIOBAHO PE30HAHCHOE IBYX(OTOHHOE M3ITyUCHHE JIICK-
TPOHA B TOJIE HUPKYJIAPHO-TOIAPU3OBAHHON DIIEKTPOMArHUTHOW BOJHBI. Y CTaHOBJIEHBI YCIOBHS PE30HAHCHOTO
NPOTEKaHHUs MPOIIecca U TOJTyYeHbl Pe30HAHCHBIE aMILIMTY/Ia U AuddepeHraibHas BEpOSTHOCTh B Cilydyae, Korjaa
WHBAapHaHTHBINA IMapaMeTp WHTEHCHBHOCTH BOJHBI Maj (1 << 1). [loka3aHo, 4TO pe3oHaHCHasi BEPOSITHOCTh Ha He-

CKOJIBKO MOPAAKOB MOKET MPEBLINIATE BEPOATHOCTH JAHHOT'O NPOLICCCa B HCPC3OHAHCHBIX YCJIOBUAX.

PE3OHAHCHE JIBO®OTOHHE BUITPOMIHIOBAHHS EJIEKTPOHA
B I1OJITI EJTEKTPOMATHITHOI XBIJII

O.1. Bopowuno, C.II. Pougynkin

B 3aranbHO-peiaTHBICTCHKOMY BHUINAIKY TEOPETHYHO AOCITIIKEHO PE30HAHCHE NBOGOTOHHE BHIIPOMiHIOBAHHS
€JIEKTPOHA B IOJI LUPKYJSPHO-TIOJIIPU30BaHOl XBWII. 3HAWEHI YMOBH PE30HAHCHOTO MPOXOJKEHHs MpOLeCy i
OTpHMaHi Pe30HaHCHI aMILIiTy a 1 qudepeHuiliHa KMOBIPHICTh y BUNIAJIKY, KOJIM iHBapiaHTHUI apaMeTp iHTEHCHB-
HocTi xBrm Manmuit (1 << 1). [lokasaHo, mo pe3oHaHCHA WMOBIPHICTh MOXeE Ha JEKUTbKa IMOPSAIKIB IIEPEBHUITYBATH

WMOBIPHICTh JJAHOTO TPOLIECY B HEPE3OHAHCHUX YMOBAX.
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