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In the present communication, Hamilton equations for electrons interacting with slow circular polarized
electromagnetic wave are solved in a self-consistent way. Basing on these solutions the interaction between the fast
electrons and propagating circular wave is described kinetically, and the non-linear dispersion relation is obtained.
As a result, specific conditions for the slow wave propagation in a two component plasma are analyzed.
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INTRODUCTION

Finding the dispersion relation for electromagnetic
waves in homogeneous media is basic fundamental
problem of wave propagation. In cold isotropic plasma
within a linear theory, the dispersion relation for
transverse electromagnetic waves with frequency higher
than electron plasma frequency results in the fact that
only fast electromagnetic waves with v, >ccan

propagate [1]. Some time ago the question was under
discussion if there a possibility to arrange circularly
polarized slow waves due to the trapping of some supra-
thermal electron fraction into the wave field (see e.g.
[2,3]). In such a situation slowing-down of waves is
provided due to electron trapping by a finite amplitude
electromagnetic wave. In the present communication we
analyze specific conditions for the existence of
circularly polarized slow waves in a plasma with two
electron components. The nonlinear dispersion relation
for such waves is obtained self-consistently with taking
into account Maxwell equations and motion equations
for electrons. The treatment is performed both in
hydrodynamics approximation and kinetically basing on
the solutions of Hamilton equations for electrons
interacting with slow circular polarized electromagnetic
wave. Problems of the formation of such waves and of
electrons with two fractions are out of the scope of
present communication.

1. SELF-CONSISTENT STATIC SHEARED
MAGNETIC FIELD

In the investigation of slow waves it may be
convenient to shift to the reference frame moving with
the phase velocity, where the plane wave is presented as
purely static magnetic configuration. In particular,
circularly polarized in the laboratory frame wave
corresponds to sheared magnetic field

B . =Bcoskz .
B, = Bsinkz ' )

To provide self-consistency of such magnetic
configuration it is necessary to have corresponding
electron current in which every electron perform the
motion allowed by magnetic field (1). For the sake of
simplicity we shall consider that the current is produced
by electrons with constant longitudinal velocities
V. = const (the ion motion is neglected).
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For the electron with V, = const it is necessary to
satisfy the following set of equations:
VxBy = V_va

V.=wgV, smkVit )
Vy =—w,V_ coskV t

where w; =eB/mc. From Egs. (2) for V, #0 it

follows that V', =—eB/mck , and this relation does not
depend on the longitudinal velocity. Electrons with
V, =0 (“trapped” electrons in the laboratory frame of
reference), can have arbitrary Vm which is parallel to
the magnetic field Bin the corresponding z =const
plane. Transverse current of electrons with V, #0
(“untrapped” electrons) is

L :—e(l—a)NI;L :(l—a)ezNB/mck, 3)
where N is the electron density, « is a fraction of
“trapped” electrons. From the static Maxwell equation

rotB = 4—”} ,
¢
we obtain following condition
2 2
kV
Brll-a)2=q@ 0 (4
¢ ¢t oy

with @, =4zNe’ /m . The condition that Eq.(4) possess

real solutions for £ is Vo >2% , which impose
l-a ¢ p
the following limitation to
2 2 2 2
a>25% | Y | (5)
10@p 4c” wy

in the case a << this corresponds to the inequality

®,C
oa>2—2L

(6)

opV o
Taking into account the evident inequality V , <c,
one can obtain overestimated limitation to «

2 2
a>2%8| 1+ 2 1], (7)
@5 4wy

which does not contain V.

Eq. (4) for a fixed plasma density impose the relation
between field amplitude, fraction of “trapped” electrons
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and their transverse velocity, which may be considered
as nonlinear dispersion relation. This relation can be
modified with taking into account that longitudinal
current formed by ions with the density N moving with
the velocity —v,, and by “untrapped” electrons with the

density N must be zero. This means that in the
laboratory reference frame “untrapped” electrons must
move also in z-direction relative to immovable ions to
compensate z-component of “trapped” electron current.
The mean velocity of “untrapped” electrons in z-

<V.>is defined by the

U, [ <V, >.

It should be noted that Eq.(4) has two real
solutions for k, which means that in the laboratory
reference frame there are two slow nonlinear circularly
polarizes waves with the equal phase velocities.

2. ELECTRON MOTION IN CIRCULARLY
POLARIZED ELECTROMAGNETIC WAVE

Above we present the simplest demonstration of the
existing of nonlinear slow circularly polarized waves in
a plasma with two cold electron fractions (“trapped” and
“untrapped”), in which every “trapped” electron is
moving with constant velocity along its own rectilinear
trajectory, while “untrapped electrons are moving with
constant velocity along spiral trajectories. In such a
wave the “trapped” fraction can possess arbitrary spread
over transverse velocities, and “untrapped” fraction
allows spread over longitudinal velocities.

Now again having in mind investigation of slow
nonlinear circularly polarized waves in a more general
case, we consider arbitrary electron motion (non-
relativistic) in the electromagnetic wave defined by
vector-potential:

A4, = icos(¢) 4, = ism(;é)
1)

¢ =hkz— ot
From the translation symmetry transverse momentum
conservation follows:

direction relation

l-a=

; ®)

mla—gzzlzﬁlzconst. ©)]
c

The longitudinal motion is governed by the equation:

mz :ﬂk(g sing — P, cosg) , (10)
mao
or
mz =~ Bk sin(6—4,), (1)
maw

where P, and ¢ are introduced by
P =-P, cos¢y; P, =—P, sing,. Note also the following

condition

JEy

ie (12)

#=h
By substitution iz = kz — @t — ¢, one can obtain the first
integral of equation (11):

~2
mz~ ek
—_— —L P, coskz =W_ =const ,
2 mo

from which it follows

(13)

88

o, %

kK k° (14

where Z — takes the form of inverse elliptical function

t—r= 2 & , (1)
i

z= E(I—T,PL,EZ)

/8 ——OP coskz

with the constant 7 characterizing the initial phase of
electron oscillation.

3. DISPERSION RELATION

The plane wave (8) can propagate in the plasma
without support from external sources if the following
equations are satisfied:

- 4r
(k> -k )A_—]L 16
jZ = 0
The transverse current can be calculate as
]’L(z,t)=—ej.ﬁlfé'(z—z(t))d... s (17)

where f is the — electron distribution function, z(¢)is

the  solution of motion equation; integration is
performed over the set of constants characterizing
electron motion. In our case such these constants are

P .¢,,7. Actually the electron motion must be

characterized by 6 constant, but two constants arising
from initial transverse coordinates can be omitted.
When the distribution function depends on E_ and P,

Eq. (17) takes the form:
J. (z,t) =—eJ-VL (Z,t)x

o o)l (18)
os-r-2-8) L

i P,)dg,dzdE_dP,,

where transverse velocity ¥, is also dependent on
E_, P, . From Egs. (9) and (12) it follows:

! Po d4). 19

- e -
Lp- < dg)-
m cm

Integrating over variable ¢, and using normalization

Ple)=-< A

condition
1 k
—2(1)) =/ (W, P)dgd..=— | fd...=const =
[5(z 2(0) 5 f (W.P) g 27J fd...=const =N,
one can obtain

(=) == - Ni(g)+ 0

k
L))Zzﬂ.f(VVz»Ii)deEzdﬂ.

Substituting (20) into (16) results in the nonlinear
dispersion relation:

2
a)p 4r _ew

K-k + — [[@(w.,P,)P.F(W.,P)JdEdR,, 21)

¢ mck
where F 1is the distribution function normalized as:

[Fdw.ap =N, (22)
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E -1/2
J'cosg“(W +— P cos{) a¢
and @ =

2 (23)
J‘(W + 0P cosg’j d¢

integration limits in (23) are determined by zero points
of expression W, +eE, P, cos¢ /ma.

Electrons may be specified as belonging to three
groups. The first group includes trapped electrons with

—ﬂPL<WZ<WC (W, ~0.655 0P) for these
12

electrons 0 <® <1 and <V, >= aJ/ k ; the second group

includes trapped electrons with W, <W, <—P , for
mao

these electrons —1<® <0 and <V, >=w/k ; the third

. . E
group includes untrapped electrons with C—OPL <W,
me

for this electrons —1<® <0 and <V, > w/k.
In Figure the dependence of ® on W.mw/cE,P, is

shown.

For fast waves (with w/k >c) the expression (23)
after some cumbersome calculations can be simplified
and for waves of low enough amplitude the nonlinear
dispersion relation (21) can be transformed into well
known linear dispersion relation for transverse waves in
the isotropic plasma.
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Condition for existence of self-consistent non-linear
slow waves in plasma may be derived from Egs. (21),
(23) (see also Figure). Such waves can exist, if there is
sufficiently large fraction of trapped electrons with high
enough P, . This condition may be written in the form:

”((D(Wz, )P, —%j (W.,P)dw.dpP, >0. (24)

So for existence of such a wave two necessary
conditions must be satisfied: for the group of trapped
particles the condition P, > eE, /@ must be fulfilled;

more strictly the trapped particle density should satisfy
the condition
N,P, >NeE,/w. (25)

If one take into account the conservation of
transverse momentum in the process of wave switch-on,
and assume that before switching-on the wave field
electrons had Maxwellian distribution, the condition of
existence of nonlinear slow waves takes the form

mop@

> E,. (26)

3e

This is a rather strong limitation, and more simple
realization of slow waves may be achieved in the
plasma with two electron fractions, e.g., in the presence
of electron beam in the direction of wave propagation
with large enough transverse energy.

In conclusion, we demonstrate the simple way of
constructing nonlinear slow circularly polarized waves
in the plasma, which allows evident modification to the
relativistic case.
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O JMCIHEPCHUOHHOM COOTHOIIEHUA JJIAA HUPKYJIAPHO INOJAPU30OBAHHBIX
3AMEJJIEHHBIX BOJIH B IINTASME

EJI. I'ocnoouuxkos, E.B. Cysopos

Pemarotcs YpaBHCHUSA TI'amunpTOHA JJI4 DJICKTPOHOB, BBaHMOﬂeﬁCTByIOH_[HX C 3aMeZ[J'IeHHOﬁ HUPKYJIAPHO
HOHﬂpHSOBaHHOﬁ 3J'IeKTpOMaFHPITHOﬁ BoJiHOM. Ha ocHoBe »THX pemeﬂnﬁ KUHEMATUYCCKHU CTPOUTCHA HEJIMHEHHOE
JAUCIICPCUOHHOC COOTHONICHUEC. O6CY)KZ[aIOTC$I cneumbnqecxne YCJI0BUs, IPU BBIIIOJHCHUN KOTOPBIX 3aMCJICHHAs
BOJIHA MOKET pACHPOCTPAHATHCA B ,HByXKOMHOHeHTHOfI IIasMme.

PO JUCIHEPCIVHI CHIBBIAHOIIEHHSA JIJISI IIAUPKYJIAPHO MOJSAPU30BAHOI'O
YHOBIJIBHEHHSI XBWJIb Y IIVTIA3MI

€./1. I'ocnooduuxos, €.B. Cysopoe

Po3B’s13yeThcst piBHAHHSA ['aMinbTOHA IS EJICKTPOHIB,

IO B3aEMOIIOTH 3 YIOBUILHEHOI IHPKYJISIPHO

MOJISIPU30BaHOI0  €JIEKTPOMArHiTHOIO XBwiIelo. Ha oOCHOBI IMX pilleHb KiHEMaTH4HO OyayeThcs HeliHiliHe
Jucrepciiine cmiBBigHOmeEHHS. OOroBOpIOIOTECS crienn(iuHi YMOBH, IIPM BHKOHAHHI SIKMX YIOBITbHEHA XBHJISA

MOKC MMOIINPOBATUCA B ,HBOKOMHOHGHTHifI IJ1a3Mi.
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