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This report is devoted to the investigation of the propagation peculiarities of the eigen dipolar electromagnetic
waves in coaxial plasma-metal waveguide with non-uniform azimuth magnetic field. The dependence of the
dispersion properties, spatial attenuation coefficient, radial wave field structure, phase and group velocities on the
effective collision rate, the value of the direct current that flows along the central conductor of the waveguide
structure and waveguide geometric parameters were considered. It was shown that mentioned parameters can be
used to control the dispersion and attenuation properties of the studied waves.
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INTRODUCTION

Till now, the coaxial plasma-metal waveguide
structures are the object of intensive both theoretical and
experimental studies. This is stipulated by the fact that
such waveguide structures are widely used in the
devices of plasma electronics [1] and also as the
discharge chambers for plasma-technological processes
[2, 3]. In the previous researches the basic attention was
paid to the eigen electromagnetic waves with azimuth
wavenumber m = 0 [4] due to its wide usage in
different applications. But it is necessary to mention,
that the dipolar waves with m = +1 are also often
used for wvarious technological applications [5].
Electrodynamic properties of such dipolar waves
essentially differ from the symmetric waves with
m = 0 [4] and needs for the further study.

1. BASIC EQUATIONS

The studied coaxial waveguide structure consists of
the central metal conductor of radius R, , that is placed at
the axis of waveguide system. This conductor is
enclosed by the cylindrical plasma layer with outer
radius R,. The vacuum region (R2 <r< R3) separates

the plasma layer from outer waveguide metal wall with
radius R, . The radial non-uniform azimuth magnetic

field H,(r) is created by the direct current J, that

flows along the central metal conductor. Cylindrical
plasma layer was considered in the hydrodynamic
approach as cold slightly dissipative medium with
constant effective collision rate v (v/w <1, where @
is wave frequency). It was also supposed that plasma
density vary slightly along the plasma column on the
distances of wavelength order. Permittivity tensor of
cold magnetized collisional plasma can be written as:
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electron plasma and cyclotron frequencies, respectively.
It is necessary to mention that these frequencies depend
on radial position r.

The solution of the Maxwell equations in the
cylindrical coordinates that govern the considered wave
propagation can be found in the form:

E,H = E(r),H(r)explilk;z + mop — ot]), (1
where k; is complex axial wave number, m is azimuth
wave number.

In the plasma region (R, <r<R,) the system of

ordinary differential equations that describe the radial
distribution of tangential wave field components can be
written as follows:
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k=w/c is the vacuum wave number. To obtain the
solutions of this system for arbitrary problem
parameters one must used special numerical methods.

In the vacuum region (R2 <r< R3) the

corresponding system of Maxwell equations can be
solved analytically [5]. So, wave field components can
be expressed in terms of linear combination of modified
Bessel functions. Constants that are present in these
expressions can be obtained with the help of boundary
conditions consisting in the continuity of tangential
wave field components at plasma — vacuum interface:
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HI(R,)), EV(R,)), HJ(R,) are the values of wave field

components at plasma — vacuum interface (r=R,),
obtained by the numerical solution of the equations (2),
prime denotes the derivative with respect to the
argument.

The analogue of the dispersion equation can be
obtained from the boundary conditions for E_(r) and

E,(r) wave field components at the waveguide metal
wall r=R;. These conditions lead to the dispersion

equation in the following form:

Cl,(x,R)+C,K, (x,R) = 0
{ 1 3 2 3 (4)
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2. MAIN RESULTS

The main attention in this report was focused on the
dipolar wave with m=1 due to its wide usage in
different practical applications [1-4]. It is necessary to
mention that dipolar wave possess all six wave field
components. So the solution of the problem became
rather hard and bulky.

The influence of direct current value and waveguide
geometric parameters on the dispersion properties of the
waves considered was studied for the case of
collisionless plasma. In the case considered the
dispersion equation (4) possesses five solutions (curves
1-5) that are shown on the Fig. 1.
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Fig. 1. The solutions of the dispersion equation
u=wolo, on the dimensionless wave number
X = kyR,. Problem parameters are equal: R, /R, =0.1,
R,w/c=0.5, Ry/R, =15, j=2.0
These solutions correspond to the eigen modes that
can exist in the considered waveguide structure under

the given conditions. Mentioned modes differ mainly in
the radial wave field structure in the plasma region. The

94

decrease of the eigen wave frequency under the fixed
wavenumber value leads to the decrease of the scale
length of spatial wave field oscillations of the eigen
modes in radial direction. Each of these modes
essentially differs in the dependence of phase and group
velocities on the wavenumber.

The wvalue of the normalized direct current

(j=eJ_/(2mc’)) substantially affects the dipolar mode

dispersion. The dependence of the normalize frequency
4 on the normalized axial wavenumber x for different

normalized direct current values j is shown on the
Fig. 2.
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Fig. 2. The dependence of dimensionless frequency u

on the dimensionless wave number x . Numbers just
near the axes origin correspond to the solution numbers
in accordance to the Fig 1. Dash lines corresponds to
the j value 1.6, dot lines — j=2.0, solid lines —

j =2.4. Other parameters are the same as for the
Fig. 1

It is shown that different solutions of the dispersion
equation have different dependency type on the
normalized direct current value j . Thus, the increase j

value from j=1.6 up to j=2.4 leads to the increase

of the phase velocities of the first three solutions of the
dispersion equation (see subplots 1-3 on the Fig. 2). The
next two solutions have different dependence on the
considered parameter ;. The increase of the direct

current leads to the decrease of wave phase velocities
for the solutions 4 and 5 in the region of middle
wavenumbers (see subplots 4, 5 on the Fig. 2).

The influence of geometric parameters of the
waveguide structure on the dipolar wave dispersion was
studied as well. The influence of vacuum gap thickness
on the dipolar wave properties is presented on the fig. 3.
The value of the distance from cylindrical plasma layer
to the outer waveguide metal wall strongly influences
on the wave dispersion. The parameter 7 = R, / R, , that
characterizes this distance, has the main influence on
the dispersion in the range of small and moderate values
(17 <1.5). When parameter 77 grows up to rather large
values (7>2) it has negligible influence on the
dispersion. It was shown that the waves that correspond
to the third and fourth solutions of the dispersion
equation (see subplots 3 and 4 on the Fig. 3) greatly
react to the parameter 77 variation.
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Fig. 3. The dependence of dimensionless frequency u

on the dimensionless wave number x . Numbers just
near the axes origin correspond to the solution numbers

in accordance to the Fig 1. Dash lines corresponds to

the n=1.1, dot lines — n=1.5, solid lines— n=2.0.

Other parameters are the same as for the Fig. |

The influence of the effective electron collision
frequency v on the spatial attenuation coefficient

o =Im(k,)R, was also studied. It was obtained that the

increase of the effective collision rate value v leads to
the increase of the wave attenuation coefficient. It is
necessary to mention that collisions have different
influence on different solutions of the dispersion
equation (4). Thus, solutions of the dispersion equations
presented on the Fig. 1 have difference in value and in
direction of group velocities in different wavenumber
regions. As was obtained earlier in [6]
allv/w/(d pu/d x), so attenuation coefficient & has

the same sign as group velocity. It was obtained that the
third solution has rather wide range of wavenumbers

where attenuation coefficient is positive, so this solution
can be used for the gas discharge sustaining.

CONCLUSIONS

It was shown that five eigen dipolar waves can
propagate in the considered waveguide structure. It was
studied the influence of the value of direct current, the
effective collision frequency and geometric parameters
of waveguide system on the dispersion properties and
attenuation coefficient of each considered eigen waves.
It was shown the existence of the wave that can be used
for gas discharge sustaining.

REFERENCES

1. P.I. Markov, L.N. Onishchenko, G.V. Sotnikov //
Problems of Atomic Science and Technology. Series
«Plasma Physics» (8). 2002, Ne 5, p. 86.

2. A. Schulz, M. Walter, J. Feichtinger, E. Réauchle, and
U. Schumacher //  International ~ Workshop  on
Microwave Discharges: Fundamentals and
Applications, Greifswald, Germany. 2003, p. 231.

3.0. Leroy, P.Leprince, C. Boisse-Laporte //
International Workshop on Microwave Discharges:
Fundamentals and Applications, Zvenigorod, Russia.
2006, p. 137.

4. V.P. Olefir, A.E. Sporov // Problems of Atomic Science
and Technology. Series «Plasma Physicsy. 2011, p. 47.

5. J Margot-Chaker, M. Moisan, M. Chaker,
V.M.M. Glaude, P. Lauque, J. Paraszczak, and G. Sauvé
/I J. Appl. Phys. 1989, Ne 66, p. 4134.

6. I. Ghanashev, 1. Zhelyazkov // Phys. Plasmas (12).
1994, Ne 1, p. 3734.

Article received 20.10.12

COBCTBEHHBIE JIUNIOJbHBIE SJJEKTPOMATHUTHBIE BOJTHBI KOAKCUAJILHOM
IJIASMEHHO-METAJUIMYECKOM CTPYKTYPBI C ASUMYTAJIbHBIM MATHUTHBIM IIOJIEM

H.A. Azapenxos, B.I1. Onegup, A.E. Cnopos

HccnenoBanbl 0COOEHHOCTH COOCTBEHHBIX JHIONBHBIX JIEKTPOMATHUTHBIX BOJIH, PACTIPOCTPAHSIONIMXCS B KOAKCHATHBHOM
TUIa3MEHHO-META/UTMYECKOM BOJIHOBOZIE C HEOJIHOPOJIHBIM a3UMYTAIGHBIM MarHUTHBIM ToneM. PaccMoTpeHa 3aBHCHMOCTB
JIMCIIEPCUOHHBIX CBOMCTB, KOI((UIIMEHTA MPOCTPAHCTBEHHOIO 3aTyXaHHUs BOJHBI, PaMaIbHOIO PACIpEIesieHus IO BOJHBI,
(ha30BOI W TPYIIIOBOM CKOpOCTEil OT A(P(EKTHBHOM YacTOTHI CTOJKHOBEHHIA SJICKTPOHOB, OT BEJIMYMHBI MOCTOSHHOTO TOKA,
TIPOTEKAIOLIETO BJIOJb IICHTPAILHOTO TIPOBOJIHMKA, a TAkOKe OT TeOMETPUYECKUX IapamMeTpoB BOJIHOBOAA. VccienmoBaHa
3¢ hEKTHIBHOCTE YTIpaBIICHHUS AUCIICPCHCH 1 3aTyXaHUEM H3y4acMbIX BOJTH C MTOMOIIBIO YKA3aHHBIX TTApaMeTPOB.

BJACHI JUIIOJIbHI EJIEKTPOMATHITHI XBUJII KOAKCIAJIBHOI IIJIA3MOBO-METAJIEBOI
CTPYKTYPHU 3 ABUMYTAJIBHUM MATHITHHUM IIOJIEM

M.O. A3zapenkos, B.I1. Oneghip, O.€. Cnopos

JlocstipKeHO OCOOTMBOCTI BIIACHUX JUIIOJBHHX €IEKTPOMATHITHAX XBHIIb, ITI0 PO3MOBCIO/DKYFOTHCS B KOAKCIATIbHOM ILTa3MOBO-
METICBOMY XBIUICBOJl 3 HEOJHODIIHAM a3UMyTAIbHUM MArHITHUM TOJieM. PO3NISHYTO 3aJIeKHICTh  UCTIEPCIHHKIX
BIIACTUBOCTEH, KOe(IIli€HTa MPOCTOPOBOIO 3aracaHHsl XBWI, pPaliajIbHOTO PO3MOAUTY TOMs XBIUT, (ha30BOi Ta TIPYyHOBOI
TIBHIKOCTEH 3aJIeKHO Bill e(pEeKTUBHOI YaCTOTH 3ITKHEHb €JICKTPOHIB, BiJl 3HAYCHHSI CTAJIOTO SJIEKTPUYHOTO CTPYMY, IO TIPOTIKAE
Y3II0BK IICHTPATHHOTO TPOBITHMKA, Ta BiJl TGOMETPUYHHX IapaMeTpiB XBHJICBOMY. JIOCTipkeHO e(heKTHBHICTh YTIPaBIIiHHS
JIUCTIEPCIEIO Ta MPOCTOPOBHM 3aracaHHsM XBHITb, 1110 BUBYAFOTHCS, 34 IOTIOMOTOFO BKa3aHHX MapaMeTpiB.
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