# РАСПРОСТРАНЕНИЕ И РАССЕЯНИЕ ВОЛН

УДК 535.37.421

## ДИФРАКЦИЯ ВОЛН НА РЕШЁТКЕ, РАСПОЛОЖЕННОЙ НА ГРАНИЦЕ ГИРОМАГНИТНОЙ СРЕДЫ

А. В. Бровенко, П. Н. Мележик, А. Е. Поединчук, А. С. Трощило

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины, 12, ул. Ак. Проскуры, Харьков, 61085, Украина E-mail: sbornik@ire.kharkov.ua

Предложен новый метод решения задач дифракции электромагнитных волн на ленточных решётках, расположенных на границе гиротропных ферромагнитных сред. В основе этого метода лежит процедура аналитической регуляризации, использующая явное решение краевой задачи Римана – Гильберта с коэффициентом сопряжения, зависящим от частоты возбуждающей волны.

Разработаны численные алгоритмы и компьютерные программы, реализующие этот метод. Проведены исследования зависимости коэффициента отражения ленточной решётки с идеальной ферромагнитной средой от частоты возбуждающей волны. Установлен частотный диапазон, где имеет место явление полного отражения *E*-поляризованной плоской волны.

В длинноволновой области для амплитуд основных гармоник дифракционного спектра получены приближённые формулы. Установлен частотный диапазон, где они могут быть использованы. Ил. 5. Табл. 1. Библиогр.: 23 назв.

**Ключевые слова:** ленточная решётка, гиромагнитная среда, система парных сумматорных уравнений, метод аналитической регуляризации, дифракция волн.

В настоящее время актуальными являются исследования процессов распространения, дифракции и излучения электромагнитных волн при наличии границы раздела различных сред: магнетиков, ферромагнетиков, плазменноподобных и киральных сред, метаматериалов и др. [1-3]. Это обусловлено, с одной стороны, развитием технологий синтезирования новых материалов, обладающих в микроволновом диапазоне ранее неизвестными свойствами, а с другой - потребностями в разработке высокоотражающих и поглощающих электромагнитные волны периодических структур с управляемыми рассеивающими свойствами [4]. В связи с этим несомненный интерес представляют электродинамические структуры, образованные различного типа дифракционными решётками и слоями из магнитоактивных сред [5, 6]. Как было показано в работах [5, 6], наличие на границе раздела таких сред решётки приводит к появлению специфических резонансных эффектов. Кроме того, присущие магнитоактивным средам эффекты, как например, эффект невзаимности [7-9], эффект Фарадея [8, 9] и др. в присутствии периодической границы также могут проявляться необычным образом.

К настоящему времени дифракция волн на плоских металлических решетках как в свободном пространстве, так и с различного типа однородными изотропными средами, а также с анизотропными средами, когда между плоскостью решётки и границей соответствующей среды находится вакуумный или изотропный магнитодиэлектрический слой, исследована достаточно полно (см., например [10-12] и содержащуюся в них библиографию, а также [13, 14]). Однако следует отметить, что непосредственное применение традиционных методов [10-14] для решения задач дифракции волн на металлических решетках, расположенных на границах гиротропных сред, сталкивается с трудностями, обусловленными тем, что эти методы не учитывают поведение дифракционного поля в окрестности геометрических сингулярностей решеток, находящихся на границах раздела гиротропных сред [15].

Исследованию дифракции волн на ленточной металлической решётке, расположенной на границе среды, материальные параметры которой  $\varepsilon$  и  $\mu$  - в общем недиагональные тензоры, посвящена работа [16], где исходная краевая задача дифракции сведена к интегральному сингулярному уравнению. В результате применения к последнему квадратурных формул [17] была получена система линейных алгебраических уравнений первого рода, решение которой требует проведения дополнительных исследований, например, на устойчивость решения, на скорость роста числа обусловленности с увеличением размера соответствующих матриц и др. [18].

Цель настоящей работы - создание строгого, в математическом отношении, метода решения задач дифракции электромагнитных волн на бесконечно тонких, идеально проводящих ленточных решётках, расположенных на границах гиротропных ферромагнитных сред, и проведение исследований зависимости коэффициента отражения от частоты возбуждающей волны при вариациях магнитных, диэлектрических и геометрических параметров указанного типа открытых периодических структур.

**1. Постановка задачи.** Решётка, образованная бесконечно тонкими идеально проводя-

щими лентами параллельными оси 0z с периодом l и шириной щели d, расположена в плоскости x=0 (рис. 1).



Рис. 1. Поперечное сечение структуры

Полупространство  $\{(x, y): |y| < \infty, x < 0\}$ заполнено однородной гиромагнитной средой (ферритом) с диэлектрической проницаемостью  $\varepsilon$  ( $\varepsilon > 1$ ) и тензором магнитной проницаемости среды (постоянное магнитное поле  $\vec{H}_0$  полагается параллельным оси 0z)

$$\mu = \begin{vmatrix} \mu & i\mu_a & 0 \\ -i\mu_a & \mu & 0 \\ 0 & 0 & 1 \end{vmatrix},$$

где

$$\mu = 1 - \frac{\kappa_H \kappa_M}{\kappa^2 - \kappa_H^2}; \ \mu_a = \frac{\kappa \kappa_M}{\kappa^2 - \kappa_H^2}$$

а

$$\kappa_H = \frac{\omega_H l}{2\pi c}; \ \kappa_M = \frac{\omega_M l}{2\pi c}; \ \kappa = \frac{\omega l}{2\pi c}$$

Здесь  $\omega$ - частота падающего (первичного) поля,  $\omega_H = |\zeta| H_0$ - круговая частота ферромагнитного резонанса;  $\omega_M = 4\pi M |\zeta|$  - частота, характеризующая намагниченность до насыщения среды ( $\zeta$  - гиромагнитное отношение для электрона, см. [8, 9]); *с* - скорость света в вакууме.

В полупространстве  $\{(x, y): |y| < \infty, x < 0\}$ вдоль оси x (нормальное падение) распространяется плоская E -поляризованная электромагнитная волна вида  $e^{-ikx}$  ( $k = \frac{\omega}{c}$ , временная зависимость характеризуется множителем  $e^{-i\omega t}$ , который в дальнейшем опускается).

Требуется определить функции  $U_1(x, y)$ и  $U_2(x, y)$ , являющиеся решением следующей краевой задачи:

а)  $U_1(x, y), U_2(x, y)$  удовлетворяют уравнениям

$$\begin{cases} \mu \Delta U_{2}(x, y) + k^{2} \varepsilon (\mu^{2} - \mu_{a}^{2}) \times \\ \times U_{2}(x, y) = 0, \ x < 0 \\ \Delta U_{1}(x, y) + k^{2} U_{1}(x, y) = 0, \ x > 0 \\ 6) \ \text{условию периодичности} \end{cases}$$
(1)

$$U_j(x, y \pm l) = U_j(x, y), \ j = 1, 2;$$
 (2)

в) граничным условиям на лентах решётки

$$U_1(0, y) = -1, \quad U_2(0, y) = 0, |y+nl| > \frac{a}{2}$$
 (3)

и соответственно на щелях

$$\frac{\partial U_1(0, y)}{\partial x} - \varepsilon \left( \mu \frac{\partial U_2(0, y)}{\partial x} - i\mu_a \frac{\partial U_2(0, y)}{\partial y} \right) - ik = 0, \quad (4)$$
$$|y + nl| < \frac{d}{2}; n = 0, \pm 1, \pm 2, \dots;$$

г) условию Мейкснера [18, 19] на любом компакте в плоскости *XOY*;

$$U_{1}(x, y) = \sum_{(n)} a_{n} e^{i\Gamma_{n}x} e^{i\frac{2\pi n}{l}y}, x > 0$$

$$U_{2}(x, y) = \frac{\sum_{(n)} b_{n} e^{-i\Gamma_{n}(\lambda)x} e^{i\frac{2\pi n}{l}y}}{\varepsilon(\mu^{2} - \mu_{a}^{2})}, x < 0$$

$$k \operatorname{Re}\Gamma_{n} \ge 0, \quad \operatorname{Im}\Gamma_{n} \ge 0$$

$$k \operatorname{Re}\Gamma_{n}(\lambda) \ge 0, \quad \operatorname{Im}\Gamma_{n}(\lambda) \ge 0,$$
(5)

где

$$\Gamma_{n} = \sqrt{k^{2} - \left(\frac{2\pi n}{l}\right)^{2}}; \ \Gamma_{n}(\lambda) = \sqrt{k^{2}\lambda - \left(\frac{2\pi n}{l}\right)^{2}};$$
$$\lambda = \varepsilon \mu_{\perp}; \ \mu_{\perp} = \frac{\mu^{2} - \mu_{a}^{2}}{\mu} = \frac{\kappa^{2} - \kappa_{1}^{2}}{\kappa^{2} - \kappa_{0}^{2}};$$

 $\kappa_0 = \sqrt{\kappa_H (\kappa_H + \kappa_M)}$ -граничная частота магнитостатической волны и  $\kappa_1 = \kappa_H + \kappa_M$  - антирезонансная частота.

Функции  $U_1(x, y)$  и  $U_2(x, y)$  связаны с  $E_z(x, y)$  компонентой рассеянного поля следующим образом:

$$E_{z}(x, y) = \begin{cases} U_{1}(x, y), & x > 0, \\ \varepsilon \left(\mu^{2} - \mu_{a}^{2}\right) U_{2}(x, y), & x < 0 \end{cases}$$

Используя условие излучения (5) из уравнений Максвелла (Гельмгольца) получаем представления для компонент электромагнитного поля в виде:

$$E_{z}(x,y) = \begin{cases} e^{-ikx} + \sum_{n=-\infty}^{\infty} a_{n}e^{i\Gamma_{n}x}e^{\frac{2\pi}{l}iny}, \ x > 0, \\ \sum_{n=-\infty}^{\infty} b_{n}e^{-i\Gamma_{n}(\lambda)x}e^{\frac{2\pi}{l}iny}, \ x < 0, \end{cases}$$

$$H_{y}(x,y) = \begin{cases} e^{-ikx} -\frac{1}{k}\sum_{n=-\infty}^{\infty} a_{n}\Gamma_{n}e^{i\Gamma_{n}x}e^{\frac{2\pi}{l}iny}, \ x > 0, \\ \frac{1}{k\mu_{\perp}}\sum_{n=-\infty}^{\infty} b_{n}(\Gamma_{n}(\lambda) + \frac{2\pi i\tau}{l}n)e^{-i\Gamma_{n}(\lambda)x}e^{\frac{2\pi}{l}iny}, \ x < 0. \end{cases}$$
(6)

Здесь  $\tau = \frac{\kappa \kappa_M}{\kappa^2 - \kappa_0^2}$ , а  $a_n$  и  $b_n$  - подлежа-

щие определению неизвестные амплитуды дифракционных гармоник. 2. Сведение граничной задачи к системе линейных алгебраических уравнений второго рода. Удовлетворяя условиям (3)-(4) с учетом (6) получаем систему парных сумматорных уравнений вида

$$\begin{cases} \sum_{n=-\infty}^{\infty} b_n e^{\frac{2\pi}{l}iny} = 0, \quad |y| > \frac{d}{2} \\ \sum_{n=-\infty, n\neq 0}^{\infty} b_n |n| (\widehat{\Gamma}_n(\lambda) + \mu_{\perp} \widehat{\Gamma}_n + i\tau_n) e^{\frac{2\pi}{l}iny} = 2\kappa\mu_{\perp} - b_0 (\kappa\mu_{\perp} + \kappa\sqrt{\lambda}), \quad |y| < \frac{d}{2}, \end{cases}$$
(7)

где

$$\hat{\Gamma}_{n} = \sqrt{\frac{\kappa^{2}}{n^{2}} - 1}, \ \hat{\Gamma}_{n}(\lambda) = \sqrt{\lambda \frac{\kappa^{2}}{n^{2}} - 1}, \ \tau_{n} = \tau \operatorname{sign}(n).$$

Амплитуды дифракционных гармоник связаны между собой следующим образом:  $b_0 = 1 + a_0$ ;  $b_n = a_n$  при  $n \neq 0$ .

Проводя над (7) ряд элементарных преобразований [5, 6, 10-12, 18], получаем

$$\begin{cases} \sum_{n=1}^{+\infty} nb_n e^{in\varphi} - \frac{1+\mu_{\perp}-\tau}{1+\mu_{\perp}+\tau} \sum_{n=-1}^{-\infty} nb_n e^{in\varphi} = f\left(e^{i\varphi}\right), \ \left|\varphi\right| < \theta, \\ \sum_{n=-\infty, \ n\neq 0}^{\infty} nb_n e^{in\varphi} = 0, \ \left|\varphi\right| > \theta, \\ \sum_{n=-\infty, \ n\neq 0}^{\infty} (-1)^n b_n = -b_0, \ \varphi = \pi. \end{cases}$$

$$(8)$$

Здесь  $\varphi = \frac{2\pi}{l} y; \ \theta = \frac{\pi d}{l};$  а функция  $f(e^{i\varphi})$  представима в виде

$$f\left(e^{i\varphi}\right) = \kappa i b_0 \frac{\mu_{\perp} + \sqrt{\lambda}}{1 + \mu_{\perp} + \tau} - 2\kappa i \frac{\mu_{\perp}}{1 + \mu_{\perp} + \tau} + \sum_{n = -\infty, n \neq 0}^{\infty} \Lambda_n |n| b_n \delta_n e^{in\varphi} ,$$

$$\Lambda_n = \begin{cases} 1, \ n > 0, \\ \frac{1 + \mu_{\perp} - \tau}{1 + \mu_{\perp} + \tau}, \ n < 0; \\ \delta_n = 1 + i \frac{\widehat{\Gamma}_n(\lambda) + \mu_{\perp} \widehat{\Gamma}_n + i\tau_n}{1 + \mu_{\perp} + \tau_n} \end{cases}$$

Полученная система уравнений (8) представляет собой обобщение известных систем парных сумматорных уравнений, эквивалентных задачам дифракции волн на ленточных решетках,

где

расположенных в изотропной диэлектрической среде, и совпадает с ними, когда  $\kappa_M = 0$ .

Наличие в первом уравнении системы (8) 
$$1 + \mu_{\perp} - \tau$$
 на ностроя или построе

множителя  $\frac{1+\mu_{\perp}}{1+\mu_{\perp}+\tau}$  не позволяет для построе-

ния решения (8) воспользоваться классическим методом задачи Римана-Гильберта [10, 11], поскольку указанный выше множитель должен быть равен "-1", что возможно только, когда гиромагнитная среда отсутствует ( $\kappa_M = 0$ ).

Ниже предложен один из возможных вариантов модификации классического метода задачи Римана-Гильберта [10, 11]. Аналогично [5, 6, 10-12, 18] введём две функции комплексной переменной w:

$$B^{+}(w) = \sum_{n=1}^{\infty} nb_{n}w^{n}; B^{-}(w) = -\sum_{n=-1}^{\infty} nb_{n}w^{n}$$
 - ана-

литические соответственно внутри и вне круга|w| < 1.

Пусть  $\gamma_1$  - дуга окружности |w| = 1, соединяющая точки  $e^{-i\theta}$  и  $e^{i\theta}$ , проходящая через точку w = -1, а  $\gamma_2$  - дуга, которая дополняет  $\gamma_1$ до окружности. С помощью функций  $B^+(w)$ ,  $B^-(w)$  система (8) для  $w = \zeta = e^{i\varphi}$ представляется в следующей форме, стандартной для краевых задач в теории аналитических функций комплексного переменного [20]:

$$B^{+}(\zeta) - B^{-}(\zeta) = 0, \ \zeta \in \gamma_{1};$$
(9)

$$B^{+}(\zeta) + \frac{1+\mu_{\perp}-\tau}{1+\mu_{\perp}+\tau} B^{-}(\zeta) = f(\zeta), \ \zeta \in \gamma_{2}.$$
(10)

Выражение  $-\frac{1+\mu_{\perp}-\tau}{1+\mu_{\perp}+\tau}$  согласно [20] называется

коэффициентом сопряжения краевой задачи Римана (Римана-Гильберта) (9),(10).

Из (9) следует, что функция B(w), определенная следующим образом:

$$B(w) = \begin{cases} B^{+}(w), & |w| < 1, \\ B^{-}(w), & |w| > 1, \end{cases}$$

продолжается до функции аналитической в комплексной плоскости с разрезом вдоль дуги  $\gamma_2$ .

Причём 
$$B(w) = -\frac{b_{-1}}{w} + O\left(\frac{1}{w^2}\right)$$
, когда  $w \to \infty$ .

Таким образом, система уравнений (8) сведена к задаче о восстановлении функции B(w), аналитической вне дуги  $\gamma_2$  по её предельным значениям на этой дуге, удовлетворяющим условию (10).

Ограничимся рассмотрением случая, когда  $\frac{1+\mu_{\perp}-\tau}{1+\mu_{\perp}+\tau} > 0$ , который имеет место при следующих условиях на частотный параметр  $\kappa : \kappa < \kappa_{H}$ 

и  $\kappa_H < \kappa < \kappa_H + \frac{\kappa_M}{2}$ , а также когда  $\kappa > \kappa_1$ .

Как следует из работы [20], решение задачи Римана-Гильберта (10) может быть представлено в следующей форме:

$$B(z) = G(z) \left[ \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(t)dt}{G^+(t)(t-z)} + C \right], \quad (11)$$

где 
$$G(z) = (z - e^{i\theta})^{-1} \exp\left(\left(\frac{1}{2} - i\beta\right) \int_{\gamma_2} \frac{dt}{(t-z)}\right)$$
 -

каноническое решение в самом широком классе  $h_0$  (т. е. решение не ограничено на обоих концах дуги  $\gamma_2$ ; см. [20]) однородной задачи сопряжения, которая соответствует (10),  $\beta = \frac{1}{2\pi} \ln \frac{1+\mu_{\perp}-\tau}{1+\mu_{\perp}+\tau}$ ; *С* - подлежащая определению постоянная, а  $G^+(t)$  - предельное значение функции G(z) изнутри круга единичного радиуса с центром в нуле.

Отметим, что  $G^+(t)$  может быть представлена следующим образом:

$$G^{+}\left(e^{i\varphi}\right) = ie^{\pi\beta} \frac{\left(e^{i\varphi} - e^{-i\theta}\right)^{-\frac{1}{2}+i\beta}}{\left(e^{i\varphi} - e^{i\theta}\right)^{\frac{1}{2}+i\beta}}.$$
 (12)

Поведение функции  $G^+(e^{i\varphi})$  в окрестно-

сти точек  $e^{\pm i\theta}$  асимптотически совпадает с зависимостью соответствующих компонент дифракционного поля вблизи ребер лент решетки. Легко заметить, что при отсутствии гиромагнитной среды ( $\kappa_M = 0$ ) параметр  $\beta$  равен нулю и только в этой ситуации компоненты дифракционного поля могут иметь корневую особенность при приближении к ребрам лент решетки. В общем случае  $\beta \neq 0$  и, как следует из (12), компоненты поля сложным образом зависят от параметра  $\beta$ , а следовательно и от частоты возбуждающей волны.

Для функции G(z) справедливо представление

$$G(z) = \begin{cases} -\exp(2\beta\theta) \sum_{n=0}^{\infty} P_n(\beta,\theta) z^n, \ |z| < 1, \\ z^{-1} \sum_{n=0}^{\infty} P_n(-\beta,\theta) z^{-n}, \ |z| > 1, \end{cases}$$
(13)

где  $P_n(\beta, \theta)$ - полиномы Поллачека [21], удовлетворяющие рекуррентным соотношениям:

$$P_{0}(\beta,\theta) = 1; P_{1}(\beta,\theta) = \cos(\theta) + 2\beta \sin(\theta);$$

$$P_{n}(\beta,\theta)|_{n\geq 2} = = \left[ \left( 2 - \frac{1}{n} \right) \cos(\theta) + \frac{2}{n} \beta \sin(\theta) \right] P_{n-1}(\beta,\theta) - \left( 1 - \frac{1}{n} \right) P_{n-2}(\beta,\theta);$$

$$P_{-n}(\beta,\theta) = \exp(-2\beta\theta) P_{n-1}(-\beta,\theta).$$

Представление, аналогичное (13), повидимому, впервые было приведено в работе [15], где предложено обобщение метода задачи Римана-Гильберта [10, 11] для предельного случая

$$\frac{\kappa_M}{\kappa} \rightarrow 0$$

Нетрудно показать, что при  $\kappa_M = 0$  полиномы Поллачека переходят в полиномы Лежандра.

Представляя (11) в виде  $\frac{B(z)}{G(z)} = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(t)dt}{G^+(t)(t-z)} + C, \quad и \quad применяя$ 

формулы Сохоцкого – Племеля [20], а также учитывая, что  $G^{-}(e^{i\varphi}) = -e^{-2\pi\beta}G^{+}(e^{i\varphi})$ , в результате некоторых преобразований получаем представление

$$B^{+}\left(e^{i\varphi}\right) - B^{-}\left(e^{i\varphi}\right) = -$$

$$-\frac{\mu_{a}}{\left(\mu - \mu_{a}\right)\left(1 + \mu + \mu_{a}\right)}f'\left(e^{i\varphi}\right) + \qquad (14)$$

$$+\frac{F\left(e^{i\varphi}\right)}{\pi i}\int_{\gamma_{2}}\frac{f\left(t\right)dt}{G^{+}\left(t\right)\left(t - e^{i\varphi}\right)} + CF\left(e^{i\varphi}\right)$$

справедливое для всех  $\varphi \in [0, 2\pi]$ .

$$\begin{split} f'\!\left(e^{i\varphi}\right) &= \begin{cases} 0\,, \quad \theta < \left|\varphi\right| \leq \pi; \\ f\left(e^{i\varphi}\right), \quad \left|\varphi\right| < \theta, \end{cases} \\ F\left(e^{i\varphi}\right) &= \begin{cases} 0\,, \quad \theta < \left|\varphi\right| \leq \pi; \\ \frac{1+\mu_{\perp}}{1+\mu_{\perp}-\tau}G^{+}\left(e^{i\varphi}\right), \quad \left|\varphi\right| < \theta. \end{cases} \end{split}$$

Переходя в (14) к коэффициентам Фурье и используя (13), сводим функциональную систему уравнений (8) к системе линейных алгебраических уравнений вида

$$b_m = \sum_{n=-\infty}^{+\infty} M_{mn} b_n + w_m, \ m = 0, \pm 1, \pm 2, \dots, \ (15)$$

матричные элементы, которой можно представить как  $M_{mn} = A_{mn} \times F_n$ ,

где

$$F_{n} = 0.5 \begin{cases} |n| \frac{\kappa^{2} - \kappa_{0}^{2}}{(\kappa + \kappa_{1})(\kappa - \kappa_{H} - \kappa_{M}/2)} + \\ + \frac{\kappa - \kappa_{1}}{(\kappa - \kappa_{H} - \kappa_{M}/2)}(|n| + i\sqrt{\kappa^{2} - n^{2}}) + \\ + i\frac{\kappa + \kappa_{0}}{(\kappa + \kappa_{1})(\kappa - \kappa_{H} - \kappa_{M}/2)}R_{n} \end{cases};$$

$$R_n = \sqrt{\kappa^2 \varepsilon \frac{(\kappa^2 - \kappa_1^2)(\kappa - \kappa_0)}{\kappa + \kappa_0} - n^2 (\kappa - \kappa_0)^2};$$

а правая часть

$$w_m = -\kappa i \frac{\kappa - \kappa_1}{\kappa - \kappa_H - \kappa_M / 2} A_{m0}$$

Выражения *A<sub>mn</sub>* здесь определяются следующим образом:

$$A_{mn} = \begin{cases} \frac{1}{m} (P_{mn} + W_{mn}(\beta, \theta) - P_m(\beta, \theta) P_{on}(\theta) - P_m(\beta, \theta) W_{on}(\beta, \theta)), & m \neq 0\\ -(P_{\sigma n}(\theta) + e^{-2\beta\theta} R_{\sigma}(\beta, \theta) P_{on}(\theta)) - (W_n^{\sigma}(\beta, \theta) + e^{-2\beta\theta} R_{\sigma}(\beta, \theta) W_{on}(\beta, \theta)), & m = 0 \end{cases}$$

где

$$P_{mn} = -\frac{\kappa\kappa_M}{\left(\kappa - \kappa_1\right)\left(\kappa + \frac{\kappa_M}{2} + \kappa_H\right)} \begin{cases} \frac{d}{l}, & \text{при } m = n, \\ \frac{\sin \pi (m-n)d/l}{\pi (m-n)}, & \text{при } m \neq n; \end{cases}$$

$$\begin{split} P_{\sigma n}\left(\theta\right) &= -\frac{\kappa\kappa_{M}}{\left(\kappa-\kappa_{1}\right)\left(\kappa+\frac{\kappa_{M}}{2}+\kappa_{H}\right)} \begin{cases} \frac{d}{l} \frac{\cos\left(n\theta\right)}{n} - \frac{1}{\pi} \frac{\sin\left(n\theta\right)}{n^{2}}, & \text{при } n \neq 0; \\ 0, & \text{при } n = 0. \end{cases} \\ W_{mn}\left(\beta,\theta\right) &= \\ \\ &= \frac{\left(\kappa+\kappa_{1}\right)\left(\kappa-\kappa_{H}-\frac{\kappa_{M}}{2}\right)}{2\left(\kappa^{2}-\kappa_{1}\left(\kappa_{H}+\frac{\kappa_{M}}{2}\right)\right)} \begin{cases} 0, & m=n=-1, \\ e^{2\beta\theta} \frac{m+1}{m-n}\left(P_{m}\left(\beta,\theta\right)P_{n+1}\left(\beta,\theta\right)-P_{m+1}\left(\beta,\theta\right)P_{n}\left(\beta,\theta\right)\right), & \text{при } n \neq m u n \neq -1, \\ e^{2\beta\theta}P_{m}\left(\beta,\theta\right)-P_{m+1}\left(\beta,\theta\right), n=-1, \\ \sum_{s=0}^{2\beta\theta}P_{m}\left(\beta,\theta\right)-P_{m+1}\left(\beta,\theta\right), & \text{при } m=n:n\geq 0, \\ -\sum_{s=0}^{-n-1}v_{-n-s-1}\left(-\beta,\theta\right)P_{s+n+1}\left(\beta,\theta\right), & \text{при } m=n:n\leq -1; \end{cases} \\ R_{\sigma}\left(\beta,\theta\right) &= \sum_{n=-\infty,n\neq0}^{\infty} \frac{\left(-1\right)^{n}}{n}P_{n-1}\left(-\beta,\theta\right); \\ W_{n}^{\sigma}\left(\beta,\theta\right) &= \begin{bmatrix} -v_{1}\left(\beta,\theta\right)R_{\sigma}\left(\beta,\theta\right)+e^{2\beta\theta}R_{\sigma}\left(-\beta,\theta\right), & \text{при } n=0, \end{bmatrix} \end{cases}$$

$$= \frac{(\kappa + \kappa_{1})(\kappa - \kappa_{H} - \frac{\kappa_{M}}{2})}{2(\kappa^{2} - \kappa_{1}(\kappa_{H} + \frac{\kappa_{M}}{2}))} \begin{cases} -\nu_{n+1}(\beta, \theta)R_{\sigma}(\beta, \theta) + \frac{1}{n}(P_{n}(\beta, \theta) - e^{2\beta\theta}P_{n-1}(\beta, \theta)), & \text{при } n > 0, \\ (\cos(\theta) - 2\beta\sin(\theta) - e^{-2\beta\theta}) + R_{\sigma}(\beta, \theta)(e^{-2\beta\theta}\cos(\theta) + 2\beta e^{-2\beta\theta}\sin(\theta) - 1), & \text{при } n = -1, \\ -e^{-2\beta\theta}\nu_{-n}(-\beta, \theta)R_{\sigma}(\beta, \theta) - \frac{1}{n}(P_{-n}(-\beta, \theta) - e^{-2\beta\theta}P_{-n-1}(-\beta, \theta)), & \text{при } n < -1. \end{cases}$$

Коэффициенты  $v_n(\beta, \theta)$  здесь выражаются через полиномы Поллачека по следующим рекуррентным формулам:

$$v_{0} = 1; v_{1}(\beta, \theta) = -\cos(\theta) + 2\beta\sin(\theta);$$
  

$$v_{n}(\beta, \theta) = P_{n}(\beta, \theta) - -2\cos(\theta)P_{n-1}(\beta, \theta) + P_{n-2}(\beta, \theta)$$

при  $n \ge 2$ .

Легко видеть, что при  $\kappa_M = 0$  величины  $P_{mn}$  и  $P_{\sigma n}(\theta)$  обращаются в нуль, что свойственно изотропным средам. Кроме того, ими можно пренебречь при  $\frac{\kappa_M}{\kappa} <<1$ , что было сделано в [15]. Однако при  $\frac{\kappa_M}{\kappa} \ge 1$ , предложенный в работе

[15], метод дает существенные погрешности, поскольку не учитывает поведение компонент дифракционного поля в окрестности геометрических сингулярностей решетки.

Предлагаемый в этой работе метод, в отличие от [15], лишен указанных выше ограниче-

ний. Анализ матричных элементов  $M_{mn}$  показал, что ряд  $\sum_{m,n=-\infty}^{+\infty} |M_{mn}|$  сходится и, следовательно, матрица  $||M_{mn}||_{m,n=-\infty}^{+\infty}$  задаёт в пространстве последовательностей  $l_2$  ядерный оператор, а система (15) является бесконечной системой линейных алгебраических уравнений второго рода.

Согласно альтернативе Фредгольма [22] и теореме единственности задачи дифракции [19] получаем, что решение системы (15) существует единственно и может быть получено методом редукции с любой наперёд заданной точностью.

Таким образом, исходная краевая задача (1)-(5) эквивалентным образом сведена к системе линейных алгебраических уравнений (15).

Система уравнений (15) в длинноволновой области допускает приближенное аналитическое решение методом последовательных приближений, что позволяет получить приближенные представления для основных гармоник, когда  $\kappa < 1$ :

$$a_{0} \approx \frac{A_{00}i\left(\kappa(\kappa^{2}-\kappa_{1}^{2})-(\kappa+\kappa_{0})R_{0}\right)+2(\kappa+\kappa_{1})(\kappa-\kappa_{H}-\frac{\kappa_{M}}{2})}{A_{00}i\left(\kappa(\kappa^{2}-\kappa_{1}^{2})+(\kappa+\kappa_{0})R_{0}\right)-2(\kappa+\kappa_{1})(\kappa-\kappa_{H}-\frac{\kappa_{M}}{2})};$$

$$b_{0} \approx \frac{2\kappa i A_{00}(\kappa^{2}-\kappa_{1}^{2})}{A_{00}i\left(\kappa(\kappa^{2}-\kappa_{1}^{2})+(\kappa+\kappa_{0})R_{0}\right)-2(\kappa+\kappa_{1})(\kappa-\kappa_{H}-\frac{\kappa_{M}}{2})}.$$
(16)

Отметим, что если частоту  $\kappa_M$  положить равной нулю, то выражения (16) перейдут в известные формулы Ламба [12] для решётки, находящейся на границе диэлектрического полупространства.

3. Анализ численных результатов. На основе предлагаемого здесь метода были разработаны численные алгоритмы и компьютерные программы, позволяющие рассчитывать с любой наперед заданной точностью характеристики дифракционного поля электродинамической структуры – плоская ленточная решетка с ферромагнитной средой.

Например, для расчета коэффициента отражения  $a_0$  (см. рис. 2, 3) с относительной погрешностью, составляющей 0,1%, достаточно выбрать порядок редукции системы линейных алгебраических уравнений (СЛАУ) (15)  $N = \left[ \kappa \sqrt{|\varepsilon \mu_{\perp}|} \right] + 5$ ,

где через ... обозначена целая часть числа.

Численные эксперименты проводились для двух частотных диапазонов:

$$0 < \kappa < \kappa_{H} + \frac{\kappa_{M}}{2};$$
  
$$\kappa > \kappa_{H} + \kappa_{M}.$$

Характеристики феррита были выбраны согласно [23], а именно: диэлектрическая проницаемость  $\varepsilon = 5, 5$ , нормированная частота ферромагнитного резонанса  $\kappa_H = 0,31$ , и нормированная частота намагниченности феррита  $\kappa_M = 0,27$ . Предполагалось, что потери в феррите отсутствуют. При выбранных параметрах феррита для первого частотного диапазона  $(0 < \kappa < \kappa_H + \frac{\kappa_M}{2})$  в зоне отражения (x > 0)только нулевая пространственная гармоника является распространяющейся (см. (5)).

Для выбранных параметров феррита  $\kappa_H$ ,  $\kappa_M$  и  $\varepsilon$  при d/l = 0, 6 в диапазоне частот  $0 < \kappa < 0, 2$  модуль коэффициента отражения  $|a_0|$  с графической точностью совпадает с модулем коэффициента отражения для решетки на диэлектрическом полупространстве (рис. 2). При дальнейшем увеличении коэффициента заполнения решетки  $(d/l \rightarrow 1)$  электромагнитное поле начинает активно проникать в ферритовое полупространство даже при небольших значениях частотного параметра  $\kappa$ . Интересно отметить, что в случае отсутствия решетки (d/l = 1) коэффициент отражения для ферритового полупространства обращается в ноль при некотором значении нор-

мированной частоты  $\tilde{\kappa} = \sqrt{\kappa_1 \left(\kappa_H - \frac{\kappa_M}{\varepsilon - 1}\right)}$ , являющемся корнем уравнения  $\mu_\perp - \sqrt{\varepsilon \mu_\perp} = 0$ .



Рис. 2. Зависимости модулей коэффициентов отражения  $|a_0|$ и  $|\tilde{a}_0|$  от частотного параметра  $\kappa$  при различных значениях коэффициента заполнения d/l для  $0 < \kappa < \kappa_H + \frac{\kappa_M}{2}$ . Расчеты проводились для  $\varepsilon = 5,5$  и  $\kappa_H = 0,31; \kappa_M = 0,27$ 

Поэтому при  $d/l \rightarrow 1$  зависимость модуля коэффициента отражения имеет ярко выраженный минимум в окрестности этого значения частоты.

Как показали численные эксперименты, в частотном диапазоне  $0, 2 < \kappa < \kappa_0 = 0, 4194$ зависимость модуля коэффициента отражения имеет слабо выраженные характерные «изломы» на дискретном множестве частот (аномалии типа Вуда). Эти значения частот могут быть вычислены по формуле

$$\kappa_n^- = \sqrt{\frac{\varepsilon \kappa_1^2 + n^2 - \sqrt{\left(\varepsilon \kappa_1^2 + n^2\right)^2 - 4\varepsilon n^2 \kappa_0^2}}{2\varepsilon}}$$

где *n* = 1; 2; 3;....

Как легко видеть, при  $n \to \infty$  эти частоты стремятся к граничной частоте магнитостатической волны ферритового полупространства

$$\kappa_0 = \sqrt{\kappa_H (\kappa_H + \kappa_M)} = 0,4194$$
.  
В диапазоне частот

 $\kappa_0 < \kappa < \kappa_H + \frac{\kappa_M}{2} = 0,445$  имеет место полное

отражение *E*-поляризованной электромагнитной волны (вектор напряженности электрического поля параллелен лентам решетки) как от решетки с ферритом, так и от ферритового полупространства (см. рис. 2). Это объясняется тем, что при

 $\kappa_0 < \kappa < \kappa_H + \frac{\kappa_M}{2}$ эффективная магнитная про-

ницаемость феррита  $\mu_{\perp}$  принимает отрицательные значения ( $\mu_{\perp} < 0$ ) и, следовательно, даже в отсутствии потерь электромагнитное поле в ферромагнитной среде экспоненциально убывает от ее границы.

Для поведения модуля коэффициента отражения в частотном диапазоне  $\kappa > \kappa_M + \kappa_H$  характерны следующие особенности. Существуют два типа значений частотного параметра  $\kappa$ , при которых зависимость модуля коэффициента отражения  $|a_0|$  претерпевает ярко выраженные «изломы» (аномалии Вуда). Им соответствуют следующие значения частотного параметра:

$$\kappa_n^+ = \sqrt{\frac{\varepsilon \kappa_1^2 + n^2 + \sqrt{\left(\varepsilon \kappa_1^2 + n^2\right)^2 - 4\varepsilon n^2 \kappa_0^2}}{2\varepsilon}} \qquad и$$
  

$$\kappa_n^0 = n, \text{ где } n = 1, 2, 3, \dots$$

Причем значения  $\kappa = \kappa_n^+$  зависят от параметров ферромагнитной среды, а  $\kappa = \kappa_n^0$ ( $n \ge 1$ ) определяются только решеткой (напомним, что рассматривается нормальное падение возбуждающей волны).

Легко показать, что при  $n \to \infty$  значение частотного параметра  $\kappa_n^+$  стремится к значению |n|

 $\frac{|n|}{\sqrt{\varepsilon}}$ , которое соответствует аномалии Вуда для

решетки, расположенной на изотропном полупространстве с диэлектрической проницаемостью  $\varepsilon$ . Кроме того, в диапазоне частот  $\kappa_H + \kappa_M < \kappa < \kappa_1^+$  модуль коэффициента отражения  $|a_0|$  имеет локальный минимум, значение которого уменьшается с увеличением коэффициента заполнения решетки (см. рис. 3). Интересно также то, что с увеличением параметра  $d/l(d/l \rightarrow 1)$  значения модуля коэффициента отражения, отвечающие указанному выше минимуму, располагаются на линии, характеризующей зависимость модуля коэффициента отражения от ферритового полупространства (см. рис. 3).



Рис. 3. Зависимости модулей коэффициентов отражения  $|a_0|$ и  $|\tilde{a}_0|$  от частотного параметра  $\kappa$  при различных значениях коэффициента заполнения d/l для  $\kappa_H + \kappa_M < \kappa$ . Расчеты проводились для  $\varepsilon = 5,5$  и  $\kappa_H = 0,31; \kappa_M = 0,27$ 

Из рис. 3, что в окрестности частоты  $\kappa = \kappa_1^+$  поведение коэффициента отражения  $a_0$  имеет резонансный характер, что обусловлено возникновением в ферритовом полупространстве высших распространяющихся пространственных гармоник при  $\kappa > \kappa_1^+$ . При дальнейшем увеличении  $\kappa(\kappa >> 1)$  значения  $|a_0|$  стремятся к коэффициенту отражения для решетки, расположенной на изотропном диэлектрическом полупространстве.

Для практических приложений представляет интерес выяснение границы применимости приближенного представления для коэффициента отражения  $a_0$  и (16). На рис. 4 приведены сравнения зависимостей  $|a_0|$  от нормированной частоты, полученных из системы уравнений (15) и приближенной формулы (16). Из рис. 4 видно, что аномалии Вуда приближенной формулой не описываются. Графическое совпадение для «точных» и «приближенных» кривых имеет место в диапазоне частот  $0 < \kappa < 0,15$ . Действительно, как видно из таблицы, расхождение между точным и приближенным значениями модуля коэффициента отражения составляет при  $\kappa = 0,15 - 1,14\%$ , при  $\kappa = 0,2$  уже 3,1%, а при  $\kappa = 0,3 - 11\%$ .

Таблица



Рис. 4. Графики расчётов модуля коэффициента отражения по 1 - «точным» и 2 - «приближённым» формулам

| К    | $ a_0 $ - точное | <i>a</i> <sub>0</sub>   - приближенное |
|------|------------------|----------------------------------------|
| 0,01 | 0,999183         | 0,999183                               |
| 0,02 | 0,996686         | 0,99669                                |
| 0,03 | 0,992458         | 0,992479                               |
| 0,04 | 0,98647          | 0,986539                               |
| 0,05 | 0,978719         | 0,978887                               |
| 0,06 | 0,969222         | 0,96957                                |
| 0,07 | 0,958022         | 0,958664                               |
| 0,08 | 0,945181         | 0,946265                               |
| 0,09 | 0,930782         | 0,932492                               |
| 0,1  | 0,914918         | 0,917478                               |
| 0,11 | 0,897696         | 0,901364                               |
| 0,12 | 0,879228         | 0,884297                               |
| 0,13 | 0,859625         | 0,866423                               |
| 0,14 | 0,838999         | 0,847883                               |
| 0,15 | 0,817452         | 0,828812                               |
| 0,16 | 0,795073         | 0,809333                               |
| 0,17 | 0,771938         | 0,789556                               |
| 0,18 | 0,748097         | 0,769579                               |
| 0,19 | 0,723574         | 0,749483                               |
| 0,2  | 0,698356         | 0,729336                               |
| 0,25 | 0,555284         | 0,629207                               |
| 0.3  | 0.41671          | 0.530131                               |

Результаты, полученные при проведении исследований коэффициента отражения в одноволновом диапазоне ( $\kappa < 1$ ), дают полную информацию о дифракционном поле в дальней зоне от решетки, т. е. при  $\frac{|x|}{l}\kappa >> 1$ . Тем не менее, для различных приложений несомненный интерес представляет структура дифракционного поля в ближней зоне ( $\frac{|x|}{l}\kappa \square 1$ ) решетки, расположенной на границе ферромагнитной среды (идеального феррита). Одним из возможных способов описания структуры дифракционного поля является изображение линий равных амплитуд и равных фаз компонент электромагнитного поля. На рис. 5 приведены распределения линий равных амплитуд  $E_z$ -компоненты ( $|E_z(x, y)|$ = const) напря-

женности электрического поля при резонансных значениях частотного параметра  $\kappa$ . Из рис. 4 видно, что при  $\kappa = 0,4018$  модуль коэффициента отражения  $|a_0|$ имеет ярко выраженный минимум. Структура поля при этом значении частотного параметра приведена на рис 5,а.



Рис. 5. Распределение линий равных амплитуд  $|E_z(x, y)|$ = const при различных значениях частотных и геометрических параметров: a)  $\kappa_M = 0,27$ ;  $\kappa_H = 0,31$ ;  $\varepsilon = 5,5$ ; d/l = 0,8;  $\kappa = 0,4018$ ; б)  $\kappa_M = 0,27$ ;  $\varepsilon = 5,5$ ;  $\kappa_H = 0,31$ ; d/l = 0,9;  $\kappa = 0,6195$ 

Интересно то, что, несмотря на нормальное падение на решетку с ферромагнитной средой возбуждающей волны  $E_z \square e^{-ikx}$ , линии равных амплитуд дифракционного поля имеют и притом ярко выраженную асимметрию. Этот эффект обусловлен невзаимностью ферромагнитной среды.

На рис. 5,6 приведены линии  $|E_z(x, y)| = \text{const} для одного из резонансов отра$  $жения в диапазоне <math>\kappa > \kappa_H + \kappa_M$  (см. рис. 3). Видно (рис. 5,6), что в этом случае дифракционное поле локализовано в окрестности границы ферромагнитной среды. **Выводы.** Таким образом, предложен метод решения задач дифракции *E*-поляризованных электромагнитных волн на ленточных решётках, расположенных на границе гиротропных ферромагнитных сред.

В основе этого метода лежит процедура аналитической регуляризации, использующая явное решение краевой задачи Римана-Гильберта с коэффициентом сопряжения, зависящим от частоты возбуждающей волны.

В случае *Н*-поляризации рассматриваемая электродинамическая задача эквивалентна задаче дифракции плоской волны на ленточной решетке, расположенной на границе диэлектрического полупространства. При рассмотрении указанной задачи используется классическая процедура метода задачи Римана-Гильберта [10, 11].

Разработаны численные алгоритмы и компьютерные программы, реализующие этот метод. Проведены исследования зависимости коэффициента отражения ленточной решётки с идеальной ферромагнитной средой. Установлен частотный диапазон, где имеет место явление полного отражения *E*-поляризованной плоской волны.

Получены приближённые формулы для расчёта амплитуд основных пространственных гармоник дифракционного поля. Установлены границы частотного диапазона, где погрешность этих формул составляет около 1%.

В заключение отметим, что предлагаемый здесь метод исследования задач дифракции плоских волн на решетках, расположенных на границах анизотропных (гиротропных) сред, несложно обобщить на случаи, когда падение плоских волн - наклонное (произвольное).

- Бабушкин А. В., Бучельников В. Д., Бычков И. В. Отражение электромагнитных волн от поверхности феррита кубической симметрии // Физика твердого тела. - 2002. - <u>44</u>, вып.12. - С.2183-2188.
- Вашковский А. В., Локк Э. Г. Поверхностные магнитостатические волны в структуре феррит-диэлектрик, окружённой полупространством с отрицательной диэлектрической проницаемостью // Радиотехника и электроника. -2002. - <u>1</u>. - С.97-102.
- Вашковский А. В., Локк Э. Г. Обратные поверхностные электромагнитные волны в композитных структурах, использующих ферриты // Радиотехника и электроника. -2003. - <u>48</u>. - С.169-176.
- Масалов С. А., Рыжак А. В., Сухаревский О. И., Шкиль В. М. Физические основы диапазонных технологий типа «Стелс».
   - Санкт-Петербург: ВИКУ им. Можайского. - 1999. - 163 с.
- Бровенко А. В., Мележик П. Н., Поединчук А. Е. Дифракция плоской электромагнитной волны на металлической решётке с магнитоактивной плазмой // Известия вузов. Радиофизика. - 2004. - <u>XLVII</u>, №8. - С.638-649.
- Brovenko A., Melezhik P., Poyedinchuk A., Yashina N. and Granet G. Surface Resonances of metal stripe Grating on the Plane boundary of metamaterial // Progress in Electromagnetic Research. - 2006. - N63. - P.209-222.
- Гинзбург В. Л. Распространение электромагнитных волн в плазме. - М.: Наука, 1967. - 683 с.

- Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. -М.: Физматгиз, 1994. - 464 с.
- 9. Виноградова М. Б., Руденко О. В., Сухоруков А. П. Теория волн. М.: Наука, 1990. 433 с.
- Агранович З. С., Марченко В. А., Шестопалов В. П. Дифракция электромагнитных волн на плоских металлических решетках // Журн. техн. физики. - 1962. - <u>32</u>, №4. -С.381-394.
- Шестопалов В. П., Литвиненко Л. Н., Масалов С. А., Сологуб В. Г. Дифракция волн на решётках. - Харьков: Издво Харьк. ун-та, 1973. - 278 с.
- Шестопалов В. П., Кириленко А. А., Масалов С. А., Сиренко Ю. К. Дифракционные решётки. - Киев: Наук. думка, 1986. - 232 с. - (Резонансное рассеяние волн: в 2-х т., Т.1).
- Абдулкадыров В. А., Гестрина Г. Н. Взаимодействие электромагнитной волны с анизотропной диэлектрической подложкой при наличии периодических экранов // Радиофизика и электроника. - Харьков: Ин-т радиофизики и электрон. НАН Украины. - 2004. -9, №1. - С.185-90.
- Абдулкадыров В. А., Гестрина Г. Н. Отражательные особенности системы периодических экранов с гиротропным заполнением // Электромагнитные волны и электрон. системы. 2004. 9, №3-4. С.52-58.
   Хорошун В. В. Дифракция плоских электромагнитных
- Хорошун В. В. Дифракция плоских электромагнитных волн на металлической решётке с гиромагнитной средой // Радиотехника. - 1967. - Вып.4. - С.20-25.
- Gandel Yu. V., Khoroshun V. V. The vortex Lattice Method in the electromagnetic wave Diffraction on the Method grating with gyrotropic Layer // International Conference on Mathematical methods in electromagnetic theory MMET 2000, Kharkov, Ukraine, September 12-15. - P.578-580.
- Белоцерковский С. М., Лифанов И. К. Численные методы в сингулярных интегральных уравнениях. - М.: Наука, 1985. -256 с.
- Шестопалов В. П., Тучкин Ю. А., Поединчук А. Е., Сиренко Ю. К. Новые методы решения прямых и обратных задач теории дифракции. Аналитическая регуляризация краевых задач электродинамики. - Харьков: Основа, 1997. - 285 с.
- Хёнл Х., Мауэ А., Вестпфаль К. Теория дифракции. М.: Мир, 1964. - 428 с.
- Мусхелишвили Н. И. Сингулярные интегральные уравнения. - М.: Физматгиз, 1962. - 599 с.
- 21. *Сегё Г.* Ортогональные многочлены. М.: Физматгиз, 1962. 500 с.
- Канторович Л. В., Акилов Г. П. Функциональный анализ. -М.: Наука, 1984. - 750 с.
- Елисеева С. В., Семенцов Д. И. Спектр собственных электромагнитных волн периодической структуры ферромагнетик-полупроводник // Журн. техн. физики. - 2005. - <u>75</u>, вып.7. - С.106-11.

## THE WAVE DIFFRACTION BY A GRATING ATTACHED TO HYROMAGNETIC MEDIUM BOUNDARY

#### A. V. Brovenko, P. N. Melezhik, A. Ye. Poyedinchuk, A. S. Troshchylo

A new method is suggested for solving the problem of electromagnetic wave diffraction by a strip grating placed at the boundary of a hyrotropic ferromagnetic medium. The method is based on the analytical regularization procedure and uses explicit solution of the Riemann-Hilbert boundary value problem with the conjugation coefficient depending on the excitation wave frequency.

Numerical algorithms and calculating programs realizing the method have been designed. The reflection coefficient of a strip grating attached to an ideal ferromagnetic medium is studied as a function of the excitation wave frequency. The frequency region of the total reflection of an *E*-polarized plane wave has been found. Long-wavelength approximation formulas describing the principal harmonics of diffraction spectrum have been obtained. The frequency range of their application is shown.

**Key words:** strip grating, hyromagnetic medium, system of dual series equations, analytical regularization technique, wave diffraction.

### ДИФРАКЦІЯ ХВИЛЬ НА ГРАТЦІ, ЩО РОЗТАШОВАНА НА МЕЖІ ГІРОМАГНІТНОГО СЕРЕДОВИЩА

#### А. В. Бровенко, П. М. Мележик, А. Ю. Поєдинчук, О. С. Трощило

Запропоновано новий метод розв'язання задач дифракції електромагнітних хвиль на стрічкових гратках, що розташовані на межі гіротропних феромагнітних середовищ. Основою цього методу є процедура аналітичної регуляризації, що використовує явний розв'язок граничної задачі РіманаГільберта з коефіцієнтом спряження, який залежить від частоти збуджуючої хвилі.

Розроблено чисельні алгоритми та комп'ютерні програми, що реалізують цей метод. Проведено дослідження залежності коефіцієнту відбиття стрічкової гратки з ідеальним феромагнітним середовищем від частоти збуджуючої хвилі. Встановлено той частотний діапазон, де має місце явище повного відбиття *E*-поляризованої плоскої хвилі.

У довгохвильовій області для амплітуд основних гармонік дифракційного спектру одержано наближені формули. Встановлено частотний діапазон, де вони можуть бути застосовані.

Ключові слова: стрічкові гратки, гіромагнітне середовище, система парних сумарних рівнянь, метод аналітичної регуляризації, дифракція хвиль.

Рукопись поступила 22 июня 2007 г.