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     In the present communication, Hamilton equations for electrons interacting with slow circular polarized 
electromagnetic wave are solved in a self-consistent way. Basing on these solutions the interaction between the fast 
electrons and propagating circular wave is described kinetically, and the non-linear dispersion relation is obtained. 
As a result, specific conditions for the slow wave propagation in a two component plasma are analyzed. 
     PACS: 41.20.Jb 

 
INTRODUCTION 

 
     Finding the dispersion relation for electromagnetic 
waves in homogeneous media is basic fundamental 
problem of wave propagation. In cold isotropic plasma 
within a linear theory, the dispersion relation for 
transverse electromagnetic waves with frequency higher 
than electron plasma frequency results in the fact that 
only fast electromagnetic waves with cph >υ can 
propagate [1]. Some time ago the question was under 
discussion if there a possibility to arrange circularly 
polarized slow waves due to the trapping of some supra-
thermal electron fraction into the wave field (see e.g. 
[2,3]). In such a situation slowing-down of waves is 
provided due to electron trapping by a finite amplitude 
electromagnetic wave. In the present communication we 
analyze specific conditions for the existence of 
circularly polarized slow waves in a plasma with two 
electron components. The nonlinear dispersion relation 
for such waves is obtained self-consistently with taking 
into account Maxwell equations and motion equations 
for electrons. The treatment is performed both in 
hydrodynamics approximation and kinetically basing on 
the solutions of Hamilton equations for electrons 
interacting with slow circular polarized electromagnetic 
wave. Problems of the formation of such waves and of 
electrons with two fractions are out of the scope of 
present communication. 

 

1. SELF-CONSISTENT STATIC SHEARED 
MAGNETIC FIELD 

 

     In the investigation of slow waves it may be 
convenient to shift to the reference frame moving with 
the phase velocity, where the plane wave is presented as 
purely static magnetic configuration. In particular, 
circularly polarized in the laboratory frame wave 
corresponds to sheared magnetic field  
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     To provide self-consistency of such magnetic 
configuration it is necessary to have corresponding 
electron current in which every electron perform the 
motion allowed by magnetic field (1). For the sake of 
simplicity we shall consider that the current is produced 
by electrons with constant longitudinal velocities 

constVz = (the ion motion is neglected).  

 For the electron with constVz =  it is necessary to 
satisfy the following set of equations: 
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where mceBB /=ω . From Eqs. (2) for 0≠zV  it 

follows that mckBeV /
rr

−=⊥ , and this relation does not 
depend on the longitudinal velocity. Electrons with 

0=zV (“trapped” electrons in the laboratory frame of 

reference), can have arbitrary 0⊥V
r

 which is parallel to 

the magnetic field B
r

in the corresponding z =const 
plane. Transverse current of electrons with 0≠zV  
(“untrapped” electrons) is 

( ) ( ) mckBNeVNej /11 2
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where N  is the electron density, α  is a fraction of 
“trapped” electrons. From the static Maxwell equation 
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we obtain following condition 
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with mNeP /4 22 πω = . The condition that Eq.(4) possess 

real solutions for k is 
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in the case 1<<α  this corresponds to the inequality 
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   Taking into account the evident inequality cV <⊥0 , 
one can obtain overestimated limitation to α   
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which does not contain 0⊥V . 
     Eq. (4) for a fixed plasma density impose the relation 
between field amplitude, fraction of “trapped” electrons 
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and their transverse velocity, which may be considered 
as nonlinear dispersion relation. This relation can be 
modified with taking into account that longitudinal 
current formed by ions with the density N moving with 
the velocity phυ− and by “untrapped” electrons with the 
density αN must be zero. This means that in the 
laboratory reference frame “untrapped” electrons must 
move also in z-direction relative to immovable ions to 
compensate z-component of “trapped” electron current. 
The mean velocity of “untrapped” electrons in z-
direction >< zV is defined by the relation 

><−=− zph V/1 υα .  
It should be noted that Eq. (4) has two real 

solutions for k, which means that in the laboratory 
reference frame there are two slow nonlinear circularly 
polarizes waves with the equal phase velocities.  
 

2. ELECTRON MOTION IN CIRCULARLY 
POLARIZED ELECTROMAGNETIC WAVE 

 

     Above we present the simplest demonstration of the 
existing of nonlinear slow circularly polarized waves in 
a plasma with two cold electron fractions (“trapped” and 
“untrapped”), in which every “trapped” electron is 
moving with constant velocity along its own rectilinear 
trajectory, while “untrapped electrons are moving with 
constant velocity along spiral trajectories. In such a 
wave the “trapped” fraction can possess arbitrary spread 
over transverse velocities, and “untrapped” fraction 
allows spread over longitudinal velocities.   
     Now again having in mind investigation of slow 
nonlinear circularly polarized waves in a more general 
case, we consider arbitrary electron motion (non-
relativistic) in the electromagnetic wave defined by 
vector-potential: 
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From the translation symmetry transverse momentum 
conservation follows: 
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 The longitudinal motion is governed by the equation: 
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where P⊥ and φ0 are introduced by 
00 sin;cos φφ ⊥⊥ −=−= PPPP yx . Note also the following 

condition 
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By substitution 0
~ φω −−= tkzzk  one can obtain the first 

integral of equation (11): 
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from which it follows  
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where z~  – takes the form of inverse elliptical function 
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with the constant τ  characterizing the initial phase of 
electron oscillation.  

3. DISPERSION RELATION 

     The plane wave (8) can propagate in the plasma 
without support from external sources if the following 
equations are satisfied: 

( )
⎪⎩

⎪
⎨
⎧

=

=− ⊥

0

42
0

2

zj

j
c

Akk
rr π

.                                              (16) 

The transverse current can be calculate as  
( ) ( )( )∫ −−= ⊥⊥ ..., dtzzfVetzj δ
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where f  is the – electron distribution function, )(tz is 
the  solution of motion equation; integration is 
performed over the set of constants characterizing 
electron motion. In our case such these constants are 

τφ ,,, 0⊥PEz . Actually the electron motion must be 
characterized by 6 constant, but two constants arising 
from initial transverse coordinates can be omitted. 
When the distribution function depends on zE and ⊥P , 
Eq. (17) takes the form: 
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where transverse velocity ⊥V
r

 is also dependent on 

⊥PEz , . From Eqs. (9) and (12) it follows: 
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 Integrating over variable 0φ and using normalization 
condition 

( )( ) ( ) 0
1 , ... ... ,

2 2z
kz z t f W P d d fd const Nδ ϕ

π π⊥− = = =∫ ∫
one can obtain 

( ) ( )

( )( ) ( )

2

0

,

, , , .
2z z z

ej z t NA
mc

e kA kz t W P P f W P d dE dP
mcE

ϕ

ω ϕ τ τ
π

⊥

⊥ ⊥ ⊥ ⊥

=− +

+ − −∫

rr

r
%

(20) 

Substituting (20) into (16) results in the nonlinear 
dispersion relation: 
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where F  is the  distribution function normalized as: 
NdPFdWz =∫ ⊥ ,                                    (22) 
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integration limits in (23) are determined by zero points 
of expression ωζ mPeEWz /cos0 ⊥+ . 
     Electrons may be specified as belonging to three 
groups. The first group includes trapped electrons with 
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electrons 10 <Φ<  and kVz /ω>=< ; the second group 

includes trapped electrons with ⊥<< P
m
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0 , for 

these electrons 01 <Φ<−  and  kVz /ω>=< ; the third 

group includes untrapped electrons with zWP
m
cE

<⊥ω
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for this electrons 01 <Φ<−  and kVz /ω>≠< .  
     In Figure the dependence of Φ on ⊥PcEmWz 0/ω  is 
shown. 
     For fast waves (with ck >/ω ) the expression (23) 
after some cumbersome calculations can be simplified 
and for waves of low enough amplitude the nonlinear 
dispersion relation (21) can be transformed into well 
known linear dispersion relation for transverse waves in 
the isotropic plasma.  

 
Weight function Ф dependence on normalized zW  

     Condition for existence of self-consistent non-linear 
slow waves in plasma may be derived from Eqs. (21), 
(23) (see also Figure). Such waves can exist, if there is 
sufficiently large fraction of trapped electrons with high 
enough ⊥P . This condition may be written in the form: 
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     So for existence of such a wave two necessary 
conditions must be satisfied: for the group of trapped 
particles the condition ω/0eEP >⊥  must be fulfilled; 
more strictly the trapped particle density should satisfy 
the condition  

ω/0NeEPN trtr >⊥ .                             (25) 
     If one take into account the conservation of 
transverse momentum in the process of wave switch-on, 
and assume that before switching-on the wave field 
electrons had Maxwellian distribution, the condition of 
existence of nonlinear slow waves takes the form  
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     This is a rather strong limitation, and more simple 
realization of slow waves may be achieved in the 
plasma with two electron fractions, e.g., in the presence 
of electron beam in the direction of wave propagation 
with large enough transverse  energy. 
     In conclusion, we demonstrate the simple way of 
constructing nonlinear slow circularly polarized waves 
in the plasma, which allows evident modification to the 
relativistic case. 
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О ДИСПЕРСИОННОМ СООТНОШЕНИИ ДЛЯ ЦИРКУЛЯРНО ПОЛЯРИЗОВАННЫХ 
ЗАМЕДЛЕННЫХ ВОЛН В ПЛАЗМЕ 

Е.Д. Господчиков, Е.В. Суворов 

     Решаются уравнения Гамильтона для электронов, взаимодействующих с замедленной циркулярно 
поляризованной электромагнитной волной. На основе этих решений кинематически строится нелинейное 
дисперсионное соотношение. Обсуждаются специфические условия, при выполнении которых замедленная 
волна может распространяться в двухкомпонентной плазме. 

 
ПРО ДИСПЕРСІЙНІ СПІВВІДНОШЕННЯ ДЛЯ ЦИРКУЛЯРНО ПОЛЯРИЗОВАНОГО 

УПОВІЛЬНЕННЯ ХВИЛЬ У ПЛАЗМІ 

Є.Д. Господчиков, Є.В. Суворов 

     Розв’язується рівняння Гамільтона для електронів, що взаємодіють з уповільненою циркулярно 
поляризованою електромагнітною хвилею. На основі цих рішень кінематично будується нелінійне 
дисперсійне співвідношення. Обговорюються специфічні умови, при виконанні яких уповільнена хвиля 
може поширюватися в двокомпонентнiй плазмі. 

- 1 1 2 3 4

- 0.4

- 0.2

0.2

0.4

0.6

0.8

1.0 Φ

⊥ePEWm z 0/ω


