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Abstract. We give a criterion for the extension of a linear functional

subordinate to an arbitrary function. This makes it possible to obtain

new necessary and sufficient conditions for the extension of functionals

with the given properties, as well as analogs of the Hahn–Banach theorem

for convex continuous functions.
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The versions of the Hahn–Banach theorem and its applications for
various tasks which are known to the author are based either on the
subordination of a linear functional to a sublinear (calibrating) function
p [2, 5, 6, 8, 9], or these tasks do not concern the extension, but deal with
the existence of a linear functional with given properties [7, 10]. There
is a question, if we can deliver from the sublinear function p. In light of
this, we present a criterion of the extension of a linear functional.

Theorem 1. Let φ be a real function on the real vector space X, and let
f0 be a linear functional which is defined on the subspace X0 and satisfies
the condition

f0(x) ≤ φ(x) (x ∈ X0). (1)

Then f0 admits a linear extension on the whole space X with preserving
inequality (1) on it if and only if the following condition holds:

inf

{ n
∑

k=1

1

λk

φ(λkxk) − f0

( n
∑

k=1

xk

)∣

∣

∣

∣
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n
∑

k=1

xk ∈ X0, xk ∈ X, λk > 0, n ∈ N

}

= 0. (2)

Proof. Necessity. Let inequality (1) be satisfied, and let f be a linear
extension of the functional f0 such that f(x) ≤ φ(x) (x ∈ X). Then,
for any sum

∑n
k=1 xk ∈ X0 and for any combination of positive numbers

λ1, λ2, . . . , λn, the following inequality holds:

f0

( n
∑

k=1

xk

)

= f

( n
∑

k=1

xk

)

=
n

∑

k=1

1

λk

f(λkxk) ≤
n

∑

k=1

1

λk

φ(λkxk).

Condition (2) of the theorem obviously follows from the last inequal-
ity.

Sufficiency. Let conditions (1) and (2) be satisfied. Then, for any
x ∈ X, any sum

∑n
k=1 xk = x, and any combination of positive numbers

λ1, λ2, . . . , λn, we get

φ(−x) +
n

∑

k=1

1

λk

φ(λkxk) − f0

( n
∑

k=1

xk − x

)

≥ 0.

The last statement yields

n
∑

k=1

1

λk

φ(λkxk) ≥ −φ(−x),

and, hence, the function

p(x) = inf

{ n
∑

k=1

1

λk

φ(λkxk)

∣

∣

∣

∣

n
∑

k=1

xk = x, xk ∈ X, λk > 0, n ∈ N

}

is finite on X. From (1), we get φ(0) ≥ 0, and, therefore, p(0) = 0. For
any α > 0, we obtain

p(αx)

= inf

{ n
∑

k=1

1

λk

φ(λkxk)

∣

∣

∣

∣

n
∑

k=1

xk = αx, xk ∈ X, λk > 0, n ∈ N

}

= inf

{

α

n
∑

k=1

1

αλk

φ(αλkxk)

∣

∣

∣

∣

n
∑

k=1

1

α
xk = x,

xk

α
∈ X, λk > 0, n ∈ N

}

= αp(x).
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For any x, y ∈ X and any ε > 0, let us choose sums
∑n

k=1 xk = x,
∑m

k=1 yk = y and combinations of positive numbers λ1, λ2, . . . , λn;
µ1, µ2, . . . , µm in such a way that

n
∑

k=1

1

λk

φ(λkxk) < p(x) + ε

and
n

∑

k=1

1

µk

f(µkyk) < p(y) + ε.

Then we get

p(x+ y) ≤
n

∑

k=1

1

λk

φ(λkxk) +
m

∑

k=1

1

µk

φ(µkyk) < p(x) + p(y) + 2ε.

By virtue of the arbitrariness of ε > 0, the last inequality implies that p
is a gauge function on the space X.

If x ∈ X0, then it follows from condition (2) that

f0(x) ≤
n

∑

k=1

1

λk

φ(λkxk)

for any sum
∑n

k=1 xk = x and any numbers λk > 0. Therefore, f0(x) ≤
p(x) (x ∈ X0). Now we use the Hahn–Banach theorem and find a linear
extension f of the functional f0 such that f(x) ≤ p(x) (x ∈ X).

It is obvious that p(x) ≤ φ(x) (x ∈ X). So, Theorem 1 is proved.

From Theorem 1, we will get the following theorem.

Theorem 2. Let ρ be a positive homogeneous real function on a real
vector space X, and let f0 be a linear functional which is defined on a
subspace X0 and satisfies the following condition on it:

f0(x) ≤ ρ(x) (x ∈ X0). (3)

Then f0 admits a linear extension on the whole space X with preserving
inequality (3) on it if and only if the following condition holds:

inf

{ n
∑

k=1

ρ(xk) − f0

( n
∑

k=1

xk

)
∣

∣

∣

∣

n
∑

k=1

xk ∈ X0, xk ∈ X, n ∈ N

}

= 0. (4)

Theorems 3–5 will be proved below with the help of Theorem 2.
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Theorem 3. Let Γ be a family of calibrating functions on a real vector
space X, and let f0 be a linear functional which is defined on a subspace
X0 and satisfies the following condition on it:

f0(x) ≤ p(x) (x ∈ X0, p ∈ Γ). (5)

Then f0 admits a linear extension on the whole space X with preserving
inequality (5) on it if and only if the following condition holds for any
finite combination p1, p2, . . . , pn of gauge functions of a family Γ:

inf

{ n
∑

k=1

pk(xk) − f0

( n
∑

k=1

xk

)
∣

∣

∣

∣

n
∑

k=1

xk ∈ X0, xk ∈ X

}

= 0. (6)

Proof. Necessity. If f is a linear extension of the functional f0 which sat-
isfies inequality (5) on X0, then, for any finite combination p1, p2, . . . , pn

of gauge functions of the family Γ and any sum
∑n

k=1 xk ∈ X0, the
following condition holds:

f0

( n
∑

k=1

xk

)

= f

( n
∑

k=1

xk

)

=
n

∑

k=1

f(xk) ≤
n

∑

k=1

p(xk).

Condition (6) follows from the last statement.
Sufficiency. Let condition (6) hold. From (6) for n = 2, x1 = x, x2 =

−x and for any p1, p2 ∈ Γ, we get p1(x) + p2(−x) − f0(x− x) ≥ 0. That
is, p1(x) ≥ p2(−x) (x ∈ X). The last inequality provides the finiteness of
the function ρ(x) = inf{p(x) | p ∈ Γ} on the space X. The function ρ is
positive homogeneous. For any fixed n ∈ N , relation (6) yields obviously
the inequality

n
∑

k=1

ρ(xk) − f0

( n
∑

k=1

xk

)

≥ 0

( n
∑

k=1

xk ∈ X0, xk ∈ X

)

.

So, condition (4) of Theorem 2 is true. By virtue of Theorem 2, there
is a linear extension f of the functional f0 which satisfies the condition
f(x) ≤ ρ(x) ≤ p(x) (x ∈ X, p ∈ Γ). The theorem is proved.

For X0 = {0}, we get the next implication.

Corollary 1. A linear functional on the real vector space X submitting
to all gauge functions of a family Γ on it exists if and only if, for any
finite combination p1, p2, . . . , pn from Γ, the following condition holds:

inf

{ n
∑

k=1

pk(xk)

∣

∣

∣

∣

n
∑

k=1

xk = 0, xk ∈ X

}

= 0. (7)
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Remark 1. If Γ consists of a finite number of gauge functions p1, p2, . . . ,

pn, then (from the proof of Theorem 3) relation (6) is the necessary and
sufficient condition of the extension. In particular, for two functions p1

and p2, this condition looks like

inf{p1(x) + p2(y) − f0(x+ y) | x+ y ∈ X0} = 0. (8)

Here, the respective condition (7) looks like p1(x)+p2(−x) ≥ 0 (x ∈ X).
If p and −q are the gauge functions which satisfy the inequality q(x) ≤
f0(x) ≤ p(x) onX0, then (designating p1(x) = p(x) and p2(x) = −q(−x))
condition (8) yields the necessary and sufficient condition for a linear
extension of the last double inequality on the whole space X:

inf{p(x) − q(y) − f0(x+ y) | x+ y ∈ X0} = 0. (9)

Theorem 4. Let p be a gauge function on the ordered real vector space
X, and let X0 be such a subspace that

∀x ∈ X ∃ y ∈ X0 (x ≤ y). (10)

Then the positive (concerning the induced structure of order) linear
functional f0 on X0, which satisfies the condition

f0(x) ≤ p(x) (x ∈ X0), (11)

admits a positive linear extension f on the whole space X with saving
inequality (11) on it if and only if the following condition holds:

∀x ∈ X, y ∈ X0 (y ≤ x⇒ f0(y) ≤ p(x)). (12)

Proof. Necessity. Let f be a positive linear extension of the functional f0

such that, for any x ∈ X, y ∈ X0. Then, with regard for the inequality
y ≤ x, we get f0(y) = f(y) ≤ f(x) ≤ p(x). The necessity is proved.

Sufficiency. Let conditions (10), (11), and (12) be satisfied. Then,
according to the proof of the theorem about positive extension [1], the
gauge function

ρ(x) = inf{f0(s) | s ∈ X0, s ≥ x} (x ∈ X)

is finite on X, f0(x) = ρ(x) (x ∈ X0), and any extension f of the
functional f0 that satisfies the condition f(x) ≤ ρ(x) (x ∈ X) is positive
on X.

Now, for any sum x+ z = t ∈ X0 and functions p, ρ, using condition
(12), we get
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p(x) + ρ(z) − f0(x+ z) = p(x) + ρ(t− x) − f0(t)

= p(x) + inf{f0(s) | s ∈ X0, s ≥ t− x} − f0(t)

= p(x) + inf{f0(t) − f0(y) | y ∈ X0, x ≥ y} − f0(t)

= p(x) + inf{−f0(y) | y ∈ X0, x ≥ y}

= p(x) − sup{f0(y) | y ∈ X0, x ≥ y} ≥ 0.

So the functions p and ρ satisfy (8), according to which there is a linear
extension f of the functional f0 submitting to both gauge functions on
X. The theorem is proved.

Remark 2. If X is an ordered locally convex space and p is a prenorm
on it, then the last theorem is a criterion of the extension of a continuous
positive linear functional. The existence of a continuous positive exten-
sion of a linear functional on an ordered topological vector space with
positive cone P such like int (X0∩P ) 6= ∅ was proved by M. G. Krein [1].

Remark 3. From the proof of the last theorem and Theorem 3, it is
easy to see that the necessary and sufficient condition of the extension of
the positive functional f0 which satisfies the inequality f0(x) ≤ p(x) (x ∈
X0, p ∈ Γ) is the condition

∀n ∈ N ; p1, p2, . . . , pn ∈ Γ; x1, x2, . . . , xn ∈ X; y ∈ X0
(

y ≤
n

∑

k=1

xk ⇒ f0(y) ≤
n

∑

k=1

pk(xk)

)

.

Now let G be an arbitrary family of endomorphisms of the real vector
space X, and let p be a gauge function on X which satisfies the condition

p(u(x)) ≤ p(x) (x ∈ X, u ∈ G). (13)

If G is a commutative semigroup of endomorphisms or a solvable group of
endomorphisms of the space X, then there is a linear invariant extension
of a similar functional f0 defined on the subspace X0 relative to G (the
Agnew–Morse theorem) [1].

In connection with the theorem of Agnew–Morse, let us define a gauge
function pu on X for any u ∈ G with the help of the inequality

pu(x) = lim
n

1

n
p

( n
∑

k=1

uk(x)

)

. (14)
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Theorem 5. Let X0 be a subspace of the real vector space X invariant
relative to the family G (u(X0) ⊂ X0, u ∈ G), and let p be a gauge
function which satisfies inequalities (13) on X. Let a linear functional
f0 be defined on X0 and satisfy the conditions

f0(u(x)) = f0(x) ≤ p(x) (x ∈ X0, u ∈ G). (15)

Then f0 admits a linear extension f on the whole space X which sat-
isfies condition (15) on it if and only if, for any finite combination
pu1

, pu2
, . . . , pun

of functions (14), the next equality holds:

inf

{ n
∑

k=1

puk
(xk) − f0

( n
∑

k=1

xk

) ∣

∣

∣

∣

n
∑

k=1

xk ∈ X0, xk ∈ X

}

= 0. (16)

Proof. Necessity. Let f be a linear extension of the functional f0 on the
whole space X and f(x) = f(u(x)) ≤ p(x) (x ∈ X, u ∈ G). Then

f(x) = f

(

1

n

n
∑

k=1

uk(x)

)

≤ p

(

1

n

n
∑

k=1

uk(x)

)

≤
1

n

n
∑

k=1

p(uk(x)) ≤ p(x)

for any n ∈ N, x ∈ X. From the last statement, we get

f(x) ≤ pu(x) = lim
n

1

n
p

( n
∑

k=1

uk(x)

)

≤ p(x).

Now, for any finite combination pu1
, pu2

, . . . , pun
(uk ∈ G) (with the

help of Theorem 3), we get

inf

{ n
∑

k=1

puk
(xk) − f0

( n
∑

k=1

xk

) ∣

∣

∣

∣

n
∑

k=1

xk ∈ X0, xk ∈ X

}

= 0.

The necessity is proved.
Sufficiency. Let f0 satisfy condition (15). Then (as in the case of

proving the necessity) we get f0(x) ≤ pu(x) (x ∈ X0, u ∈ G). Using (16)
and Theorem 3, we will find a linear extension f of the functional f0, for
which f(x) ≤ pu ≤ p(x) (x ∈ X, u ∈ G). Because of

pu(±(u(x) − x)) = lim
n

1

n
p

(

±
n

∑

k=1

(uk+1(x) − uk(x))

)

= lim
n

1

n
p(±(un+1(x) − u(x))) ≤ lim

n

1

n
(p(x) + p(±x)) = 0,

the last inequalities yield the invariance of the functional f relative to
the family G on the space X. The theorem is proved.
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Now let us have a look on the topological vector space X and a finite
convex function ϕ on it. If ϕ(0) ≥ 0, then the envelope of the function ϕ
will be a function p defined on X with the help of the inequality

p(x) = inf
α>0

ϕ(αx)

α
(x ∈ X). (17)

Lemma 1. The envelope of a function ϕ is a continuous gauge function
on the topological vector space X.

Proof. First of all, we will prove that the function p is finite on X. Ac-
tually, if, for any x ∈ X,

inf
α>0

ϕ(αx)

α
= −∞,

then there is a sequence {αn}
∞
n=1 of positive numbers αn such that

ϕ(αnx)

αn
< −n (n ∈ N). (18)

From the continuity of a function ϕ and (18), we now get that the men-
tioned sequence has no finite positive limit points, and 0 is not its limit
point, when ϕ(0) > 0. If ϕ(0) = 0 and 0 is a finite point of the sequence
{αn}

∞
n=1, then inequality (18) contradicts the existence of a finite right

derivative of a continuous convex real function Mx(α) = ϕ(αx) (α ∈ R)
at 0 [3]. So αn → +∞ for n → ∞. Now, for sufficiently great n, using
the convexity of a function ϕ and inequality (18), we get

−1 >
1

nαn
ϕ(αnx) ≥ ϕ

( 1

n
x
)

−
(

1 −
1

nαn

)

ϕ(0).

The last statement contradicts the condition of a lemma that proves the
finiteness of a function p. It is obvious that p(0) = 0 and, for any λ > 0,
it is true that

p(λx) = inf
α>0

ϕ(λαx)

α
= λp(x).

Now let x and y be arbitrary points of the space X. Then, for any
α, β > 0, it is true that

p(x+ y) ≤
α+ β

αβ
ϕ
( αβ

α+ β
(x+ y)

)

≤
α+ β

αβ

( β

α+ β
ϕ(αx) +

α

α+ β
ϕ(βy)

)

=
ϕ(αx)

α
+
ϕ(βy)

β
.
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For any ε > 0, let us choose α and β in such a way that ϕ(αx)
α

< p(x)+ ε

and ϕ(βy)
β

< p(y) + ε. We get p(x + y) < p(x) + p(y) + 2ε. The last
statement yields the semiadditivity of a function p. It is obvious that
p(x) ≤ ϕ(x) (x ∈ X). Because the continuity of a continuous convex
function ϕ and its boundedness from above in some neighborhood of a
point [3] are equivalent, the function p is continuous on X. The lemma
is proved.

Lemma 2. If ϕ is a continuous convex function on the topological vector
space X such that ϕ(0) ≥ 0, then its envelope function is the largest
among all gauge functions r such that r(x) ≤ ϕ(x) (x ∈ X).

Proof. Let the conditions of a theorem be true. We suppose an opposite
statement that there is x0 ∈ X such that p(x0) < r(x0) ≤ ϕ(x0). Then,

by the definition of a function p, there is α > 0 such that ϕ(αx0)
α

<

r(x0). From the last, we get ϕ(αx0) < r(αx0). The last statement
contradicts the condition of a lemma. The derived contradiction proves
the lemma.

Using two last lemmas, we get the next analogs of Hahn–Banach
theorems for real and complex topological vector spaces.

Theorem 6. Let ϕ be a continuous convex function on the real topolog-
ical vector space X, and let f0 be a continuous linear functional which is
defined on the space X0 and satisfies the condition

f0(x) ≤ ϕ(x) (x ∈ X0) (19)

on it. Then we can extend f0 linearly on the whole space X with saving
the last inequality on it.

Proof. Let f0 satisfy inequality (19). Then ϕ(0) ≥ 0.. Because a func-
tional f0 is a gauge function on X0, Lemma 2 implies that the envelope
p of a function ϕ satisfies the inequality f0(x) ≤ p(x) (x ∈ X0) on X0.
Now, from the definition of a function p, Lemma 1, and the Hahn–Banach
theorem, we get the existence of a linear extension f of the functional f0

such that f0(x) ≤ p(x) ≤ ϕ(x) (x ∈ X0). The theorem is proved.

Theorem 7. Let ϕ be a continuous nonnegative convex function on the
complex topological vector space X such that ϕ(xeiθ) = ϕ(x) (x ∈ X, θ ∈
R), and let f0 be a linear functional which is defined on a subspace X0

and satisfies the inequality |f0(x)| ≤ ϕ(x) (x ∈ X0) on it. Then we can
extend f0 linearly on the whole space X with saving the last inequality
on it.
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Proof. Let the condition of the theorem be true. Then, from the defini-
tion of the envelope, we get that p is nonnegative, and, for any complex
number λ, the inequality p(λx) = |λ|p(x) is true. So, p is a prenorm on
X, and the statement of a theorem now follows (as in the previous the-
orem) from Lemmas 1 and 2 and the respective Hahn–Banach theorem
for a complex topological vector space.

Theorem 8. Let ϕ and −ψ be continuous convex functions on the real
topological vector space X such that ψ(x) ≤ ϕ(x) (x ∈ X), and let a
linear functional f0 defined on a subspace X0 satisfy the inequality

ψ(x) ≤ f0(x) ≤ ϕ(x) (x ∈ X0).

Then we can extend f0 linearly on the whole subspace X with saving the
previous inequality on it if and only if

inf
α,β>0

(βϕ(αx) − αψ(βx)) ≥ 0 (20)

and the envelopes p and q (of the functions ϕ and −ψ, respectively) satisfy
condition (9).

Proof. Necessity. Let f be a linear extension of the functional f0 such
that

ψ(x) ≤ f(x) ≤ ϕ(x) (x ∈ X). (21)

Then ψ(0) ≤ 0 ≤ ϕ(0), and, according to Lemma 2 for the envelope p
of a function ϕ, we get f(x) ≤ p(x) (x ∈ X). From the left-hand side of
inequality (21), we similarly get that, for any envelope −q of a function
−ψ, there is the inequality f(x) ≥ q(x) (x ∈ X). It is obvious that

q(x) = sup
β>0

ψ(βx)

β
(x ∈ X).

From two last inequalities, we obtain

sup
β>0

ψ(βx)

β
≤ inf

α>0

ϕ(αx)

α
(x ∈ X). (22)

From inequality (22), we get condition (20) of the theorem. The rest
conditions of the theorem follow from Remark 1.

Sufficiency. Let the conditions of a theorem be satisfied. Then the
inequality q(x) ≤ p(x) (x ∈ X) obviously follows from (20), and so all the
conditions of Remark 1 are true. Thus, there is a linear extension f of the
functional f0 which satisfies the inequality q(x) ≤ f(x) ≤ p(x) (x ∈ X).
From the definition of envelopes, we now get now inequality ψ(x) ≤
f(x) ≤ ϕ(x). The theorem is proved.
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Corollary 2. Let ϕ and −ψ be continuous convex functions on a topo-
logical vector space X which satisfy the conditions ψ(x) ≤ ϕ(x) (x ∈
X), ψ(0) ≤ 0 ≤ ϕ(0). Then a linear continuous functional f such that
ψ(x) ≤ f(x) ≤ ϕ(x) (x ∈ X) exists if and only if condition (20) holds.

The results which are similar to the last statements (“sandwich theo-
rems”) were get by H. König [5, 6].
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