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Abstract. We consider the optimal stopping problem for processes

with independent increments with the exponential g(x) = (1− e
−x)+ or

logarithmic g(x) = (ln x)+ payoff function. For the exponential payoff

function, it is shown that the optimal stopping time is the first time of

hitting a certain level. For the logarithmic payoff function, it is proved

that a moment of the first hitting of a level cannot be optimal.
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1. Introduction

Consider a model of financial market with the single risky asset. The
price process of this asset can be modeled by a process with independent
increments {Xt, t ∈ T}, X0 = x ∈ R = (−∞,∞). This process is defined
on the probability space (Ω,F , P ) with natural filtration Ft = σ{Xs, s ≤
t}, F0 = {∅, Ω}. A market model can be discrete (in this case, the
parametric set T ⊂ Z

+ = {0, 1, 2, . . . }) or continuous (T ⊂ R
+ = [0,∞)).

The risk-free interest rate is assumed to be constant and equal to q ≥ 0.

The problem of the optimal exercise of a perpetual contingent claim
of the American type with payoff function g can be formulated as follows:
to maximize the expected discounted payoff

E(g(Xτ )e
−qτI{τ < ∞})

in the class M of all (Ft)-Markov moments τ taking values in [0,∞]. In
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other words, the problem is to find a “value” function

V (x) = sup
τ∈M

E(g(Xτ )e
−qτI{τ < ∞}). (1.1)

We call τ∗ the optimal stopping moment, if

V (x) = E(g(Xτ∗)e−qτ∗

I{τ∗ < ∞}), x ∈ R. (1.2)

The optimal stopping problem for the payoff function g(x) = (x+)υ =
(max{x, 0})υ with υ = 1, 2, . . . in discrete time was solved in [1, 4], and
these results were extended for arbitrary υ > 0 in [3]. In [4], the prob-
lem with the payoff function g(x) = (1 − e−x)+ for random walks was
solved. In our work, we extend the results obtained in [4] to processes
with independent increments and consider the optimal stopping prob-
lem for processes with independent increments and the payoff function
g(x) = (lnx)+.

Similarly to [3], we will look for an optimal stopping moment in the
form

τ∗ = τa = inf{t ≥ 0 : Xt ≥ a}, (1.3)

where the optimal value of the parameter a depends on the function g(x).

2. Appell functions

To solve the optimal stopping problem, we need the concept of Appell
functions. Appell functions are some generalization of Appell polynomials
(see, e.g., [5]).

Appell polynomials generated by a random variable η such that
E |η|n < ∞ for all n ≥ 1 are the polynomials

Qk(y; η) = (−1)k dk

duk

( e−uy

Ee−uη

)∣

∣

∣

u=0
, k = 1, 2, . . . ., n. (2.1)

Assume now that η is a nonnegative random variable, and

P (η < ε) > 0 for all ε > 0. (2.2)

Define the Appell function of order υ for υ < 0 by the equation

Qυ(y; η) =

∞
∫

0

u−υ−1 e−uy

Ee−uη

du

Γ(−υ)
, y > 0, υ < 0, (2.3)

where Γ(z) is the Euler gamma function. According to this definition,
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the function Qυ(y; η) is continuous in υ and y. Note that

lim
υ↑0

Qυ(y; η) = 1 (2.4)

and extend Qυ(y; η) to υ = 0 continuously, by setting

Q0(y; η) = 1 for all y > 0. (2.5)

Now we define Qυ(y; η) for real υ > 0 using the equation

Qυ(y; η) = Qυ(0; η) + υ

∞
∫

0

Qυ−1(z; η) dz, y > 0, υ > 0, (2.6)

and put

Qυ(0; η) = −υE

( η
∫

0

Qυ−1(z; η) dz

)

. (2.7)

It is not difficult to show that, for Appell functions defined in this such
way, the following properties hold (see [3]):

d

dy
Qυ(y; η) = υQυ−1(y; η), (2.8)

EQυ(y + η; η) = yυ. (2.9)

We have also the following lemma.

Lemma 2.1. Let (2.2) and E(ηn) < ∞ hold for all n ≥ 1. Then, for all

υ > 0, there exists such aυ that

• Qυ(y; η) ≤ 0 for 0 < y < aυ, Qυ(aυ; η) = 0,

• Qυ(y; η) increases for y ≥ aυ.

Proof of this Lemma is given in [3]. 2

3. Some facts about the distribution of maximum

Consider an exponential distributed random variable θ, which is in-
dependent of Xt, with parameter q, i.e.

P (θ > t) = e−qt. (3.1)

Denote
Mθ = sup

0≤t<θ

(Xt − x), (3.2)
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and, for q = 0,

M∞ = sup
0≤t<∞

(Xt − x). (3.3)

In this case, E(X+
1 ) < ∞ and E(X1 − x) < 0.

Lemma 3.1. If q ≥ 0, then, for all ε > 0,

P (Mθ < ε) > 0. (3.4)

Lemma 3.2. Let υ > 0, and let the following conditions hold:

1. if q = 0, then E(X1) < 0, E((X+
1 )υ+1) < ∞;

2. if q > 0, then E((X+
1 )υ) < ∞.

Then E(Mυ
θ ) < ∞.

Proofs of Lemmas 3.1 and 3.2 are given in [3]. 2

Lemma 3.3. 1. Let τa = inf{t ≥ 0 : Xt ≥ a}, a ≥ x. Then, for all

u ≤ 0,

E(I{τa < ∞}euXτa e−qτa) =
E(I{Mθ + x ≥ a}eu(Mθ+x))

E(euMθ)
. (3.5)

2. Under the assumptions of Lemma 3.2 for all a ≥ x and all υ, the

following equality holds:

E(I{τa < ∞}Xυ
τa

e−qτa) = E(I{Mθ + x ≥ a}Qυ(Mθ + x; Mθ)).
(3.6)

3. Let conditions of 3.2 and the initial condition x ≥ 1 hold. Then,

for all a ≥ x, the equality

E(I{τa < ∞} lnXτae
−qτa)

= E

(

I{Mθ + x ≥ a}

∞
∫

0

e−u(Mθ+x)

u

(

1 −
1

Ee−uMθ

)

du

)

(3.7)

holds.

Proof. The proof of items 1 and 2 is given in [3]. We will prove item 3.
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We compute the left derivative ∂−

∂υ
Qυ(y; η)|υ=0. By definition, we

have

∂−

∂υ
Qυ(y; η)

∣

∣

∣

υ=0
=

∂

∂υ

∞
∫

0

u−υ−1 e−uy

Ee−uη

du

Γ(−υ)

∣

∣

∣

∣

∣

υ=0

= lim
υ→0−

1

υ

∞
∫

0

u−υ−1 e−uy

Ee−uη

du

Γ(−υ)
− Q0(y; η)

= lim
υ→0−

1

υ

∞
∫

0

u−υ−1 e−uy

Γ(−υ)

( 1

Ee−uη
− y−υ

)

du

= lim
υ→0−

1

υ

∞
∫

0

u−υ−1 e−uy

Γ(−υ)

( 1

Ee−uη
− 1
)

du

+ lim
υ→0−

1

υ

∞
∫

0

u−υ−1 e−uy

Γ(−υ)
(1 − y−υ) du

=

∞
∫

0

u−1e−uy
(

1 −
1

Ee−uη

)

du + 0

=

∞
∫

0

u−1e−uy
(

1 −
1

Ee−uη

)

du. (3.8)

For both terms, it is possible to pass to the limit under the integral sign
due to the Lebesgue monotone convergence theorem. We also used the
fact that Q0(y; η) = 1 =

∫∞

0 u−υ−1y−υ e−uy

Γ(−υ)du by the definition of the

gamma function and Q0(y; η).

Setting y = Mθ + x, η = Mθ, we obtain

∂−

∂υ
Qυ(Mθ + x, Mθ)|υ=0 =

∞
∫

0

u−1e−u(Mθ+x)
(

1 −
1

Ee−uMθ

)

du.

Let us take the left derivative with respect to the parameter υ at
υ = 0:

E(I{τa < ∞} lnXτae
−qτa) = E

(

I{Mθ + x ≥ a}
∂−

∂υ
Qυ(Mθ + x, Mθ)

∣

∣

∣

υ=0

)

The left-hand side is differentiable due to the monotone convergence
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theorem. On the right-hand side, the expression under the mathematical
expectation can be divided into two parts as it was done above, and the
monotone convergence holds for each of them. This concludes the proof
of the theorem.

Lemma 3.4. Let t ∈ Z+, q ≥ 0, and let f(x) g(x) be nonnegative

functions such that, for all x, f(x) ≥ g(x), and

f(x) ≥ e−qEf(X1). (3.9)

Then, for all x,

f(x) ≥ sup
τ∈M

E(g(Xτ )e
−qτI{τ < ∞}). (3.10)

Proof of Lemma 3.4 see in [3].

4. The main results

The following theorem was proved in [3].

Theorem 4.1. Let g(x) = (x+)υ, υ > 0, the conditions of Lemma 3.2
hold, and let aυ be a positive root of the equation

Qυ(aυ; Mθ) = 0. (4.1)

Then the stopping time

τaυ = inf{t ≥ 0 : Xt ≥ aυ} (4.2)

is optimal and

V (x) = E(Qυ(Mθ + x; Mθ)I{Mθ + x ≥ aυ}). (4.3)

With the use of the same methods, we now prove a similar statement
for the exponential payoff function.

Theorem 4.2. Let g(x) = (1 − e−x)+, the assumptions of Lemma 3.2
hold, and

a∗ = − lnEe−Mθ . (4.4)

Then the stopping time

τa∗ = inf{t ≥ 0 : Xt ≥ a∗} (4.5)

is optimal and

V (x) = E(1 − e−Mθ−x(Ee−Mθ)−1)+. (4.6)
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Proof. Consider the function

V̂ (x) = sup
τa∈M̂

E(g(Xτa)e−qτaI{τ < ∞}), (4.7)

where M̂ is the class of stopping times τa = inf{t ≥ 0 : Xt ≥ a}, a ≥ x.
Obviously, V̂ (x) ≤ V (x), as the supremum is taken over a narrower class
of stopping times. Note item 1 of Lemma 3.3 with u = −1 yields

E(I{τa < ∞}e−Xτae−qτa) =
E(I{Mθ + x ≥ a}e−(Mθ+x))

E(e−Mθ)
, (4.8)

and so

E(I{τa < ∞}g(Xτa)e−qτa) = EI{Mθ + x ≥ a}
(

1 −
e−(Mθ+x)

E(e−Mθ)

)

. (4.9)

Since the function 1 − e−a

E(e−Mθ )
is monotone in a and has a single root

a∗ = − lnEe−Mθ , the left-hand side of (4.9) achieves its maximum at the
point a = a∗, and

V̂ (x) = EI{Mθ+x ≥ a∗}
(

1 −
e−(Mθ+x)

E(e−Mθ)

)

= E
(

1 −
e−(Mθ+x)

E(e−Mθ)

)+
. (4.10)

Thus, we have shown that V̂ (x) achieves its maximum at a∗. Now we
have to prove the inequality V̂ (x) ≥ V (x). To this end, we consider the

function f(x) = E(1 − e−(Mθ+x)

E(e−Mθ )
)+. By the Jensen inequality,

f(x) ≥
(

1 −
Ee−(Mθ+x)

E(e−Mθ)

)+
= (1 − e−x)+ = g(x). (4.11)

Let ξ = X1 − x. Consider a random variable γ such that

P (γ = 1) = 1 − P (γ = 0) = e−q. (4.12)

Then M̂θ = (γMθ + ξ)+ in law, and the following inequalities hold:

e−qEf(X1) = e−qE
(

1 −
e−(Mθ+X1)

E(e−Mθ)

)+

= e−qE
(

1 −
e−(Mθ+x+ξ)

E(e−Mθ)

)+
= E

(

e−q −
e−qe−(Mθ+x+ξ)

E(e−Mθ)

)+

≤ E
(

1 −
e−(γMθ+x+ξ)

E(e−Mθ)

)+
= E

(

1 −
e−(Mθ+x)

E(e−Mθ)

)+
= f(x). (4.13)
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It follows from (4.11), (4.13), and Lemma 3.4 that f(x) = V̂ (x) ≥ V (x),
and this concludes the proof of the theorem.

Now let g(x) = (lnx)+, q ≥ 2, let X0 = x ≥ 1, and let the assump-
tions of Lemma 3.2 be true. We will try to find the optimal stopping
time τa for this case in the form

τa = inf{t ≥ 0 : Xt ≥ a}, (4.14)

where a ≥ x. Consider the function

V̂ (x) = sup
τa∈M̂

E(g(Xτa)e−qτaI{τa < ∞}), (4.15)

where M̂ is the class of stopping times τa = inf{t ≥ 0 : Xt ≥ a}, a ≥ x.
Following the lines of the previous theorem, we consider V̂ (x) ≤ V (x).
Note that, by item 3 of Lemma 3.3, the equality

E(I{τa < ∞} lnXτae
−qτa)

= E

(

I{Mθ + x ≥ a}

∞
∫

0

u−1e−u(Mθ+x)
(

1 −
1

Ee−uMθ

)

du

)

(4.16)

holds. Since the function e−ua is nonnegative and decreasing, and the
function 1− 1

Ee−uaeux for u ≥ 0 is negative and increasing, the integral on
the right-hand side of (4.16) is negative and increasing, and the left-hand
side achieves its maximum at infinity. So, in this case, there exists no
optimal stopping time in form (1.3).

5. Conclusions

We have considered the optimal stopping problem for processes with
independent increments and shown that, for the exponential payoff func-
tion, an optimal stopping moment is the first moment of crossing the level
which is found in the explicit form. In the case of a logarithmic payoff
function, we have proved that the optimal stopping time doesn’t exist in
the class of first moments of crossing the level.
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