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Abstract. This paper is devoted to the study of the classical problem

of the motion of a gravitating ellipsoidal mass of liquid. The new element

is the viscosity of liquid which is determined as a linear homogeneous

function of the pressure. It is proved that the so determined viscosity

does not destroy the homogeneous rotational flow of liquid.
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Introduction

For the first time, the problem on the rotation of a liquid gravitat-
ing ellipsoid was set up and solved by Newton (1686) [8] in order to
investigate the Earth’s shape. Later on, this problem was studied by
Stirling (1735), Maclaurin (1742), Simpson (1743), d’Alembert (1773),
Laplace (1778), Jacobi (1834), Mayer (1842), Liouville (1846), Dirichlet
(1875), Dedekind, Riemann, Poincaré (1885), Cartan, Lyapunov, Roche
(1850), Darwin (1906), Jeans (1916), Chandrasekhar (1969) and many
others. The clear detailed presentation of these results can be found into
monograph of P. Appell [1], article of L. N. Sretenskii [13], monograph
of L. Lichtenstein [5], textbooks of H. Lamb [4] and M. F. Subbotin [14],
and monograph of S. Chandrasekhar [3].

Firstly, the case of a oblate axisymmetric ellipsoid which rotates with
permanent speed around of the symmetry axis (Maclaurin ellipsoid) was
investigated. Jacobi discovered that a liquid figure of equilibrium can be a
triaxial ellipsoid which rotates with permanent speed around of the minor
axis (ellipsoid of Jacobi). In this case, liquid rotates without deformations
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as a rigid body. This make it possible to omit any consideration of a
viscosity of liquid. The stability of these figures was investigated by
A. M. Lyapunov [7].

Dirichlet investigated the case of a pulsating rotating ellipsoid (Dirich-
let ellipsoid), by assuming the liquid to be ideal. Riemann [12] investi-
gated the case of a deformation of ideal ellipsoidal liquid. In those studies,
a motion of liquid was homogeneous vortical, and liquid was ideal.

The investigation of a motion of several gravitating liquid masses is
a difficult problem of celestial mechanics. The problem of the motion
of two gravitating masses of liquid was posed by E.V. Pitkevich [10, 11].
The case where a motion of liquid is homogeneous vortical is a significant
special case of this problem.

At the end of the XIXth – the beginning of the XXth century, the
homogeneous vortical (rotational) motion of the ideal liquid was involves
in the studies of the motion of the Earth’s liquid core. The aim of these
investigations was an adequate description of the motion of the Earth’s
pole. The results can be found in the monograph of H. Moritz and I.I.
Mueller [8].

According to the article of V. V. Brazhkin [2], the viscosity of an iron
melt increases very much with the pressure, and the Earth’s liquid core
consists of iron. Hence, the viscosity of the core must increase toward
the Earth’s center. If we assume that a similar effect is correct for el-
lipsoidal liquid celestial bodies, we must take into account this effect in
mathematical models for the motion of a liquid celestial body. In the au-
thor’s work [15], the problem of the motion of an ellipsoidal gravitating
mass of a viscous liquid was studied. The viscosity of liquid was take
into account as a function of coordinates and the lengths of the ellipsoid
semiaxes. The function setting the viscosity of liquid was chosen so that
the motion of ellipsoidal mass of liquid is homogeneous vortical.

In the present article, a similar problem is solved in the case where
the viscosity is a linear function of the pressure.

1. The equations of motion

Let Oξ1ξ2ξ3 be the immovable Cartesian coordinate system, and let
Ox1x2x3 be the moving Cartesian coordinate system which can rotate
with respect to its origin O. The boundary of the liquid ellipsoid is given
in the coordinate system Ox1x2x3 by the equation

x2

1/c2

1 + x2

2/c2

2 + x2

3/c2

3 = 1, (1.1)
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where c1, c2, c3 are continuous differentiable functions of t. We assume
that the condition

c1c2c3 = R3 = const (1.2)

holds. The ellipsoid contain a viscous gravitating incompressible liquid
without voids. The kinematic liquid viscosity ν is given by the formula

ν = kp, (1.3)

where k is a constant, and p is the pressure. The equations of motion of
the liquid with respect to the moving axes Ox1x2x3 have the form [6]

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p + ν(p)∆v + 2σ∇ν(p)

− ω̇ × x − ω × (ω × x) − 2ω × v − ∇Φ, (1.4)

div v = 0, (1.5)

where v is the liquid velocity vector with respect to the moving axes
Ox1x2x3; σ is the strain rate tensor of the liquid with components

σij =
1

2

(

∂vi

∂xj
+

∂vj

∂xi

)

, i, j = 1, 2, 3; (1.6)

ω is the absolute angular velocity vector in the coordinate system
Ox1x2x3; Φ is the potential of gravitation forces [4],

Φ = πργ(α1x
2

1 + α2x
2

2 + α3x
2

3 − χ0), (1.7)

αi = c1c2c3

∞
∫

0

dλ

(c2

i + λ)D
, i = 1, 2, 3, χ0 = c1c2c3

∞
∫

0

d λ

D
,

D = [(c2

1 + λ)(c2

2 + λ)(c2

3 + λ)]
1

2 ;

and γ is the gravitational constant.

We assume that the pressure on the liquid boundary is equal to zero.
Then the liquid viscosity (1.3) must be equal to zero on the boundary as
well. Therefore, the boundary condition for Eqs. (1.4) and (1.5) must
have the form

(v − u) · n |S= 0, (1.8)



562 The motion of gravitating...

where S is the liquid boundary (1.1), n is the unit vector of a normal
to the boundary S, and u is the velocity of the liquid boundary in the
moving coordinate system Ox1x2x3.

The solution of Eqs. (1.4) and (1.5) is sought in the form

v1 = c1

(

ω∗
2

x3

c3

− ω∗
3

x2

c2

)

+
ċ1

c1

x1 (123), (1.9)

p = −p0(t)

(

x2
1

c2
1

+
x2

2

c2
2

+
x2

2

c2
2

− 1

)

, (1.10)

where v1, v2, v3 are the components of the velocity vector, p is the pres-
sure, ω∗

1
, ω∗

2
, ω∗

3
, and p0(t) are the unknown functions of t. The symbol

(123) means that the other expressions can be found by a cyclic permu-
tation of indices. If we substitute expressions (1.9) and (1.10) in Eqs.
(1.4), we have three equalities ki1x1 + ki2x2 + ki3x3 = 0, i = 1, 2, 3,
which must be fulfilled for all x1, x2, x3. It is possible only if the equali-
ties kij = 0, i, j = 1, 2, 3 are correct. These equalities can be represented
in the form

c̈1 = c1(ω
∗
2

2 + ω∗
3

2 + ω2

2 + ω2

3) + 2c3ω
∗
2ω2 + 2c2ω

∗
3ω3

− 2πργα1c1 +
2p0

c1

(

1

ρ
+ 2k

ċ1

c1

)

(123), (1.11)

ω̇∗
1

c2

c3

+ ω̇1 = −2ω∗
1

ċ2

c3

+ ω∗
2ω

∗
3

c2

c3

+ 2kp0

ω∗
1

c2
3

(

c3

c2

−
c2

c3

)

+ ω2ω3 + 2ω∗
2ω3

c2

c3

− 2ω1

ċ3

c3

(123), (1.12)

ω̇∗
1

c3

c2

+ ω̇1 = −2ω∗
1

ċ3

c2

+ ω∗
2ω

∗
3

c3

c2

+ 2kp0

ω∗
1

c2
2

(

c3

c2

−
c2

c3

)

− ω2ω3 − 2ω∗
3ω2

c1

c2

− 2ω1

ċ2

c2

(123), (1.13)

where ω1, ω2, ω3 are the components of the angular velocity ω in the
coordinate system Ox1x2x3.

The algebraic equation (1.2) and the system of ordinary differential
equations (1.11)–(1.13) are the system of ten equations for ten unknowns
p0, ci, ω

∗
i , ωi, i = 1, 2, 3.
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2. Small oscillations of the axisymmetric ellipsoid

Let c1 = c2, ω1 = ω2 = ω∗
1

= ω∗
2

= ω∗
3

= 0. Then, if we exclude c3

with the help of Eq. (1.2), the motion equations take the form

c̈1 = c1ω
2

3 − 2πργα1c1 +
2p0

c1

(

1

ρ
− 2k

ċ1

c1

)

,

−2R3(c−3

1
c̈1 − 3c−4

1
ċ2

1) = −2πργα3

R3

c2
1

+
2p0c

2
1

R3

(

1

ρ
+ 4k

ċ1

c1

)

, (2.1)

ω̇3 = −2ω3

ċ1

c1

.

The last equation yields the equality

c2

1ω3 = l, l = const (2.2)

which represents the conservation law of angular momentum. The vari-
able ω3 can be excluded from the first equation (2.1) by equality (2.2).
Then we can exclude p0 from two first equations (2.1) and introduce new
variables

ζ = c1/R, τ = T−1t, η =
dζ

dτ
,

where T is the characteristic time. Then the motion equations take the
form

dζ

dτ
= η,

dη

dτ
=

{

L2ζ3 − 2πργT 2ζ(α1ζ
6 − α3) + 6

η2

ζ

−
4kρ

T
η

[

3
η2

ζ2
− L2ζ2 + πργT 2(2α1ζ

6 + α3)

]}

×

[

ζ6 + 2 +
4kρ

T

η

ζ
(ζ6 − 1)

]−1

, (2.3)

where L = lT/R2. For the oblate axisymmetric ellipsoid, the quantities
α1 and α3 can be expressed by the formulas [4]

α1 = α2 = (ξ2 + 1)ξ arcctg ξ − ξ2,

α3 = 2(ξ2 + 1)(1 − ξ arcctg ξ),

ξ = (ζ6 − 1)−
1

2 .

(2.4)
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The parameters of the stationary solutions of system (2.3) are connected
by the relation

L2 = 2πργT 2(α1ζ
4 − α3ζ

−2), (2.5)

where 1 ≤ ζ ≤ ∞. We denote, by L0 and ζ0, the value of L and ζ
which satisfy relation (2.5). Then every solution of Eqs. (2.3) can be
represented in the form

ζ = ζ0 + δ, (2.6)

where δ is the unknown function of the dimensionless time τ . If we
substitute (2.6) into Eqs. (2.3) and make the linearization by η and δ
assuming them small, the motion equations take the form

dδ

dτ
= η,

(2.7)

dη

dτ
= aδ + bη,

where

a = −2πργT 2(4ζ6

0α10 + ζ7

0α11 + 2α30 − ζ0α31)(ζ
6

0 + 2)−1,

b = −4kπρ2γT (2α10ζ
6

0 + α30)(ζ
6

0 + 2)−1,

α10 = ζ6

0 (ζ6

0 − 1)−3/2arcctg(ζ6

0 − 1)−1/2 − (ζ6

0 − 1)−1,

α11 = −3ζ5

0 (ζ6

0 − 1)−2
[

(ζ6

0 + 2)(ζ6

0 − 1)−1/2arcctg(ζ6

0 − 1)−1/2 − 3
]

,

α30 = 2ζ6

0 (ζ6

0 − 1)−1
[

1 − (ζ6

0 − 1)−1/2arcctg(ζ6

0 − 1)−1/2
]

,

α31 = 6ζ5

0

[

(ζ6

0 + 2)(ζ6

0 − 1)−5/2arcctg(ζ6

0 − 1)−1/2 − 3(ζ6

0 − 1)−2
]

.

The characteristic equation of system (2.7)

∣

∣

∣

∣

−λ 1
a b − λ

∣

∣

∣

∣

= 0

can be written as
λ2 − bλ − a = 0.

This equation has the solutions

λ1,2 =
1

2
(b ±

√

b2 + 4a).

The coefficient a is independent of k. If ζ0 > 1, then a < 0. The
coefficient b < 0, and |b| is directly proportional to k. Then if k = 0 (the
case of the ideal liquid), we have b = 0, and roots of the characteristic
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equation are purely imaginary λ = ±
√

|a|. In this case, the nonlin-
ear equations of motion describe the undamped periodic oscillations of a
Dirichlet ellipsoid [4].

If k is enough small and b2+4a < 0, then the roots of the characteristic
equation are complex conjugate, and their real parts are negative. In this
case, the Dirichlet ellipsoid approaches the Maclaurin ellipsoid by means
of decaying oscillations.

If k is enough large and b2 + 4a ≥ 0, then the roots of the character-
istic equation are real and negative. In this case, the Dirichlet ellipsoid
asymptotically approaches the Maclaurin ellipsoid.

3. Oscillations of a nonrotating spherical

mass of liquid

If we assume that

ω∗
1 = ω∗

2 = ω∗
3 = ω1 = ω2 = ω3 = 0,

then Eqs. (1.12) and (1.13) are satisfied identically, and Eqs. (1.11) takes
the form

c̈1 = −2πργα1c1 +
2p0

c1

(

1

ρ
− 2k

ċ1

c1

)

(123). (3.1)

In Eqs. (3.1), we exclude c3 by using Eqs. (1.2). Then we exclude p0

and introduce the new variables ζi = ci/R, i = 1, 2, τ = T−1t. Thus,
we obtain the system of equations

dζi

dτ
= ηi, ai1

dηi

dτ
+ ai2

dη2

dτ
= fi, i = 1, 2, (3.2)

where

a11 = ζ1 + 2kρT−1(η1 + ζ1ζ
−1

2
η2) + ζ−3

1
ζ−2

2
(1 − 2kρT−1ζ−1

1
η1),

a12 = ζ−2

1
ζ−3

2
(1 − 2kρT−1ζ−1

1
η1),

a21 = ζ−3

1
ζ−2

2
(1 − 2kρT−1ζ−1

2
η2),

a22 = ζ2 + 2kρT−1(ζ−1

1
ζ2η1 + η2) + ζ−2

1
ζ−3

2
(1 − 2kρT−1ζ−1

2
η2),

f1 = −2πργT 2α1ζ
2

1 [1 + 2kρT−1(ζ−1

1
η1 + ζ−1

2
η2)]

+ [2ζ−2

1
ζ−2

2
(ζ−2

1
η2

1 + ζ−1

1
ζ−1

2
η1η2 + ζ−2

2
η2

2)

+ 2πργT 2α3ζ
−2

1
ζ−2

2
](1 − 2kρT−1ζ−1

1
η1),
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f2 = −2πργT 2α2ζ
2

2 [1 + 2kρT−1(ζ−1

1
η1 + ζ−1

2
η2)]

+ [2ζ−2

1
ζ−2

2
(ζ−2

1
η2

1 + ζ−1

1
ζ−1

2
η1η2 + ζ−2

2
η2

2)

+ 2πργT 2α3ζ
−2

1
ζ−2

2
](1 − 2kρT−1ζ−1

2
η2).

System (3.2) can be written in the form

dζ1

dτ
= η1,

dη1

dτ
= (f1a22 − f2a12)(a11a22 − a12a21)

−1,

dζ2

dτ
= η2,

dη2

dτ
= (f2a11 − f1a21)(a11a22 − a12a21)

−1.

(3.3)

System (3.3) has a stationary solution ζ1 = ζ2 = 1, η1 = η2 = 0.
This solution describes the equilibrium of the spherical mass of liquid.
Then, every another solution of system (3.3) can be represented in the
form

ζ1 = 1 + δ1, ζ2 = 1 + δ2, η1, η2, (3.4)

where δ1 and δ2 are new unknown functions of τ . We substitute (3.4) in
system (3.3) and assume that δ1, δ2, η1, η2 are small. The linearization in
δ1, δ2, η1, η2 gives the system

dδi

dτ
= ηi,

dηi

dτ
= −

8

3
πργT 2

(

2

5
δi + kρT−1ηi

)

,
i = 1, 2. (3.5)

Thus, the systems of linearized equations for the variables ζ1, η1 and
ζ2, η2 are independent of each other, and both can be solved separately.
Taking into account that the systems differ from each other only by the
unknown variables and the initial conditions, they can be solved similarly.
The solution of system (3.5) is sought as

(δi, ηi)
T = (b1, b2)

T exp(λτ),

where b1, b2, λ are the unknown constants. The characteristic equation
has the form

∣

∣

∣

∣

−λ 1
−16

15
πργT 2 −8

3
kπρ2γT − λ

∣

∣

∣

∣

= 0.

This equation can be written as the equation for λ,

λ2 +
8

3
kπρ2γTλ +

16

15
πργT 2 = 0.

The solution of this equation is
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λ1,2 =
4

3

(

−kπρ2γT ±

√

(kπρ2γT )2 −
3

5
πργT 2

)

.

For k = 0, the system becomes conservative and will perform the
undamped oscillations in the vicinity of the stable equilibrium state, i.e.
the sphere. In this case, the roots of the characteristic equation are purely

imaginary λ1,2 = ±4

3

√

3

5
πργT 2 i.

In the case of 0 < k <
√

3/(5πρ3γ), the roots of the characteristic
equation are complex conjugate with a negative real part. Into this case,
the ellipsoidal mass of liquid will approach a sphere by performing the
damped oscillations.

In the case of k >
√

3/(5πρ3γ), the ellipsoidal mass of liquid, the
kinetic energy of which is sufficiently small and the shape is enough close
to a spherical one, will asymptotically approach the sphere.

The author is grateful to the reviewer for the careful review and the
useful remarks that make possible to find new approaches to the problem.
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