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1. Introduction

The existence problem of maximal semidefinite invariant subspaces of
operators which act in spaces with indefinite metric is considered. It is
well known that the existence problem of invariant subspaces, moreover
of special types, is one of the key problems in the operator theory and
its different applications. For the first time, the discussed problem for
self-adjoint operators in spaces named the Pontryagin spaces later on
was solved in 1944 by L. S. Pontryagin [10], but one year earlier by
S. L. Sobolev [17] for κ = 1. More details of the development of this
problem till the 1990s can be found in [3, 4]. Here, we only mention
that this problem was solved independently by one of the coauthors [1]
and M. G. Krein and H. Langer [8] for J-dissipative operators in Πκ,
for J-dissipative operators satisfying condition (L) (see the definition
below) in [2]. Recently, this problem was considered in a few papers
of A. A. Shkalikov [11–16], in particular, other weaker conditions were
offered in [14] and [16] instead of condition (L). Let us note that [16] is
the first paper in this direction, where the existence of regular points of
a considered operator was not assumed.
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2 On invariant subspaces...

Before we will formulate the aim of our research, let us recall some
notions of indefinite metric space theory. See more details, for example,
in [4].

Let H be a linear space, and let [·, ·] be a sesquilinear form on H.
This form is called an indefinite metric. If H admits a decomposition in
a direct orthogonal sum:

H = H+[+̇]H−, (1.1)

where {H±,±[·, ·]} are Hilbert spaces and [x+, x−] = 0, for all x± ∈ H±,
then {H, [·, ·]} is called a Krein space, and the decomposition (1.1) is
called fundamental. This decomposition generates the orthogonal projec-
tions from H onto H±, which we denote by P±, respectively. The space
H with the scalar product

(x, y) = [x+, y+] − [x−, y−], x±, y± ∈ H±

is a Hilbert space; denote ‖x‖ =
√

(x, x). In this case, [ ·, ·] = (J ·, ·),
where J is a fundamental symmetry, J is self-adjoint and unitary at the
same time, and J = P+ − P−, P± = 1

2(I ± J).

A subspace L of the Krein space {H, [·, ·]} is called nonnegative, if
[x, x] ≥ 0 for all x ∈ L; positive, if [x, x] > 0 for all x ∈ L \ {0}; and
uniformly positive, if the norms [x, x]1/2 and ‖x‖ are equivalent on L, that
is, (taking [x, x] ≤ ‖x‖2 in account) for some ε > 0 and for all x ∈ L,
the inequality [x, x] ≥ ε‖x‖2 holds. Similarly, one can define nonpositive,
negative, and uniformly negative subspaces.

The notion of uniformly definite subspace admits a generalization: a
nonnegative (nonpositive) subspace L of the Krein space H is called a

subspace of the class h+ (of the class h−), if it admits a decomposition
L = L0[+̇]L+ (L = L0[+̇]L−) in a direct sum of the finite dimensional
isotropic subspace L0 (dimL0 < ∞, L0 = L ∩ L[⊥]) and a uniformly
positive (a uniformly negative) subspace L+ (L−).

The bounded operator K : K = P−(P+|L)−1, K : P+L → H−, is
called the angle operator of a nonnegative subspace L. Every nonnegative
subspace L has the angle operator K, and L = {x = x+ + Kx+ | x+ ∈
L+}, where L+ = P+L.

Denote, by (M+(H) =)M+, (M−(H) =)M−, the set of maximal
nonnegative and maximal nonpositive subspaces of H.

Let us define some classes of linear operators in spaces with an indef-
inite metric.

An operator V : H → H is called J-noncontractive, if [V x, V x] ≥
[x, x], x ∈ H.
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If both operators V and V ∗ are J-noncontractive, we say that V is
J-binoncontractive.

An operator A acting in a Krein space H is called J-dissipative, if
Im [Ax, x] ≥ 0 for all x ∈ dom A; domA denote the domain of A. An
operator A is maximal J-dissipative, if it does not admit nontrivial J-
dissipative extensions.

Analogously to the case of a Hilbert space, an operator is said to be
essentially maximal J-dissipative if the closure of it is maximal J-dissi-
pative.

Let us note the evident relation between dissipative and J-dissipative
operators: A is J-dissipative if and only if JA (and then AJ) is dissipa-
tive. In this case, A is maximal J-dissipative if and only if JA (and then
AJ) is maximal dissipative.

If J = I, our definition coincides with the definition of dissipative
operators by M. S. Livschitz which describes a class of operators DL

containing symmetric and self-adjoint operators. Another definition of
dissipative operators belong to R.S. Phillips: Re (Bx, x) ≤ 0, and this
class DPh of operators describes problems related to the stability problem
and dissipation. The following trivial proposition establishes a relation
between these two definitions.

Proposition 1.1.

A ∈ DL ⇐⇒ B = −iA ∈ DPh; (1.2)

in this case, A is maximal dissipative by Livschitz if and only if B = −iA
is maximal dissipative by Phillips.

We will say that the operator A in a Krein space H satisfies the
condition (L) and will write A ∈ (L), if H+ ⊂ dom A. Condition (L)
was introduced by H. Langer in paper [9], where a theorem of existence
of the maximal semidefinite invariant subspace of self-adjoint operators
in a Krein space was proved.

As usual, σ(A), ρ(A), domA, and ranA denote the spectrum, the
resolvent set, the domain of definition, and the range of values of A,
respectively. The set of completely continuous (compact) operators acting
in H is denoted by S∞.

Let us recall the Cayley–Neumann transform U of an operator A at
(λ 6=)λ /∈ σp(A): U = I + (λ − λ)(A − λI)−1. In this case, the inverse
Cayley–Neumann transform is A = λI + (λ − λ)(U − I)−1.

Let A be a J-dissipative operator which is the closure of the operator

A′ := A|(H+∩dom A)⊕(H−∩dom A) =

[
A′

11 A′
12

A′
21 A′

22

]
. (1.3)
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We say that a J-dissipative operator A satisfies condition (S1) :
A ∈(S1) , if

(a) −A′
22 is a maximal dissipative operator in the Hilbert space

{H−,−[·, ·]};

(b) for Im µ > 0, the operator (A′
22 − µ)−1A′

21 is bounded and densely
defined in H+;

(c) the closure of the operator A′
12(A

′
22 − µ)−1 is compact;

(d) the transfer function M(µ) = A′
11−A′

12(A
′
22−µ)−1A′

21 is a bounded
operator densely defined in H+.

If only conditions (a)–(c) are satisfied, we will say that A ∈(S2) .
Conditions (S1) and (S2) are introduced by A. A. Shkalikov in [14]
and [16], respectively. In [14], there is given the example of an operator
which satisfies condition (S1) , but not (L). It is not difficult to construct
an operator which belongs to (S2) \(S1) .

The main aim of this paper is a development of results from [14] and
to obtain new theorems about the existence of an invariant subspace of
a J-dissipative operator.

2. Invariant subspaces of a J-dissipative operator

Let us precede the main result of this section, Theorem 2.1, by con-
sidering the following lemma which arouses an independent interest.

Lemma 2.1. Let

A′ =

[
A′

11 A′
12

A′
21 A′

22

]

be a densely defined J-dissipative operator, and let −A′
22 be an essentially

maximal dissipative operator in {H−,−[·, ·]}. Let A be the closure of A′.

If there exists a λ with Im λ > 0 such that λ ∈ ρ(A) and the operator

M(λ) = A′
11 − λ − A′

12(A
′
22 − λ)−1A′

21 is densely defined, then A is a

maximal J-dissipative operator if and only if the operator

T (λ) := M(λ) + λ (2.1)

is essentially maximal in {H+, [·, ·]}.

Proof. Below, we will use the well-known relations between operator
classes in Krein spaces (see, for instance, [4, Chapter 2]). Since A
is a J-dissipative operator, λ ∈ ρ(A), its Cayley–Neumann transform
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U = (A − λ)(A − λ)−1 is a J-noncontractive operator. Indeed, let f =
(A − λ)x be an arbitrary vector in H. Then it follows from

[Uf, Uf ] − [f, f ] = 4 Im λ Im [Ax, x] (2.2)

that U is J-noncontractive if and only if A is J-dissipative. Moreover, A
is a maximal J-dissipative operator if and only if U is J-binoncontractive.
Let

U =

[
U11 U12

U21 U22

]

be the matrix representation of a J-noncontractive operator U with re-
spect to (1.1). One can check directly that U11 is the closure of the
operator

U ′
11 = (T (λ) − λ)(T (λ) − λ)−1, (2.3)

and ‖U11x
+‖ ≥ ‖x+‖ for all x+ ∈ H+. From the equality similar to

(2.2), we have that T (λ) is a dissipative operator in {H+, [·, ·]}. Since U
is J-binoncontractive if and only if 0 ∈ ρ(U11), and this is equivalent to
the density of the range of values of the operator T (λ) − λ in H+, we
have that T (λ) is an essentially maximal dissipative operator if and only
if A is a maximal J-dissipative operator.

The first part (i) of the following Theorem 2.1 coincides with the
main result of [14], but we give some another approach to the proof,
which allows us to formulate and to prove part (ii).

Theorem 2.1. Let J-dissipative operator A ∈(S1) . Then

(i) the operator A has an invariant subspace L ∈ M
+, L ⊂ domA with

Im σ(A|L) ≥ 0 [14];

(ii) if L+ is a nonnegative invariant subspace of A : L+ ⊂ dom A,

AL+ ⊂ L+, then there exists L̃+ ∈ M
+ such, that L+ ⊂ L̃+, L̃+ ⊂

dom A and AL̃+ ⊂ L̃+, that is, each A-invariant nonnegative sub-

space admits an extension to a maximal nonnegative subspace in-

variant with respect to A.

Proof. First of all, we note that, according to Lemma 2.1, the oper-
ator A is maximal J-dissipative. So, its Cayley–Neumann transform
U = (A − λ)(A − λ)−1 is a J-binoncontractive operator. Condition (c)
of the definition of class (S1) yields the compactness of U12 = (U11 −
I)A12′(A′

22 − λ)−1. Hence, according to [5], [4, Theorem 3.2.8], the op-
erator U has an invariant subspace L ∈ M

+ such that |σ(U |L)| ≥ 1. To
prove (i), it is sufficient to check that L is A-invariant. Since A|L is the
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inverse Cayley–Neumann transform of U |L, it remains to use the relation
between the spectra of an operator and its Cayley–Neumann transform.

So, let us prove that L is A-invariant. Let K be the angle operator
of the subspace L. Then the operators U |L and U11 + U12K are similar:

U |L = (P+|L)−1(U11 + U12K)(P+|L).

Since 1 6∈ σp(U), we have 1 6∈ σp(U |L), and 1 6∈ σp(U11 +U12K). By con-
dition (d) of the definition of class (S1) , the operator M(λ) is bounded
and densely defined. It follows from (2.1) and (2.3) that 1 ∈ ρ(U11).
Since U12K is compact, 1 ∈ ρ(U11 + U12K). The latter is equivalent to
1 ∈ ρ(U |L), that is, (U − I)L = L. Hence, L ⊂ domA = ran(U − I) and
then L is A-invariant.

Let us prove (ii). First, we check that there exists a uniformly positive
subspace H+

1 ∈ M
+ in dom A. Let us consider the operators Aε =

A + iεJ . These operators are J-dissipative, dom Aε = domA and, for
a sufficiently small ε > 0, together with A belong to the class (S1) .
Moreover,

Im [Aεx, x] ≥ ε‖x‖2. (2.4)

According to (i), the operator Aε has an invariant subspace Lε ∈ M
+

such that Lε ∈ dom Aε = dom A and Imσ(Aε|Lε) ≥ 0. Let Gε be the
Gram operator of the subspace Lε. Let us prove that 0 ∈ ρ(Gε). Indeed,
if we suppose the contrary, then there exists a normalized sequence of
vectors xn ∈ Lε, ‖xn‖ = 1 such that Gεxn → 0 as n → ∞. But
then also Im [Aεxn, xn] → 0, which is impossible, according to (2.4). So,
0 ∈ ρ(Gε), and this is equivalent to the fact that Lε is uniformly positive.
It remains to put H+

1 = Lε. Without loss of generality, we can assume
that H+

1 = H+, that is, H+ ⊂ dom A and then A ∈ (L) by definition.

It follows from [4, Theorem 3.1.13] that, for A ∈ (L), there exists a
point λ ∈ C

+ such that the nonnegative invariant subspaces of A and its
Cayley–Neumann transform U coincide. Moreover, one can choose λ with
a sufficiently large imaginary part. Let λ be such that λ, λ ∈ ρ(A|L+),
which is possible since L+ ⊂ domA and, hence, A|L+ is bounded. Conse-
quently, L+ is invariant with respect to the Cayley–Neumann transform
U of the operator A and, moreover, UL+ = L+. It follows from [4, The-

orem 3.3.9] that there exists a subspace L̃+ ∈ M
+ such that U L̃+ = L̃+

and L+ ⊂ L̃+. From the choice of λ and [4, Theorem 3.1.13], we have

that L̃+ is a desired maximal nonnegative A-invariant subspace which is
an extension of the given nonnegative A-invariant subspace L+.
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3. Invariant subspaces of a C0-semigroup

Let U(t), t ∈ [0;∞) be a one-parameter C0-semigroup of J-binoncon-
tractive operators. Let B = −iA be the generator of this semigroup:

Bx = lim
t→0

U(t)x − x

t
. (3.1)

Let us recall that B is a closed operator defined on the set of vectors
x ∈ H, for which limit (3.1) exists. Since the functions [U(t)x, U(t)x]
and [U(t)∗x, U(t)∗x] are nondecreasing for every x ∈ H, A is a maximal
J-dissipative operator. Indeed, one can prove this in the standard way
by differentiating the functions [U(t)x, U(t)x] and [U(t)∗x, U(t)∗x] with
respect to t and taking in account that the derivative of a nondecreasing
function is nonnegative:

[U(t)x, U(t)x]′ = 2Re [U ′(t)x, U(t)x]

= 2Re (−i[AU(t)x, U(t)x]) = 2Im [AU(t)x, U(t)] ≥ 0.

In particular, we have Im [Ax, x] ≥ 0 as t → 0. Similarly, Im [−A∗x, x]
≥ 0. For a completion of the proof, let us use the relation between J-
dissipative and dissipative operators, Proposition 1.2, and the fact that
(see, for example, [7, Theorem I.4.4]) a closed dissipative operator is
maximal by Phillips if and only if its adjoint is dissipative.

Let us note that, in contrast to the Hilbert space case, there exist
not maximal J-dissipative operators which generate C0-semigroups, and
there are maximal J-dissipative operators which do not generate C0-
semigroups.

Example 3.1. Let A± : H± → H± be maximal symmetric operators
with ρ(A±) = C

−. Then the operator

A =

[
A+ 0
0 A−

]
(3.2)

is J-dissipative but not maximal, since −A− is not maximal dissipative
in H−. Nevertheless, the operator A generates a C0-semigroup with the
generator B = −iA. On the other hand, let us consider the maximal
J-dissipative operator

Ã =

[
A+ 0

0 Ã−

]
,

where −Ã− is a maximal dissipative extension of the dissipative operator
−A−. The operator Ã does not generate a C0-semigroup, since, for
instance, it has no regular points.
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The theorems below establish the relations between invariant sub-
spaces of a semigroup, its generator, and its co-generator.

Theorem 3.1. Let U(t) be a C0-semigroup, ‖U(t)‖ ≤ M exp (ωt), M >
0, ω ≥ 0, let −iA be the generator of U(t), and let V = (A + ω + I)(A−
ω − I)−1 be the co-generator of U(t). Then the following assumptions

are equivalent:

(i) the subspace L is U(t)-invariant for every t;

(ii) the subspace L is A-invariant and ω + 1 ∈ ρ(A| L);

(iii) the subspace L is V -invariant.

Proof. (i) ⇒ (ii) immediately follows from the assumption that U(t)| L
is a C0-semigroup, ‖U(t)| L‖ ≤ ‖U(t)‖ ≤ M exp (ωt), and A| L is the
generator of U(t).

(ii) ⇒ (iii) is true since ω + 1 ∈ ρ(A| L).

(iii) ⇒ (ii). The subspace L is (A − ω − 1)−1-invariant. Assume

ρω(A) = {λ ∈ C : Re λ > ω}.

Since all λ ∈ ρω(A) are regular points of A and ω + 1 ∈ ρω(A), it
follows that L is (A − λ)−1-invariant for all λ ∈ ρω(A). Let us note
that A is the limit of the operators An := −λn − λ2

n(A − λn)−1 in the
the strong operator topology for real λn → +∞, AnL ⊂ L. Therefore,
dom A| L = dom A ∩ L and L is A-invariant. Since L is V -invariant, we
have ω + 1 ∈ ρ(A| L).

(ii) ⇒ (i). The set ρω(A) consists of points of the regular type of A| L
and ω+1 ∈ ρ(A| L). Hence, ρω(A) ⊂ ρ(A| L). So, L is (A−λ)−1-invariant
as λ > ω. Since, for x ∈ dom A and t > 0, the equality

U(t)x = −
1

2πi

σ+i∞∫

σ−i∞

exp(λt)(A − λ)−1x dλ

holds, x ∈ dom A| L implies U(t)x ∈ L. It follows from the continuity of
U(t) that U(t)L ⊂ L.

Remark 3.1. Let the conditions of Theorem 3.1 hold, and let the sub-
space L be V -invariant. Then the operators −iA| L and V | L are the
generator and the co-generator of the C0-semigroup U(t)| L, respectively.
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We say that an operator A belongs to the class H, if there exists a
pair L± ∈ M

± of A-invariant subspaces and each such subspaces belong
to the classes h±, respectively. By definition, an operator A belongs to
the class K(H), if there is a J-binoncontractive operator B ∈ H such
that the resolvents of A and B commute: (BA ⊆ AB).

Similarly, one can define C0-semigroups U(t) of the classes H and
K(H).

The following result was proved in [6]:

Lemma 3.1. Let A be a maximal J-dissipative operator and Ca
+ =

{λ | Imλ > a} ⊂ ρ(A). Then, for λ ∈ Ca
+,

A ∈ H ⇐⇒ U = (A − λ)(A − λ)−1 ∈ H.

Moreover, the invariant subspaces of A and U are the same.

Theorem 3.2. Let U(t) be a C0-semigroup of J-binoncontractive opera-

tors, and let −iA be the generator of this semigroup. Then the following

implications hold:

(i) U(t) ∈ H ⇐⇒ A ∈ H;

(ii) U(t) ∈ K(H) ⇐⇒ A ∈ K(H).

Proof. (i) Assume U(t) ∈ H. It follows from the definition that there
exist subspaces L± such, tat L± ∈ M

±∩h±, and U(t)L± ⊂ L± for every
t ∈ (0;∞). Then, for each x ∈ L±, we have

(A − λI)−1x =

∞∫

0

e−λtU(t)x dt ∈ L±.

This is equivalent to UL± ⊂ L±, that is, U ∈ H. Hence, according to
Lemma 3.1, we have also A ∈ H.

If A ∈ H, that is, there are subspaces M± ∈ M
± ∩ h±, for which

A(M±∩dom A) ⊂ M±, then, for every x ∈ M± and U(t), the following
equality holds:

U(t)x =
1

2πi

∞∫

0

eλt(A − λI)−1x dλ ∈ M±.

So, U(t)M± ⊂ M± and again, by Lemma 3.1, U(t) ∈ H.
(ii) Let U(t) ∈ K(H). This means that there is a V ∈ H which com-

mutes with U(t) for every t ∈ (0;∞). Since Ax = limt→t0
U(t)−I

it x (x ∈
domA), the operator A commutes with V as well:

V Ax = lim
t→0

V
U(t) − I

it
x = lim

t→0

U(t) − I

it
V x = AV x,
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and then A ∈ K(H).
Suppose A ∈ K(H). Then there exists the operator V ∈ H such that

V A ⊆ AV . The latter is equivalent to (A − λ)−1V = V (A − λ)−1 for
λ ∈ ρ(A).

Hence, for every U(t),

U(t)V x =
1

2πi

∞∫

0

eλt(A − λI)−1x dλV

= V
1

2πi

∞∫

0

eλt(A − λI)−1x dλ = V U(t)x.

The theorem is completely proved.

We give some examples of operators of the class H. Consider a Cauchy
problem {

ẍ + iBẋ − Cx = 0,

x(0) = x0, ẋ(0) = ẋ0,
(3.3)

for the differential equation in a Hilbert space G. Here, C is a positive
bounded operator, and −B is a dissipative operator.

Assume that at least one of the following conditions holds:

a) C is a compact operator and λ = 0 is a regular point of −B, or it

is an isolated point of the spectrum which is an eigenvalue with a

finite multiplicity, that is, 0 is a normal point [4, Definition 2.1.4].

b) B = D + F , where D−1 and D−1F both are compact operators.

If x = C−1/2z, then ẋ = C−1/2ż. For y = −iC−1/2ż, let us rewrite
the problem as follows:

(
ż
ẏ

)
= i

(
0 C1/2

−C1/2 B

)(
z
y

)
,

(
z(0)
y(0)

)
=

(
C1/2x0

−iẋ0

)
.

Denote

W =

(
z
y

)
, A =

(
0 C1/2

−C1/2 B

)
, W (0) = W0,

where

W0 =

(
C1/2x0

−iẋ0

)
.
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Then (3.3) can rewritten as

Ẇ = iAW, W (0) = W0. (3.4)

We note that A is J-dissipative in H = H+ ⊕ H−, H± = G,
J =

(
I 0
0 −I

)
.

Let us show that both conditions a) and b) imply A ∈ H. Assume
that condition a) holds. Then H+ ⊂ domA, and, therefore, there exists
the A-invariant nonnegative subspace L = {x + Kx}x∈P+L, where K is
the angle operator of L. The assumption AL ⊂ L is equivalent to the
fact that, for every x ∈ H+, there exists y ∈ H+ which is a solution of
the equation A(x + Kx) = y + Ky, that is:

(
0 C1/2

−C1/2 B

)(
x

Kx

)
=

(
y

Ky

)
.

Hence,

−C1/2 + BK − KC1/2K = 0. (3.5)

Since λ = 0 is a regular point of B, we multiply both sides by B−1

and get

−B−1C1/2 + K − B−1KC1/2K = 0

or

K = B−1C1/2 + B−1KC1/2K.

Since the operators on the right-hand side are compact, the operator on
the left-hand side also is compact. That is, K is compact. This implies
L ∈ h+ and, therefore, A ∈ H.

Let b) hold. Then we replace the operator B in (3.5) by D + F ,
multiply both sides by D−1, and obtain that K is compact. Hence,
the operator −iA is a generator of the semigroup {exp(−itA)}∞t=0 ∈ H.
Therefore, a solution of (3.4) has the form W (t) = exp(−itA)W0. So, a
solution of the Cauchy problem (3.3) is x(t) = C−1/2PW (t), where P is
the orthogonal projection onto G ⊕ 0.

Theorems 3.1 and 3.2 yield immediately the following result:

Theorem 3.3. If A ∈ K(H), then the C0-semigroup U(t) of J-binon-

contractive operators has a maximal nonnegative subspace of the class

h+ and a maximal nonpositive subspace of the class h−.

Moreover, if L± ∈ h± are invariant subspaces of A, then there are

subspaces L̃± ∈ h± ∩ M
±, L± ⊂ L̃± which are U(t)-invariant.
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