Functional models of the Lie algebra of a system of linear operators $\left\{A_{1}, A_{2}, A_{3}\right\}$

Victoriya A. Kuznetsova

(Presented by M. M. Malamud)

Abstract

Functional models are constructed for a non-Abelian nilpotent Lie algebra of linear operators acting in the Hilbert space H. The algebra generators $\left\{A_{1}, A_{2}, A_{3}\right\}$ satisfy the relations $\left[A_{1}, A_{3}\right]=0$, $\left[A_{2}, A_{3}\right]=0,\left[A_{1}, A_{2}\right]=i A_{3}$, where $A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}$ is not dissipative for all $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, and the space of non-Hermiticity $G=\operatorname{span}\left\{\left(A_{k}-A_{k}^{*}\right) h, k=1,2,3, h \in H\right\}$ has dimension three.

2000 MSC. 47A48.
Key words and phrases. Functional models, Branges transformation, Lie algebra.

Introduction

Functional models of contracting (dissipative) operators first constructed by B. Sz.-Nagy and C. Foiaš [5] represent the operators of multiplication by an independent variable in the special spaces of functions. Construction of these models is associated with the Fourier transformation. For the non-dissipative operators, the construction of similar models is based on the study of the Branges transformation [1, p. 152] [8, p. 126].

The characteristic function is the main analytic object, in terms of which the functional models are constructed. L. L. Vaksman [7] showed that if the structure constants of the Lie algebras of linear nonself-adjoint operators are the same, and the corresponding characteristic functions coincide, then these algebras are unitarily equivalent. Thus, the model representations of a Lie algebra with assigned structure components built by the characteristic function are unitarily isomorphic.

For the Lie algebra of linear operators $\left\{A_{1}, A_{2}\right\}\left[A_{1}, A_{2}\right]=i A_{1}[6$, p. 10], the construction of functional models in the case where the operator A_{1}, for example, is dissipative is also based on the Fourier transformation.

In [3, pp. 54-60], the functional models for an arbitrary commutative system of linear operators $\left\{A_{1}, A_{2}\right\}$ were constructed, and the functional models for an arbitrary Lie algebra of linear operators $\left\{A_{1}, A_{2}\right\}$ were constructed in [4, pp. 176-185] without the assumption about the dissipative property of the operators A_{1}, A_{2}. In this paper, we construct functional models for the Lie algebra of linear operators $\left\{A_{1}, A_{2}, A_{3}\right\}$ satisfying the relations $\left[A_{1}, A_{3}\right]=0,\left[A_{2}, A_{3}\right]=0,\left[A_{1}, A_{2}\right]=i A_{3}$ in the case where $\operatorname{dim} G=3\left[G=\operatorname{span}\left\{\left(A_{k}-A_{k}^{*}\right) h, k=1,2,3, h \in H\right\}\right]$ without the assumption that the system contains dissipative operators.

1. Preliminary information

I. Consider a linear bounded operator A acting in a Hilbert space H. We recall that the family

$$
\begin{equation*}
\Delta=(A, H, \varphi, E, J) \tag{1.1}
\end{equation*}
$$

is said to be the local colligation $[2, \mathrm{p} .11],[8, \mathrm{p} .18]$ if the relation

$$
\begin{equation*}
A-A^{*}=i \varphi^{*} J \varphi \tag{1.2}
\end{equation*}
$$

holds, where E is a Hilbert space, and φ, J are operators such that $\varphi: H \rightarrow E, J: E \rightarrow E$; moreover, $J=J^{*}=J^{-1}$.

The function

$$
\begin{equation*}
S(\lambda)=I-i \varphi(A-\lambda I)^{-1} \varphi^{*} J \tag{1.3}
\end{equation*}
$$

is said to be the characteristic function [8, p. 24] of a colligation $\Delta(1.1)$.
Consider the case where $\operatorname{dim} E=3$, and J is given by

$$
J=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{1.4}\\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

moreover, the spectrum of the operator A is real. Then it is well known [8, p. 66], [2, p. 71] that $S(\lambda)$ has the multiplicative representation

$$
\begin{equation*}
S(\lambda)=S_{l}(\lambda), \quad S_{x}(\lambda)=\int_{0}^{\widehat{x}} \exp \left\{\frac{i J d F_{t}}{\lambda-\alpha_{t}}\right\} \tag{1.5}
\end{equation*}
$$

where α_{x} is a real bounded function non-decreasing on $[0, l], 0<l<$ ∞, and F_{t} is a matrix-valued (3×3) non-decreasing function such that $\operatorname{tr} F_{x}=x$. Suppose that

$$
\begin{equation*}
d F_{x}=a_{x} d x \tag{1.6}
\end{equation*}
$$

where the matrix a_{x} is such that $a_{x} \geq 0, \operatorname{tr} a_{x}=1$,

$$
a_{x}=\left(\begin{array}{lll}
a_{11}(x) & a_{12}(x) & a_{13}(x) \tag{1.7}\\
a_{21}(x) & a_{22}(x) & a_{23}(x) \\
a_{31}(x) & a_{32}(x) & a_{33}(x)
\end{array}\right), \quad a_{i j}=\overline{a_{j i}},
$$

and $a_{i j}(x), i, j=\overline{1,3}$, are functions on $[0, l]$.
Consider the following integral equation for the matrix-function $M_{x}(z):$

$$
\begin{equation*}
M_{x}(z)+i z \int_{0}^{x} M_{t}(z) d F_{t} J=I \tag{1.8}
\end{equation*}
$$

where $x \in[0, l], z \in C$. It is easy to see that $M_{x}(z)$ can be represented by

$$
\begin{equation*}
M_{x}(z)=J S_{x}^{*}\left(\bar{z}^{-1}\right) J . \tag{1.9}
\end{equation*}
$$

Define the row-vector $L_{x}(z)=\left[L_{x}^{1}(z), L_{x}^{2}(z), L_{x}^{3}(z)\right]$ as a solution of the integral equation

$$
\begin{equation*}
L_{x}(z)+i z \int_{0}^{x} L_{t}(z) d F_{t} J=(1,1,0)=L_{x}(0) \tag{1.10}
\end{equation*}
$$

where $z \in \mathbb{C}$. It is obvious that

$$
\begin{equation*}
L_{x}(z)=(1,1,0) M_{x}(z)=(1,1,0) J S_{x}^{*}\left(\bar{z}^{-1}\right) J . \tag{1.11}
\end{equation*}
$$

Consider the Hilbert space $L_{3, l}^{2}\left(F_{t}\right)[8$, pp. 66-67]

$$
\begin{equation*}
L_{3, l}^{2}\left(F_{x}\right)=\left\{f_{x} \in E^{3} ; \int_{0}^{l} f_{t} d F_{t} f_{t}^{*}<\infty\right\} \tag{1.12}
\end{equation*}
$$

assuming that the proper factorization by the metric kernel is already carried out.

Define the kernel

$$
\begin{equation*}
K_{x}(z, w)=\frac{i}{\pi(z-\bar{w})} L_{x}(z) J L_{x}^{*}(\bar{w}) . \tag{1.13}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
K_{x}(z, w)=\frac{i}{\pi(z-\bar{w})}\left(L_{x}^{1}(z) \overline{L_{x}^{1}(w)}-L_{x}^{2}(z) \overline{L_{x}^{2}(w)}-L_{x}^{3}(z) \overline{L_{x}^{3}(w)}\right) . \tag{1.14}
\end{equation*}
$$

The following theorem [8, pp. 118-119] takes place.

Theorem 1.1. The row-vector $L_{x}(z)=\left[L_{x}^{1}(z), L_{x}^{2}(z), L_{x}^{3}(z)\right]$, which is a non-trivial solution $\left(L_{x}(z) \neq(1,1,0)\right)$ of the integral equation (1.10), is such that

1) $L_{x}(z) \in L_{3, a}^{2}\left(F_{t}\right)$ for all $a \in[0, l]$ and $z \in \mathbb{C}$;
2) for all $z \in \mathbb{C}$ and $x \in[0, l]$

$$
\left|L_{x}^{1}(z)\right|-\left|L_{x}^{2}(z)\right|-\left|L_{3}^{3}(z)\right|=\left\{\begin{array}{ll}
\geq 0, & \operatorname{Im} z>0 \tag{1.15}\\
=0, & \operatorname{Im} z=0 \\
\leq 0, & \operatorname{Im} z<0
\end{array}\right\}
$$

is true.
II. Consider the following basis $\left\{e_{k}\right\}_{1}^{3}$ in E_{3} :

$$
\begin{align*}
& e_{1}=(1,1,0) \\
& e_{2}=(1,0,1) \tag{1.16}\\
& e_{3}=(5,4,3)
\end{align*}
$$

Similarly to (1.10), we define the vector-functions $N_{x}(z)=\left[N_{x}^{1}(z)\right.$, $\left.N_{x}^{2}(z), N_{x}^{3}(z)\right]$ and $R_{x}(z)=\left[R_{x}^{1}(z), R_{x}^{2}(z), R_{x}^{3}(z)\right]$ as solutions of the integral equations

$$
\begin{align*}
& N_{x}(z)+i z \int_{0}^{x} N_{t}(z) d F_{t} J=(1,0,1)=N_{x}(0), \tag{1.17}\\
& R_{x}(z)+i z \int_{0}^{x} R_{t}(z) d F_{t} J=(5,4,3)=R_{x}(0) \tag{1.18}
\end{align*}
$$

when $z \in \mathbb{C}$ and $x \in[0, l]$. For $N_{x}(z)$ and $R_{x}(z)$, the relations

$$
\begin{align*}
& N_{x}(z)=(1,0,1) M_{x}(z)=(1,0,1) J S_{x}^{*}\left(\bar{z}^{-1}\right) J \tag{1.19}\\
& R_{x}(z)=(5,4,3) M_{x}(z)=(5,4,3) J S_{x}^{*}\left(\bar{z}^{-1}\right) J \tag{1.20}
\end{align*}
$$

hold, as well as (1.11).
For the functions $N_{x}(z)$ and $R_{x}(z)$, the analog of Theorem 1.1 is true.

Definition 1.1. Denote, by $\mathbf{B}(L(z))$, the linear space of the entire functions $F(z), z \in \mathbb{C}$, such that
A)

$$
\begin{equation*}
F(z)=\mathbf{B}_{L} f_{t}=\frac{1}{\pi} \int_{0}^{l} f_{t} d F_{t} L_{t}^{*}(\bar{z}), \tag{1.21}
\end{equation*}
$$

where \mathbf{B}_{L} is the Branges transform $[8, p .125]$ of the function $f_{t} \in$ $L_{3, l}^{2}\left(F_{t}\right)$;
B) and let

$$
\begin{equation*}
\|F(z)\|_{B(L(z))}=\left\|f_{t}\right\|_{L_{3, l}^{2}\left(F_{t}\right)} . \tag{1.22}
\end{equation*}
$$

Theorem 1.2 ([1, p. 152], [8, pp. 126-127]). Consider the family of Hilbert spaces $\mathbf{B}\left(L_{a}(z)\right)$, where $L_{x}(z)$ is the vector-function which is a solution of the integral equation (1.10) on the interval $[0, l]$ for some matrix-valued measure F_{t}. Match every function $h_{t}=\left(h^{1}(t), h^{2}(t), h^{3}(t)\right)$ from $L_{3, l}^{2}\left(F_{t}\right)$ with the function given by

$$
\begin{equation*}
F(z)=\frac{1}{\pi} \int_{0}^{a} h_{t} d F_{t} L_{t}^{*}(\bar{z}), \tag{1.23}
\end{equation*}
$$

where a is the inner point of the interval $[0, l], 0<a<l$. Then $F(z) \in$ B $\left(L_{a}(z)\right)$.
Definition 1.2. The transform $F(z)(1.21)$ of the function $h_{t} \in L_{3, l}^{2}\left(F_{t}\right)$ is said to be the Branges transform of the function h_{t} by the measure F_{t}.

Remark 1.1. Similarly, the Hilbert spaces $\mathbf{B}(N(z))$ and $\mathbf{B}(R(z))$ are defined. The Branges transformation of the function $h_{t} \in L_{3, l}^{2}\left(F_{t}\right)$ in the space $\mathbf{B}(N(z))$ is given by

$$
\begin{equation*}
\Phi_{1}(z)=\mathbf{B}_{N} h_{t}=\frac{1}{\pi} \int_{0}^{l} h_{t} d F_{t} N_{t}^{*}(\bar{z}) \tag{1.24}
\end{equation*}
$$

and the Branges transformation of the function $h_{t} \in L_{3, l}^{2}\left(F_{t}\right)$ in the space $\mathbf{B}(R(z))$, correspondingly, is

$$
\begin{equation*}
\Phi_{2}(z)=\mathbf{B}_{R} h_{t}=\frac{1}{\pi} \int_{0}^{l} h_{t} d F_{t} R_{t}^{*}(\bar{z}) \tag{1.25}
\end{equation*}
$$

where $z \in \mathbb{C}$.
III. Consider the matrix T_{1}

$$
T_{1}=\left(\begin{array}{ccc}
1 & -1 & 0 \tag{1.26}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Apply T_{1} from the right to Eq. (1.10),

$$
L_{x} T_{1}+i z \int_{0}^{x} L_{t}(z) d F_{t} J T_{1}=L_{x}(0) T_{1}
$$

Since $L_{x}(0) T_{1}=N_{x}(0)$, this relation can be rewritten as

$$
\begin{equation*}
L_{x}(z) T_{1}+i z \int_{0}^{x} L_{t}(z) T_{1} T_{1}^{-1} d F_{t} J T_{1}=N_{x}(0) \tag{1.27}
\end{equation*}
$$

Obviously, T_{1}^{-1} exists and is equal

$$
T_{1}^{-1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

It is easy to see that

$$
\begin{equation*}
J T_{1}=\tilde{T}_{1} J \tag{1.28}
\end{equation*}
$$

where

$$
\tilde{T}_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \tag{1.29}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

therefore

$$
\begin{equation*}
L_{x}(z) T_{1}+i z \int_{0}^{x} L_{t}(z) T_{1} T_{1}^{-1} a_{t} \tilde{T}_{1} J d t=N_{x}(0) \tag{1.30}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
a_{t} \tilde{T}_{1}=T_{1} a_{t} \tag{1.31}
\end{equation*}
$$

Then relation (1.30) implies that $L_{x}(z) T_{1}$ satisfies Eq. (1.17), and this signifies in view of the uniqueness of the solution of (1.17) that

$$
\begin{equation*}
L_{x}(z) T_{1}=N_{x}(z) \tag{1.32}
\end{equation*}
$$

for all $x \in[0, l], z \in \mathbb{C}$.
Consider $\Phi_{1}(z)=\mathbf{B}_{N} f_{t}$.

$$
\begin{aligned}
& \mathbf{B}_{N} f_{t}=\frac{1}{\pi} \int_{0}^{l} f_{t} a_{t} d t N_{t}^{*}(\bar{z})=\frac{1}{\pi} \int_{0}^{l} f_{t} a_{t} d t \tilde{T}_{1}^{*} L_{1}^{*}(z) \\
&=\frac{1}{\pi} \int_{0}^{l} f_{t} \tilde{T}_{1}^{*} a_{t} d t L_{t}^{*}(\bar{z})=\mathbf{B}_{L}\left(f_{t} \tilde{T}_{1}^{*}\right)
\end{aligned}
$$

by virtue of (1.31).
Thus,

$$
\begin{equation*}
\mathbf{B}_{N} f_{t}=\mathbf{B}_{L}\left(f_{t} \tilde{T}_{1}^{*}\right) \tag{1.33}
\end{equation*}
$$

Denote, by $\varphi_{1}(t)$, the function

$$
\begin{equation*}
\varphi_{1}(t)=f_{t} \tilde{T}_{1}^{*}=\left(f^{1}(t), f^{2}(t), f^{3}(t)\right) \tilde{T}_{1}^{*} \tag{1.34}
\end{equation*}
$$

It is obvious that $\varphi_{1}(t)$ belongs to the space $L_{3, l}^{2}\left(F_{t}\right)$, if $f_{t} \in L_{3, l}^{2}\left(F_{t}\right)$. So,

$$
\begin{equation*}
\Phi_{1}(z)=\mathbf{B}_{N} f_{t}=\mathbf{B}_{L}\left(f_{t} \tilde{T}_{1}^{*}\right)=\mathbf{B}_{L} \varphi_{1}(t) \tag{1.35}
\end{equation*}
$$

Therefore, there exists the transformation $\psi_{1}: \mathbf{B}(L(z)) \rightarrow \mathbf{B}(N(z))$, given by the formula

$$
\begin{equation*}
\left(\psi_{1} G\right)(z)=G_{1}(z) \tag{1.36}
\end{equation*}
$$

Here, $G(z) \in \mathbf{B}(L(z))$, and $G_{1}(z) \in \mathbf{B}(N(z))$, i.e. $G(z)=\mathbf{B}_{L} f_{t}$, where $f_{t} \in L_{3, l}^{2}\left(F_{t}\right)$ and $\psi_{1} G(z)=\psi_{1} \mathbf{B}_{L} f_{t}=G_{1}(z)$. Since $G_{1}(z) \in \mathbf{B}(N(z))$, we have $G_{1}(z)=\mathbf{B}_{N} f_{t}$, where $f_{t} \in L_{3, l}^{2}\left(F_{t}\right), \psi_{1} \mathbf{B}_{L} f_{t}=\mathbf{B}_{N} f_{t}$. Thus, by virtue of (1.33),

$$
\begin{equation*}
\psi_{1} \mathbf{B}_{L} f_{t}=\mathbf{B}_{L} \tilde{T}_{1}^{*} f_{t} \tag{1.37}
\end{equation*}
$$

i.e., $\psi_{1} \mathbf{B}_{L}=\mathbf{B}_{L} \tilde{T}_{1}^{*}$ and

$$
\begin{equation*}
\psi_{1}=\mathbf{B}_{L} \tilde{T}_{1}^{*} \mathbf{B}_{L}^{-1} \tag{1.38}
\end{equation*}
$$

Definition 1.3. The transformation \mathbf{B}_{L}^{-1} is said to be inverse to the Branges transformation B_{L} for the function $f_{t} \in L_{3, l}^{2}\left(F_{t}\right)$.

$$
\text { Consider } \psi_{1}^{-1}: \mathbf{B}(N(z)) \rightarrow \mathbf{B}(L(z)) \text { and } \psi_{1}^{-1}=\mathbf{B}_{L} \tilde{T}_{1}^{*-1} B_{L}^{-1} \text {, i.e., }
$$

$$
\begin{aligned}
\left(\psi_{1}^{-1} \Phi_{1}\right)(z)=\psi_{1}^{-1} \mathbf{B}_{N} f_{t}= & \psi_{1}^{-1} \mathbf{B}_{L} \tilde{T}_{1}^{*} f_{t} \\
& =\mathbf{B}_{L} \tilde{T}_{1}^{*-1} B_{L}^{-1} \mathbf{B}_{L} \tilde{T}_{1}^{*} f_{t}=B_{L} f_{t}=\hat{F}_{1}(z)
\end{aligned}
$$

takes place for all functions $\Phi_{1}(z) \in \mathbf{B}(N(z))$, where $\hat{F}_{1}(z) \in \mathbf{B}(L(z))$. Thus, there exists \hat{h}_{t} from $L_{3, l}^{2}\left(F_{t}\right)$ such that

$$
\begin{gather*}
\hat{F}_{1}(z)=\frac{1}{\pi} \int_{0}^{l} \hat{h}_{t} d F_{t} L_{t}^{*}(\bar{z}) \tag{1.39}\\
\hat{F}_{1}(z)=\mathbf{B}_{L} \hat{h}_{t} \tag{1.40}
\end{gather*}
$$

IV. Similar considerations can be carried out for the space $\mathbf{B}(R(z))$. Namely, there exists the matrix T_{2} given by

$$
T_{2}=\left(\begin{array}{ccc}
2 & 3 & 0 \tag{1.41}\\
3 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

By applying T_{2} to Eq. (1.10) from the right, we get

$$
\begin{equation*}
L_{x}(z) T_{2}+i z \int_{0}^{x} L_{t}(z) T_{2} T_{2}^{-1} d F_{t} J T_{2}=R_{x}(0) \tag{1.42}
\end{equation*}
$$

Obviously, the matrix T_{2}^{-1} exists. It is easy to see that

$$
\begin{equation*}
J T_{2}=\tilde{T}_{2} J \tag{1.43}
\end{equation*}
$$

where

$$
\tilde{T}_{2}=\left(\begin{array}{ccc}
2 & -3 & 0 \tag{1.44}\\
-3 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

Therefore, supposing that

$$
\begin{equation*}
a_{t} \tilde{T}_{2}=T_{2} a_{t} \tag{1.45}
\end{equation*}
$$

we obtain that $L_{x}(z) T_{2}$ satisfies Eq. (1.18). This signifies in view of the uniqueness of the solution of (1.18) that

$$
\begin{equation*}
L_{x}(z) T_{2}=P_{x}(z) \tag{1.46}
\end{equation*}
$$

for all $x \in[0, l], z \in \mathbb{C}$.
In exactly the same way, let us consider the function $\varphi_{2}(t)$ given by

$$
\begin{equation*}
\varphi_{2}(t)=f_{t} \tilde{T}_{2} \tag{1.47}
\end{equation*}
$$

Similarly,

$$
\Phi_{2}(z)=\mathbf{B}_{R} f_{t}=\frac{1}{\pi} \int_{0}^{l} f_{t} a_{t} d t R_{t}^{*}(\bar{z})
$$

$$
\begin{gather*}
=\frac{1}{\pi} \int_{0}^{l} f_{t} a_{t} d t \tilde{T}_{2}^{*} L_{t}^{*}(\bar{z})=\frac{1}{\pi} \int_{0}^{l} f_{t} \tilde{T}_{2}^{*} a_{t} d t T_{1} L_{t}^{*}(\bar{z}) \\
\Phi_{2}(z)=B_{L}\left(f_{t} \tilde{T}_{2}^{*}\right) \tag{1.48}
\end{gather*}
$$

by virtue of (1.45).
That is, $\mathbf{B}_{R} f_{t}=\mathbf{B}_{L} f_{t} \tilde{T}_{2}$ or $\mathbf{B}_{R} f_{t}=\mathbf{B}_{L}\left(f_{t} \tilde{T}_{2}^{*}\right)=\mathbf{B}_{L} \varphi_{2}(t)$. Carrying out similar considerations, we obtain that there exists the map $\psi_{2}: \mathbf{B}(R(z)) \rightarrow \mathbf{B}(L(z))$ given by the formula

$$
\begin{equation*}
\left(\psi_{2} G\right)(z)=G_{2}(z) \tag{1.49}
\end{equation*}
$$

where $G_{2}(z) \in \mathbf{B}(R(z)), G_{2}(z)=\mathbf{B}_{R} f_{t}, f_{t} \in L_{3, l}^{2}\left(F_{t}\right)$ and

$$
\begin{equation*}
\Psi_{2} \mathbf{B}_{L} f_{t}=\mathbf{B}_{L} \tilde{T}_{2}^{*} f_{t} \tag{1.50}
\end{equation*}
$$

i.e., $\psi_{2} \mathbf{B}_{L}=\mathbf{B}_{L} \tilde{T}_{2}^{*}$ и

$$
\begin{equation*}
\psi_{2}=\mathbf{B}_{L} \tilde{T}_{2}^{*} \mathbf{B}_{L}^{-1} \tag{1.51}
\end{equation*}
$$

Consider $\psi_{2}^{-1}: \mathbf{B}(R(z)) \rightarrow \mathbf{B}(L(z))$ and $\psi_{2}^{-1}=\mathbf{B}_{L} \tilde{T}_{2}^{*-1} \mathbf{B}_{L}^{-1}$, i.e.,

$$
\begin{aligned}
\left(\psi_{2}^{-1} \Phi_{2}\right)(z)=\psi_{2}^{-1} \mathbf{B}_{R} f_{t} & =\psi_{2}^{-1} \mathbf{B}_{L} \tilde{T}_{2}^{*} f_{t} \\
& =\mathbf{B}_{L} \tilde{T}_{2}^{*-1}(t) B_{L}^{-1} \mathbf{B}_{L} \tilde{T}_{2}^{*} f_{t}=B_{L} f_{t}=\hat{F}_{2}(z)
\end{aligned}
$$

where $\hat{F}_{2}(z) \in \mathbf{B}(L(z))$ takes place for every function $\Phi_{2}(z) \in \mathbf{B}(R(z))$. Thus,

$$
\begin{gather*}
\hat{F}_{2}(z)=\frac{1}{\pi} \int_{0}^{l} \hat{h}_{t} d F_{t} L_{t}^{*}(\bar{z}) \tag{1.52}\\
\hat{F}_{1}(z)=\mathbf{B}_{L} \hat{h}_{t} \tag{1.53}
\end{gather*}
$$

where $\hat{h}_{t} \in L_{3, l}^{2}\left(F_{1}\right)$.
Definition 1.4. The function $\hat{h}_{t}=\left(\hat{h}^{1}(t), \hat{h}^{2}(t), \hat{h}^{3}(t)\right) \in L_{2, l}^{2}\left(F_{t}\right)$ constructed by this rule is said to be the dual function to the function $h_{t}=$ $\left(h^{1}(t), h^{2}(t), h^{3}(t)\right) \in L_{3, l}^{2}\left(F_{t}\right)$.

Remark 1.2.

$$
\begin{align*}
& \Phi_{1}(z)=\left(\psi_{1} \hat{F}_{1}\right)(z) \tag{1.54}\\
& \Phi_{2}(z)=\left(\psi_{2} \hat{F}_{2}\right)(z) \tag{1.55}
\end{align*}
$$

takes place.

2. Triangular models of an operator system

V. Consider the commutative system of linear bounded operators $\left\{A_{1}, A_{2}\right\}$ acting in a Hilbert space H, i.e., the relation

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=A_{1} A_{2}-A_{2} A_{1}=0 \tag{2.1}
\end{equation*}
$$

holds.
As is well known [2, pp. 11-15], the family

$$
\begin{equation*}
\Delta=\left(A_{1}, A_{2}, H, \varphi, E, \sigma_{1}, \sigma_{2}, \gamma, \widetilde{\gamma}\right) \tag{2.2}
\end{equation*}
$$

where E is some Hilbert space, $\varphi, \sigma_{1}, \sigma_{2}, \gamma, \widetilde{\gamma}$ are operators such that $\varphi: H \rightarrow E, \sigma_{1}: E \rightarrow E, \sigma_{2}: E \rightarrow E, \gamma: E \rightarrow E, \widetilde{\gamma}: E \rightarrow E$, and $\sigma_{k}=\sigma_{k}^{*}, k=1,2, \gamma=\gamma^{*}, \widetilde{\gamma}=\widetilde{\gamma}^{*}$, is said to be the commutative colligation if the relations

$$
\begin{array}{ll}
\text { 1. } & A_{k}-A_{k}^{*}=i \varphi^{*} \sigma \varphi, \quad k=1,2 \\
\text { 2. } & \gamma \varphi=\sigma_{1} \varphi A_{2}^{*}-\sigma_{2} \varphi A_{1}^{*}\left(\widetilde{\gamma} \varphi=\sigma_{1} \varphi A_{2}-\sigma_{2} \varphi A_{1}\right) \tag{2.3}\\
\text { 3. } & \gamma-\widetilde{\gamma}=i\left(\sigma_{1} \varphi \varphi^{*} \sigma_{2}-\sigma_{2} \varphi \varphi^{*} \sigma_{1}\right)
\end{array}
$$

hold.
Definition 2.1. The matrix-function $S\left(\lambda_{1}\right)$ given by

$$
\begin{equation*}
S\left(\lambda_{1}\right)=I-i \varphi\left(A_{1}-\lambda_{1} I\right)^{-1} \varphi^{*} \sigma_{1}, \tag{2.4}
\end{equation*}
$$

is said to be the characteristic function of colligation (2.2) corresponding to the operator A_{1}. If $\operatorname{dim} E=3$, and the spectrum of the operator A_{1} is real, then, for $S\left(\lambda_{1}\right)$ [2, p.71], the multiplicative representation (1.5) takes place.

Let $\sigma_{1}=J$, where $J(1.4)$ and $\sigma_{2}=\sigma$. Then the intertwining condition [9, p. 117]

$$
\begin{equation*}
\left(\sigma \lambda_{1}+\gamma\right) J S\left(\lambda_{1}\right)=S\left(\lambda_{1}\right)\left(\sigma \lambda_{1}+\widetilde{\gamma}\right) J \tag{2.5}
\end{equation*}
$$

takes place for function (2.4).
Suppose that $d F_{1}=a_{t} d t$, where the matrix a_{t} is given by (1.7) and is such that $a_{t} \geq 0$ and $\operatorname{tr} a_{t}=1$. Then the following theorem takes place [9, p. 118].

Theorem 2.1. In order that the intertwining condition

$$
\begin{equation*}
\left(\sigma \lambda+\gamma_{x}\right) J S_{x}(\lambda)=S_{x}(\lambda)(\sigma \lambda+\widetilde{\gamma}) J \tag{2.6}
\end{equation*}
$$

for the matrix-function $S_{x}(\lambda)$ hold, it is necessary and sufficient that

$$
\begin{align*}
& \text { 1) } \quad \frac{d}{d x} \gamma_{x} J=i\left[J a_{x}, \sigma J\right] \gamma_{0}=\widetilde{\gamma} \tag{2.7}\\
& \text { 2) } \tag{2.8}\\
& {\left[J a_{x},\left(\sigma \alpha_{x}+\gamma_{x}\right) J\right]=0 .}
\end{align*}
$$

VI. Consider now the system of linear bounded operators $\left\{A_{1}, A_{2}\right.$, $\left.A_{3}\right\}$ in H such that

$$
\begin{align*}
& {\left[A_{1}, A_{3}\right]=0} \\
& {\left[A_{2}, A_{3}\right]=0} \tag{2.9}\\
& {\left[A_{1}, A_{2}\right]=0}
\end{align*}
$$

The triangular model realization of the Lie algebra (2.9) in the space $L_{3, l}^{2}\left(F_{t}\right)(1.12)$ is given by

$$
\begin{gather*}
\hat{A}_{1} f_{x}=f_{x} J\left(\gamma_{x, 1}+\alpha_{x} \sigma_{1}\right)+i \int_{x}^{l} f_{t} a_{t} d t \sigma_{1} \\
\hat{A}_{2} f_{x}=f_{x} J\left(\gamma_{x, 2}+\alpha_{x} \sigma_{2}\right)+i \int_{x}^{l} f_{t} a_{t} d t \sigma_{2} \tag{2.10}\\
\hat{A}_{3} f_{x}=\alpha_{x} f_{x}+i \int_{x}^{l} f_{t} a_{t} d t \sigma_{3}
\end{gather*}
$$

In this case, we suppose that

$$
\begin{gather*}
\sigma_{3}=J \\
\sigma_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \tag{2.11}\\
\sigma_{1}=\left(\begin{array}{ccc}
0 & b & 0 \\
b & 0 & b \\
0 & b & 0
\end{array}\right), \\
\gamma_{x, 1}=\left(\begin{array}{ccc}
\beta_{11}(x) & \beta_{12}(x) & \beta_{13}(x) \\
\bar{\beta}_{12}(x) & \beta_{22}(x) & \beta_{23}(x) \\
\bar{\beta}_{13}(x) & \bar{\beta}_{23}(x) & \beta_{33}(x)
\end{array}\right) \tag{2.12}
\end{gather*}
$$

where $b \in \mathbb{R}, \beta_{i j}(x)$ are some functions, and $\gamma_{0,1}=\gamma_{1}$. In addition,

$$
\gamma_{x, 2}=\left(\begin{array}{ccc}
d_{11}(x) & d_{12}(x) & d_{13}(x) \tag{2.13}\\
d_{12}(x) & d_{22}(x) & d_{23}(x) \\
d_{13}(x) & d_{23}(x) & d_{33}(x)
\end{array}\right)
$$

where $d_{i j}(x)$ are some functions, and $\gamma_{0,2}=\gamma_{2}$. Moreover, the relation

$$
\begin{equation*}
\gamma_{2}-\gamma_{2}^{*}=i \sigma_{3} \tag{2.14}
\end{equation*}
$$

holds for γ_{2}.
In order that the conditions of Theorem 2.1 hold for the commutative operators $\left\{A_{1}, A_{3}\right\}$ and $\left\{A_{2}, A_{3}\right\}$, namely, in order that (2.7) and (2.8) take place and condition (2.9) hold, the matrix a_{x} must be given by

$$
a_{x}=\left(\begin{array}{ccc}
1-a_{2}(x) & i a_{1}(x) & a_{2}(x) \tag{2.15}\\
-i a_{1}(x) & 1-2 a_{2}(x) & -i a_{1}(x) \\
a_{2}(x) & i a_{1}(x) & 3 a_{2}(x)-1
\end{array}\right)
$$

and $\gamma_{x, 1}$ and $\gamma_{x, 2}$ must satisfy the relation

$$
\begin{equation*}
\gamma_{x, 1}=b \gamma_{x, 2}+c \tag{2.16}
\end{equation*}
$$

where c is a constant matrix given by

$$
c=\left(\begin{array}{ccc}
-\beta-i b / 2 & -i / 2 & 0 \tag{2.17}\\
i / 2 & \beta+i b / 2 & -i / 2 \\
0 & i / 2 & \beta+i b / 2
\end{array}\right)
$$

In this case, γ_{1}, γ_{2} are

$$
\begin{gather*}
\gamma_{1}=\left(\begin{array}{ccc}
-\beta & b \alpha-i / 2 & 0 \\
b \bar{\alpha}+i / 2 & \beta & b \alpha-i / 2 \\
0 & b \bar{\alpha}+i / 2 & \beta
\end{array}\right) \tag{2.18}\\
\gamma_{2}=\left(\begin{array}{ccc}
i / 2 & \alpha & 0 \\
\bar{\alpha} & -i / 2 & \alpha \\
0 & \bar{\alpha} & -i / 2
\end{array}\right)
\end{gather*}
$$

where $\beta \in R, \alpha=i k, k \in R$. The matrix $\gamma_{x, 2}$ is such that

$$
\frac{d}{d x} \gamma_{x, 2}=\left(\begin{array}{ccc}
2 i a_{1}(x) & 2\left(1-a_{2}(x)\right) & 0 \tag{2.19}\\
-2\left(1-a_{2}(x)\right) & 4 i a_{1}(x) & 2\left(3 a_{2}(x)-1\right) \\
0 & -2\left(3 a_{2}(x)-1\right) & -2 i a_{1}(x)
\end{array}\right)
$$

3. Functional models of the Lie algebra of operators $\left\{\hat{A}_{1}, \hat{A}_{2}, \hat{A}_{3}\right\}$

VII. Consider the operator system $\left\{\hat{A}_{1}, \hat{A}_{2}, \hat{A}_{3}\right\}$ (2.10) acting in $L_{3, l}^{2}\left(F_{t}\right)$ (1.12); moreover, $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}(2.11), \gamma_{1}, \gamma_{2}$ (2.18) respectively, $\gamma_{x, 1}, \gamma_{x, 2}$ satisfy relation (2.16); moreover, relation (2.19) holds for $\gamma_{x, 2}$.

Let us study how the action of each of the operators $\left\{\hat{A}_{1}, \hat{A}_{2}, \hat{A}_{3}\right\}$ changes after the Branges transformation (1.21)

$$
\begin{aligned}
\pi \hat{A}_{3} F(z)= & \int_{0}^{l}\left(\int_{t}^{l} f_{s} d F_{s} J\right) d F_{t} L_{t}^{*}(\bar{z}) \\
& =\int_{0}^{l} f_{t} d F_{t} \frac{L_{t}^{*}(\bar{z})-L_{t}^{*}(0)}{z}=\pi \frac{F(z)-F(0)}{z}
\end{aligned}
$$

That is,

$$
\begin{equation*}
\widetilde{A}_{3} F(z)=\frac{F(z)-F(0)}{z} \tag{3.1}
\end{equation*}
$$

$\widetilde{A}_{3} F(z) \in \mathbf{B}\left(L_{l}(z)\right)$.
We now calculate $\pi \hat{A}_{1} f_{t}\left(\pi \hat{A}_{2} f_{t}\right.$ can be obtained similarly)

$$
\begin{aligned}
\pi \hat{A}_{1} F(z) & =\int_{0}^{l}\left(A_{1} f_{t}\right) d F_{t} L_{t}^{*}(\bar{z})=\int_{0}^{l} f_{t} d F_{t}\left(A_{1}^{*} L_{t}(z)\right)^{*} \\
& =\int_{0}^{l} f_{t} d F_{t}\left(\alpha_{t} L_{t}(z) J \sigma_{1}+L_{t}(z) J \gamma_{t, 1}-i \int_{0}^{x} L_{s}(z) d F_{s} \sigma_{1}\right)^{*}
\end{aligned}
$$

By virtue of the integral equation (1.10), we obtain

$$
\begin{aligned}
\pi \hat{A}_{1} F(z)=\int_{0}^{l} f_{t} d F_{t} & \left(\frac{L_{t}(z)-L_{t}(0)}{z} J \sigma_{1}+L_{t}(z) J \gamma_{t, 1}\right)^{*} \\
& =\frac{1}{z} \int_{0}^{l} f_{t} d F_{t}\left(L_{t}(z) J\left(\sigma_{1}+\gamma_{t, 1} z\right)-L_{t}(0) J \sigma_{1}\right)^{*}
\end{aligned}
$$

Remark 3.1. It is easy to see that

$$
\begin{equation*}
\left.L_{t}(z) J\left(\sigma_{1}+\gamma_{t, 1} z\right)\right|_{z=0}=L_{t}(0) J \sigma_{1} \tag{3.2}
\end{equation*}
$$

Remark 3.2. It is shown earlier that, for the pair of the operators $\left\{A_{1}, A_{3}\right\}$ forming the commutative operator system, the conditions of Theorem 2.1 are true, and, thus, the following intertwining property takes place, namely:

$$
\begin{equation*}
\left(\sigma_{1} \lambda+\gamma_{x, 1}\right) J S_{x}(\lambda)=S_{x}(\lambda)\left(\sigma_{1} \lambda+\gamma_{1}\right) J \tag{3.3}
\end{equation*}
$$

and setting $\lambda=\frac{1}{z}$ in this relation we obtain

$$
\left(\sigma_{1}+\gamma_{x, 1} z\right) J S_{x}\left(z^{-1}\right)=S_{x}\left(z^{-1}\right)\left(\sigma_{1}+\gamma_{1} z\right) J
$$

In view of relations (1.11), (1.17), and (1.18), we obtain

$$
\begin{aligned}
& L_{x}(z) J\left(\sigma_{1}+\gamma_{x, 1} z\right) \\
& =(1,1,0) M(z) J\left(\sigma_{1}+\gamma_{x, 1} z\right) \\
& =(1,1,0) J S_{x}^{*}\left(\bar{z}^{-1}\right) J J\left(\sigma_{1}+\gamma_{x, 1} z\right) J \\
& =(1,1,0) J\left(\sigma_{1}+\gamma_{1} z\right) J S_{x}^{*}\left(\bar{z}^{-1}\right) J \\
& =(1,1,0) J\left(\sigma_{1}+\gamma_{1} z\right) M_{x}(z) .
\end{aligned}
$$

This relation can be represented in the form

$$
\begin{equation*}
(1,1,0) J\left(\sigma_{1}+\gamma_{1} z\right) M_{x}(z)=\sum_{j=1}^{3} \zeta_{j}(z) e_{j} M_{x}(z) \tag{3.4}
\end{equation*}
$$

where $e_{j}(j=1,2,3)$ are given by (1.16), and $\zeta_{j}(z),(j=1,2,3)$ are some functions from $z, z \in \mathbb{C}$. Taking relations (1.11), (1.19), and (1.20) into account, we obtain

$$
\sum_{j=1}^{3} \zeta_{j}(z) e_{j} M_{x}(z)=\zeta_{1}(z) L_{x}(z)+\zeta_{2}(z) N_{x}(z)+\zeta_{3}(z) R_{x}(z)
$$

i.e.,

$$
\begin{equation*}
L_{x}(z) J\left(\sigma_{1}+\gamma_{x, 1} z\right)=\zeta_{1}(z) L_{x}(z)+\zeta_{2}(z) N_{x}(z)+\zeta_{3}(z) R_{x}(z) \tag{3.5}
\end{equation*}
$$

In the case where σ_{1} and γ_{1} are given by formulas (2.11) and (2.18), $\zeta_{j}(z),(j=1,2,3)$ are given by

$$
\begin{equation*}
\zeta_{1}(z)=p z-b ; \quad \zeta_{2}(z)=p z+b ; \quad \zeta_{3}(z)=-i d z-b \tag{3.6}
\end{equation*}
$$

where $p=-\beta+i d, d=(2 b k-1) / 2, k: \alpha=i k, k \in R$. In addition, $\zeta_{j}(z)(j=1,2,3)$ at the point $z=0$ are equal to

$$
\begin{equation*}
\zeta_{1}(0)=-b ; \quad \zeta_{2}(0)=b ; \quad \zeta_{3}(0)=-b \tag{3.7}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\pi \hat{A}_{1} F(z)=\frac{1}{z} & \int_{0}^{l} f_{t} d F_{t}\left(\zeta_{1}(z) L_{t}(z)-\zeta_{1}(0) L_{t}(0)+\zeta_{2}(z) N(z)\right. \\
& \left.-\zeta_{2}(0) N(0)+\zeta_{3}(z) R(z)-\zeta_{3}(0) R(0)\right)^{*} \\
& =\frac{1}{z}\left\{\bar{\zeta}_{1}(z) F(z)-\bar{\zeta}_{1}(0) F(0)+\bar{\zeta}_{2}(z) \Phi_{1}(z)\right.
\end{aligned}
$$

$$
\left.-\bar{\zeta}_{2}(0) \Phi_{1}(0)+\bar{\zeta}_{3}(z) \Phi_{2}(z)-\bar{\zeta}_{3}(0) \Phi_{2}(0)\right\}
$$

Taking relations (1.54) and (1.55) into consideration, we obtain

$$
\begin{align*}
\widetilde{A}_{1} F(z)=b & \frac{F(0)-F(z)}{z}+\bar{p} F(z) \\
& +b \frac{\left(\Psi_{1} \hat{F}_{1}\right)(z)-\left(\Psi_{1} \hat{F}_{1}\right)(0)}{z}+\bar{p}\left(\Psi_{1} \hat{F}_{1}\right)(z) \\
& +b \frac{\left(\Psi_{2} \hat{F}_{2}\right)(0)-\left(\Psi_{2} \hat{F}_{2}\right)(z)}{z}+i d\left(\Psi_{2} \hat{F}_{2}\right)(z) . \tag{3.8}
\end{align*}
$$

By carrying on similar considerations for the operator \hat{A}_{2}, we get

$$
\begin{aligned}
\pi \hat{A}_{2} F(z) & =\int_{0}^{l}\left(A_{2} f_{t}\right) d F_{t} L_{t}^{*}(\bar{z})=\int_{0}^{l} f_{t} d F_{t}\left(A_{1}^{*} L_{t}(z)\right)^{*} \\
& =\int_{0}^{l} f_{t} d F_{t}\left(\alpha_{t} L_{t}(z) J \sigma_{2}+L_{t}(z) J \gamma_{t, 2}-i \int_{0}^{x} L_{s}(z) d F_{s} \sigma_{2}\right)
\end{aligned}
$$

In this case, the corresponding analogs of Remarks 3.1 and 3.2 are also valid.

Consider $L_{t}(z) J\left(\sigma_{2}+\gamma_{t, 2} z\right)$:

$$
\begin{aligned}
& L_{x}(z) J\left(\sigma_{2}+\gamma_{x, 2} z\right)=(1,1,0) M_{x}(z) J\left(\sigma_{2}+\gamma_{x, 2} z\right) \\
& \quad=(1,1,0) J S_{x}^{*}\left(\bar{z}^{-1}\right) J J\left(\sigma_{2}+\gamma_{x, 2} z\right)^{*} J \\
& \quad=(1,1,0) J\left(\sigma_{2}+\gamma_{2} \bar{z}-i \sigma_{3} \bar{z}\right) J S_{x}^{*}\left(\bar{z}^{-1}\right) J .
\end{aligned}
$$

Remark 3.3. $\left(\sigma_{2}+\gamma_{x, 2} z\right)^{*}=\left(\sigma_{2}+\gamma_{x, 2}^{*} \bar{z}\right)$ and, consequently, there is γ_{2}^{*} in the relations. Since γ_{2} and γ_{2}^{*} satisfy relation (2.14), we have

$$
\begin{equation*}
\left(\sigma_{2}+\gamma_{2}^{*} \bar{z}\right)=\left(\sigma_{2}+\gamma_{2} \bar{z}-i \sigma_{3} \bar{z}\right) \tag{3.9}
\end{equation*}
$$

Taking σ_{3} from (2.11), we get $\left(\sigma_{2}+\gamma_{2}^{*} z\right)=\left(\sigma_{2}+\gamma_{2} \bar{z}\right)-i J \bar{z}$,

$$
\begin{equation*}
L_{x}(z) J\left(\sigma_{2}+\gamma_{x, 2} z\right)=(1,1,0) J\left(\sigma_{2}+\gamma_{2} z-i J z\right) M_{x}(z) \tag{3.10}
\end{equation*}
$$

As before, we have

$$
\begin{equation*}
L_{x}(z) J\left(\sigma_{2}+\gamma_{x, 2} z\right)=\sum_{j=1}^{3} \eta_{j}(z) e_{j} M_{x}(z) \tag{3.11}
\end{equation*}
$$

where $e_{j}(j=1,2,3)$ are given by (1.16), and $\eta_{j}(z),(j=1,2,3)$ are some functions from $z, z \in \mathbb{C}$

$$
\begin{equation*}
L_{x}(z) J\left(\sigma_{2}+\gamma_{x, 2} z\right)=\eta_{1}(z) L_{x}(z)+\eta_{2}(z) N_{x}(z)+\eta_{3}(z) R_{x}(z) \tag{3.12}
\end{equation*}
$$

In the case where σ_{2} and σ_{3} are defined by $(2.11), \eta_{j}(z)(j=1,2,3)$ are given by
$\eta_{1}(z)=-1-i z(k+1 / 2) ; \quad \eta_{2}(z)=1+i z(k-1 / 2) ; \quad \eta_{3}(z)=-1-i k z$,
where $k: \alpha=i k, k \in R$. Note that, when $z=0$,

$$
\begin{equation*}
\eta_{1}=-1 ; \quad \eta_{2}=1 ; \quad \eta_{3}=-1 \tag{3.14}
\end{equation*}
$$

Thus, similarly to the aforesaid for the operator \hat{A}_{1}, we obtain

$$
\begin{align*}
\widetilde{A}_{2} F(z)= & \frac{F(0)-F(z)}{z}+\frac{i}{2}(1+2 k) F(z) \\
& +\frac{\left(\Psi_{1} \hat{F}_{1}\right)(z)-\left(\Psi_{1} \hat{F}_{1}\right)(0)}{z}+\frac{i}{2}(1-2 k)\left(\Psi_{1} \hat{F}_{1}\right)(z) \\
& +\frac{\left(\Psi_{2} \hat{F}_{2}\right)(0)-\left(\Psi_{2} \hat{F}_{2}\right)(z)}{z}+i k\left(\Psi_{2} \hat{F}_{2}\right)(z) \tag{3.15}
\end{align*}
$$

So, we obtain the following result.
Theorem 3.1. Let $\left\{\hat{A}_{1}, \hat{A}_{2}, \hat{A}_{3}\right\}$ be a system of the model operators (2.10) acting in the space $L_{3, l}^{2}\left(F_{t}\right)(1.12)\left(d F_{t}=a_{t} d t\right.$, (1.31), (1.45) take place for a_{t}) satisfying the commutative relations (2.9); in addition, let $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ be given by (2.11) and γ_{1}, γ_{2}, correspondingly, by (2.18); $\gamma_{x, 1}$ and $\gamma_{x, 2}$ satisfy relation (2.16), and let relation (2.19) be true for $\gamma_{x, 2}$.

If $F(z) \in \mathbf{B}(L(z))$ is the Branges transform of the function h_{t} from $L_{3, l}^{2}\left(F_{t}\right)$, and if $\hat{F}_{1}(z)$ and $\hat{F}_{2}(z)$ are the Branges transforms [by (1.36) and (1.49), correspondingly] for the dual function \hat{h}_{t} (by Definition 1.4), then the Branges transform (1.21) establishes the unitary equivalence between the triangular models $\left\{\hat{A}_{1}, \hat{A}_{2}, \hat{A}_{3}\right\}(2.10)$ and the functional models $\left\{\tilde{A}_{1}, \tilde{A}_{2}, \hat{A}_{3}\right\}(3.14),(3.15),(3.1)$.

References

[1] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, 1968, 326 p.
[2] M. S. Livshits, A. A. Yantsevich, Theory of Operator Colligations in Hilbert Spaces. Kharkov, 1971, 160 p. (in Russian).
[3] V. A. Naboka, Functional models of commutative system of linear operators // Mat., Prikl. Mat. Mekh., (2003), N 602, 46-60 (in Russian).
[4] V. A. Naboka, On functional models of Lie algebra of nonself-adjoint operators // Mat., Prikl. Mat. Mekh., (2004), N 645, 172-186 (in Russian).
[5] B. Sz.-Nagy, C. Foiaš, Analyse Harmonique des Operateurs de l'Espace de Hilbert, Masson, Szeged, 1967.
[6] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965.
[7] L. L. Vaksman, On characteristic operator-functions of Lie algebras // Vestnik Khark. Univ., Ser. Mat. Mekh., (1972), N 33, Iss. 37, 41-45 (in Russian).
[8] V. A. Zolotarev, Analytical Methods of Spectral Representations of NonselfAdjoint and Nonunitary Operators, Kharkov Nats. Univ., Kharkov, 2003, 342 p. (in Russian).
[9] V. A. Zolotarev, Lax-Fillips scattering scheme on groups and functional models of Lie algebras // Mat. Sbor. 183 (1992), N 5, 115-144 (in Russian).

Contact information

Victoriya
Aleksandrovna Kuznetsova
V. N. Karazin Kharkov

National University,
Svobody sq., 4, 61077, Kharkov, Ukraine E-Mail: victoriya979@mail.ru

