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INTRODUCTION 
     The computation of the exact relativistic plasma 
dispersion functions (PDFs) [1,2] is a necessary basis 
for both the analysis of the electron cyclotron waves in 
laboratory thermonuclear and hot astrophysical plasmas 
and the analysis of the ion cyclotron waves in extremely 
hot astrophysical plasmas. The full account of 
relativistic effects is especially important in the regimes 
of wave propagation in high-temperature plasma almost 
perpendicularly to the confining magnetic field in the 
vicinities of higher cyclotron harmonic resonances. 
These functions, as well as other PDFs (non-relativistic 
one and weakly relativistic ones), can be expressed in 
the form of Cauchy or Cauchy-type integrals defined on 
the real axis, provided that the densities of the 
corresponding integrals vanish at infinity, and hence can 
be computed for not very large | |z - values, being z  
their complex argument, by means of the direct 
numerical calculations of these singular integrals and 
using their asymptotic expansions for the remaining 
values of | |z  [2].  However in many numerical 
applications, PDFs must be routinely evaluated many 
times, therefore the efficiency of the numerical 
algorithm involved in their calculation is of primary 
importance. 
     For the simplest case of nonrelativistic PDF 

2( ) exp( ) erfc( )w z z iz= − − , the use of continued 
fractions of Jacobi, which are the special diagonal case 
of Pade approximants, has been proved to provide such 
an efficient method for large-| |z  values in combination 
with the Taylor expansion of special kind for the 
remaining values of | |z [3]. For given accuracy, these 
calculations are about two orders of magnitude faster 
than the direct computation of the Cauchy type integrals 
and one order of magnitude slower than the calculation 
of the exponential function. The same technique 
involving two approaches can be used for the weakly 
relativistic PDFs [4,5]. However, the technique [4], due 
to the use of recurrent relation for the weakly relativistic 
PDFs, lacks stability when | |z  becomes large. 
     The numerical technique [5], developed for the 
computation of the weakly relativistic PDFs for not very 

large | |z - values without the use of recurrent relations, 
can be also used for the most complicated case of the 
exact relativistic PDFs. But the main purpose of the 
present work is to present the new and more effective 
method to evaluate these functions in the same region. 

 
1. EVALUATION OF THE EXACT 

RELATIVISTIC PDFs ON THE REAL AXIS  
 

     In plasma physics, solving boundary value problems 
requires computation of PDFs only on the real axis, so it 
makes sense to consider this case separately. On the real 
axis the exact relativistic PDFs can be defined by the 
means of the next formulae [1] 
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where q  is the number of harmonic 22

//Na μ= , 

( )ωμ cqx Ω−= 1 , Tmc 0
2=μ , c, m0, T are the speed 

of light in vacuum, the rest mass of the particle and the 
temperature of particles, respectively, ( )a2/ −= μμβ , 

( )βμ /11* −=a , ωckN |||| =  is the longitudinal 
refractive index, =Ωc )( 0 cmeB  is the fundamental 
particle cyclotron resonance frequency, )(2 xK , 

)(21 xIq+
, )(21 xKq+  are modified Bessel functions and 

the contour of integration is taken above the pole. 
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     These functions belong to a rather broad and 
important class of analytic functions defined by Cauchy 
and type of Cauchy-type integrals, with the integral 
density tending to 0 at infinity. Their anti-hermitian 
parts equal to the density of the integral multiplied by 

iπ−  and their hermitian parts equal to the principal 
values of those integrals. For large x  values, where the 
integral density is less than, say, exp(-36), these 
principal values can be evaluated on the base of the 
asymptotic expansion in the infinite point [6] 
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For the remaining x  values, the singular integrals can 
be evaluated by means of direct numerical integration 
on the base of the following nonsingular integral forms:  
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since integrands in (1), (2) can be expressed in terms of 
exponentials, and therefore, can be estimated up to the 
required precision. However, the speed of the 
calculations, as noted in the introduction, is rather far 
from ideal. 
     Fortunately, the formulae (4), (5) have an extra 
interesting property, which is manifested only in their 
use in conjunction with the Euler-Maclaurin formula 
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where )(0 afy = , )(bfyn = , 11,... −nyy  are the values of 
function )(xf  in successive equally spaced points with 
a step h  and mB  are the Bernoulli coefficients. 
      In the case of (5), it is necessary to take the limit 
with a  and b  in (6) tending to ∞−  and ∞+ , 
respectively. Then we have 
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since it is easy to see from the expansion (3) that the 
reminder of the terms with the odd derivatives of )(xf  
in (6) vanish due to the conditions of the problem at 
infinity. 
     In the case of (5), it is necessary to take −∞→a  in 
(6). Then, instead of (7), we have 
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since can be demonstrated that all the odd derivatives of 
)(xf  at the point b  vanish, i.e., the function )(xf  is 

even with respect to the point b . 
     It is interest to note that the rather simple formulae 
(7), (8), being practically the trapezoidal quadrature, are 
nevertheless exact for all the values of h  such that the 
series in (6) converges. Since the limiting behavior of 
Bernoulli coefficients is ))2(!( m

m mOB π= , these 
formulae are exact for 1<h . In applications the series 
in (7) and (8) should be cut if the integral density will be 
less than, say, exp(-36). Direct calculations along those 
formulae show that the value h  should lie within the 
range, for parameters corresponding to thermonuclear 
plasma, 6.0...2.0=h  to preserve 8 significant digits. 
This allows one performing computations about ten 
times faster in comparison with the direct numerical 
integration on the base of nonsingular forms only.  

2. EVALUATION OF THE EXACT 
RELATIVISTIC PDFs IN THE COMPLEX 

REGION 
     In plasma electrodynamics, solving of initial value 
problems requires computation of PDFs in the whole 
Riemann sphere of the complex region. In the case of 
(2) the exact relativistic PDFs have two separate 
analytic branches in the complex region, similarly to the 
nonrelativistic PDF, and in the case of (1) these 
branches are analytically connected in the same way as 
those of the weakly relativistic PDFs [2]. The values of 
both branches are calculated in a similar way, and it is 
sufficient to estimate the values of each branch only in 
one semi-plane since the values in the upper and lower 
semi-planes are connected through the Sohotski-Plemelj 
formulae. Therefore it is sufficient to consider only the 
computation of the main branch in the upper semi-plane. 
Moreover, as mentioned in the introduction, it is 
sufficient as well to calculate these functions for not 
very large | |z - values. 
     It is of great interest to note that the method of 
evaluation of (1) and (2) described above is proved to be 
applicable also in the upper semi-plane near the real axis 
by replacing x  by .iyxz +=  Numerical calculations 
show that, up to 8 significant digits, this method is 
applicable in the whole band 5.20 ≤≤ y  with the same 
h  values as for the real axis. Such an unusual ease of 
analytic continuation of exact PDFs from the real axis 
into the upper semiplane confirms the fact of accuracy 
of the formulas (7) and (8) with the h  values used in the 
previous section. 
     Similarly, for 105.2 ≤≤ y  there was applied Euler-
Maclaurin formula, though not for the principal values 
of Cauchy integrals (4) and (5), but for the whole exact 
PDFs (1) and (2), which are also nonsingular in this 
region just like (4) and (5) at the real axis. Such a 
method was used for estimation of the nonrelativistic 
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PDF [7] and the possibility to use this method for 
Cauchy integrals was in first pointed out in [8]. 
     In this region, to preserve 8 significant digits, we 
chose a step h  within the range 8.0...4.0=h  (with the 
increase of h  when y  increases), which allows 20-
percent gain in computation speed, compared with the 
lower region ( 5.20 ≤≤ y ). 
     It worth to note that in the case of extremely hot 
astrophysical plasma the region of the real axis, in 
which antihermitian parts of the exact relativistic PDFs 
are significantly larger than zero, can greatly expand in 
comparison with the case of the laboratory 
thermonuclear (for example ITER-like) plasma. This 
peculiarity can lead for such extreme plasmas to 
somewhat lowering in the speed of computations using 
this method,. But this case of extremely hot 
astrophysical plasmas can be the subject of a separate 
work. 
 

CONCLUSIONS 
 

     1. On the base of nonsingular forms for Cauchy and 
Cauchy-type integrals and the Euler-Maclaurin formula, 
a new efficient method to compute the exact relativistic 
PDFs for real and complex argument is given. 
     2. Comparison of this method with the method of 
direct numerical evaluation of Cauchy and Cauchy-type 
integral shows that the present method for laboratory 
thermonuclear plasmas is an order of magnitude more 
efficient.  
     3. This method can be used for evaluation of any 
Cauchy and Cauchy-type integral defined on the real 
axis, provided that the density of the corresponding 
integral vanishes at infinity and, in particular, for 
evaluation of the nonrelativistic and weakly relativistic 
PDFs.  
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ЭФФЕКТИВНОЕ ВЫЧИСЛЕНИЕ ТОЧНЫХ РЕЛЯТИВИСТСКИХ ПЛАЗМЕННЫХ 

ДИСПЕРСИОННЫХ ФУНКЦИЙ  

C.C. Павлов, Ф. Кастехон, М. Терещенко  

     Предлагается новый эффективный метод вычисления точных релятивистских плазменных 
дисперсионных функций в реальной и комплексной областях на основе интегральных форм Коши или типа 
Коши и формулы Эйлера-Маклорена.  

 
ЕФЕКТИВНЕ ОБЧИСЛЕННЯ ТОЧНИХ РЕЛЯТИВІСТСЬКИХ ПЛАЗМОВИХ ДИСПЕРСІЙНИХ 

ФУНКЦІЙ  

C.C. Павлов, Ф. Кастехон, М. Терещенко  

     Пропонується новий ефективний метод обчислення точних релятивістських плазмових дисперсійних 
функцій в реальній та комплексній областях на основі інтегральних форм Коші або типу Коші та формули 
Ейлера-Маклорена.  


