УДК 622.2:536.21

НЕЛИНЕЙНЫЕ МОДЕЛИ ТЕПЛОФИЗИКИ ГЕОТЕХНОСФЕРЫ

к.ф.-м.н. Венгеров И.Р. (ДонФТИ им. А.А. Галкина НАН Украины)

Стисло розглянуті нелінійні математичні моделі процесів переносу імпульсу, маси та тепла в гірничих масивах та виробітках шахт, рудників та підземних споруд. Дана класифікація моделей, сформульовані базисні задачі розвитку парадигми. Запропонований новий метод розв'язання крайових задач.

NONLINEAR MODELS OF TEPLOPHISICKS OF GEOTECHNOSFERA

Vengerov I.R.

Nonlinear mathematical models of the momentum, mass and heat transfer processes in mining massifs and excavations of mines, pits and underground constructions. A model classification is done and main problems of the paradigm development are formulated. A novel method of the boundary value problem solution is proposed.

1. Введение

В геотехносферу входят [1]: шахты, рудники, подземные сооружения производственно-складского назначения, геотехнологические и пластовые системы. Математическое моделирование процессов переноса импульса, массы и тепла обычно осуществляется для двух обобщенных объектов геотехносферы – горных массивов и выработок.

Модели переноса импульса – движение газов, жидкостей и их композиций (флюидов) в угольных и породных пластах, в выработанных пространствах, в геотехнологических и пластовых системах базируются, в основном, на нелинейных уравнениях теории фильтрации. Нелинейны и уравнения движения газовоздушных смесей в горных выработках [2-6].

Модели массопереноса используют уравнения диффузии: твердотельной, конвективной и турбулентной. Для большинства технологических и аварийных режимов эти уравнения также нелинейны.

Теплоперенос в горных массивах моделируется нелинейными уравнениями при наличии в них фазовых переходов влаги или высокотемпературных процессов (подземных пожарах) [4, 6]. Все модели нелинейного переноса базируются на параболических или гиперболических уравнениях в частных производных, преимущественно одномерных [7].

Нелинейные модели теплофизики геотехносферы репрезентативно представлены моделями шахтной теплофизики [2-7]. В качестве характерных можно указать модели: теплопереноса при пожарах в подземных сооружениях [8]; теплового режима в подземных хранилищах радиоактивных отходов [9]; теплового режима нефтегазовых скважин и трубопроводов [10-12]; термической обработки нефтяных пластов и движения нефти в них [13-16]; геотехнологических процессов [17-18]; бурения скважин термическими и термохимическими методами [19-20]; замораживания горных пород и их термического разрушения [21-22].

Математические модели позволяют систематизировать данные наблюдений, измерений и экспериментов, прогнозировать ход технологических и аварийных режимов, разрабатывать и проектировать новую технику и технологию, что делает совершенствование и развитие методов математического моделирования актуальной задачей исследования.

2. Модели переноса в массивах

2.1. Перенос импульса осуществляется путем фильтрации флюидов в пористых и трещиновато-пористых средах [2]. Различают однородные и изотропные системы и неоднородные (анизотропные, слоисто-неоднородные, градиентные, градиентно-слоистые) и режимы фильтрации: жесткий, упругий (пьезопроводность), ламинарный, турбулентный. Основные уравнения движения газов в пористых средах были получены Л.С. Лейбензоном [23], а уравнения движения метана в угольных пластах – Р.М. Кричевским [24, 25]. Анализ представительного массива работ показывает, что подавляющее большинство из них обобщается двумя уравнениями, полученными автором и названные им уравнениями Лейбензона – Кричевского (УЛК).

В случае изотермической фильтрации газа УЛК имеет вид:

$$\left[m(P, x_i, t) + P \frac{\partial m}{\partial P} + \frac{abRT}{(1+bP)^2} \right] \frac{\partial P}{\partial t} =$$

= $\frac{\partial}{\partial x_i} \left[\frac{K_i(P, x_i, t)}{\mu(P)} P \frac{\partial P}{\partial x_i} \right] + \beta W_2(x_i, t) - P \frac{\partial m}{\partial t},$ (1)

Для политропической фильтрации:

$$\left[\frac{m(P,x_{i},t)}{n}P^{(1-n)/n} + P^{1/n}\frac{\partial m}{\partial P} + \frac{\beta ab}{\left(1+bP\right)^{2}}\right]\frac{\partial P}{\partial t} =$$
$$= \frac{\partial}{\partial x_{i}}\left[\frac{K_{i}\left(P,x_{i},t\right)}{\mu(P)}P^{1/n}\frac{\partial P}{\partial x_{i}}\right] + \beta W_{2}\left(x_{i},t\right) - P^{1/n}\frac{\partial m}{\partial t}, \qquad (2),$$

где – P=P(x_i, t) – давление газа; t – время; x_i – декартовы координаты (i =1, 2, 3); m (P, x_i, t) – пористость пласта; a, b – постоянные Ленгмюра; T – абсолютная температура; K_i (P, x_i, t) – коэффициент проницаемости; μ (P) – вязкость газа; β , n – постоянные; W₂ (x_i, t) – линейная функция плотности источников (стоков). Последние члены правых частей (1) и (2) – нелинейные источники (эффективные).

В [2] показано, что из (1) и (2) можно получить, как частные случаи, большое число уравнений движения газа. Для стационарной неоднородной среды с $m = m(x_i)$, $K_i = K_i(x_i)$, уравнения (1), (2) с помощью подстановок (перехода от P (x_i , t) к другим функциям) можно привести либо к «t-нелинейному» виду:

$$A(F, x_i)\frac{\partial F}{\partial t} = \frac{\partial}{\partial x_i} \left[K_i(x_i)\frac{\partial F}{\partial x_i} \right],$$
(3)

либо к «х-нелинейному» виду:

$$\frac{\partial V}{\partial t} = \frac{\partial}{\partial x_i} \left[\frac{K_i(x_i)}{\mu} B(V) \frac{\partial V}{\partial x_i} \right],\tag{4}$$

в которых соответственно:

$$F(P) = \int P^{1/n} dP, \quad P = g(F), A(F, x_i) = \mu \left[\frac{m(x_i)}{ng(F)} + \frac{\beta ab}{(1+bg)^2 g^{1/n}} \right], \quad (5)$$

$$V = V (P, x_{i}, t), P = G(V), \frac{\partial V}{\partial t} = \left[\frac{m(x_{i})}{n}P^{(1-n)/n} + \frac{\beta ab}{(1+bP)^{2}}\right]\frac{\partial P}{\partial t},$$
$$B(V) = G^{-1/n}(V)\frac{\partial G}{\partial V}.$$
(6)

2.2. Перенос массы в массивах обобщается уравнениями [2]:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x_i} \left[D_i \left(C, x_i, t \right) \frac{\partial C}{\partial x_i} \right],\tag{7}$$

$$\frac{\partial}{\partial t} \Big[m(x_i, t) C(x_i, t) + (\overline{V}, \nabla) C \Big] = \frac{\partial}{\partial x_i} \Big[m(x_i, t) D_i(C, x_i, t) \frac{\partial C}{\partial x_i} \Big], \quad (8)$$

где – С (x_i, t) – поле концентраций; D_i (C, x_i, t) – коэффициенты анизотропной (ортотропной) диффузии; m (x_i, t) – пористость неоднородного и нестационарного массива; \overline{V} – вектор скорости фильтрации флюида – переносчика примеси. Из (7), (8) видно, что они могут быть представлены в виде (4). Уравнение, близкое к (8), впервые было получено (в модели фильтрационного массопереноса в выработанном пространстве) Л.П. Фельдманом [26].

В моделях массопереноса при подземных пожарах [6], уравнения типа (8) содержат, иногда, в правой части функцию стока кислорода (сорбируемого углем), содержащую C^n ($n \neq 1$), т.е. нелинейную и коэффициенты – аналоги m (x_i , t) – также нелинейные: $\Pi_i = \Pi_i$ (C, x_i , t) (i = 1, 2).

2.3. Перенос тепла в массивах осуществляется теплопроводностью, конвективным теплопереносом и теплопереносом при наличии фазовых переходов влаги. Большинство нелинейных моделей относятся к моделированию подземных пожаров и процессов теплопереноса в льдосодержащих массивах [6, 7]. В первом случае используются уравнения типа (3), (4), во втором – задачи типа Стефана [7, 27].

3. Модели переноса в выработках

3.1. Перенос импульса (движение газо-воздушных смесей) моделируется уравнениями Навье-Стокса и Рейнольдса (для турбулентных потоков) [3, 5-7]. Уравнение движения вентиляционной струи в участковой выработке, учитывающее притечки (утечки) из выработанного пространства, было получено в виде [28]:

$$\frac{\partial Q}{\partial t} + \frac{D}{S} \frac{\partial Q^2}{\partial x} = \Phi_x - \frac{S}{\rho} \frac{\partial P_{cp}}{\partial x} - \frac{\lambda}{SR_0} Q^2, \qquad (9)$$

где – Q (x, t) – переменный расход воздуха; x, t – продольная координата и время; D, S, Φ_x , ρ , λ , R_0 – постоянные параметры модели; P_{cp} – среднее по сечению выработки давление воздуха. Нелинейность уравнения (9) обусловлена последними членами в обеих его частях. Аналогичное (9) уравнение движения воздуха в перфорированном воздуховоде для стационарного случая ($\partial Q/\partial t$) = 0 было получено Б.И. Медведевым [29].

Уравнение Рейнольдса обычно используется в линеаризованной форме [3], когда главное внимание уделяется зависимости коэффициента турбулентной вязкости от поперечной (радиальной – в случае цилиндрической выработки) координаты.

Нестационарные аэродинамические процессы в выработках с переменным расходом воздуха, характерные для аварийных режимов (взрывы, обрушения, внезапные выбросы) описываются моделями, содержащими системы уравнений, приводимых к гиперболическому (телеграфному) уравнению [3, 7]. Нелинейные задачи для таких уравнений не рассматривались.

3.2. Перенос массы_осуществляется турбулентным перемешиванием (в струях), турбулентной диффузией, дисперсией примесей (одномерный массоперенос при стержневом течении и эффективном коэффициенте турбулентной диффузии – коэффициенте дисперсии). Эти модели, как правило, линейны. Нелинейные модели возникают при описании переноса «активных» примесей, когда существенную роль играют архимедовы силы. В этих моделях используют «эффективные» скорости потоков и коэффициенты турбулентной диффузии, зависящие от концентрации примесей.

Обобщенное, содержащее все частные случаи, уравнение массопереноса имеет вид [3]:

$$\frac{\partial C}{\partial t} + div \left(\overline{V}C \right) + \gamma \left(m, t \right) C = \frac{\partial}{\partial x_i} \left[D_i \left(C, m, t \right) \frac{\partial C}{\partial x_i} \right] + J \left(m, t \right), \quad (10)$$

где - \overline{V} - вектор скорости потока; γ (m, t) – зависящий от точки m и времени коэффициент поглощения примеси; D_i (C, m, t) – коэффициенты «активной» диффузии; J (m, t) – функция плотности источников (стоков) примеси.

В моделях массопереноса при подземных пожарах используется уравнение типа (10), но с нелинейными функциями плотности источников J = J (C, m, t) [6].

3.3. Перенос тепла в выработках при штатных режимах моделируется, как правило, на основе обыкновенных (балансовых) дифференциальных уравнений [4]. Параболические уравнения в частных производных, в том числе – нелинейные – используются в моделях пожаров [6]. Обобщенное уравнение теплопереноса в выработке [7]:

$$C_{p}(T,m,t)\left[\frac{\partial T}{\partial t} + (\overline{V},\nabla)T\right] + \gamma(T,m,t)T =$$
$$= \frac{\partial}{\partial x_{i}}\left[\lambda_{i}(T,m,t)\frac{\partial T}{\partial x_{i}}\right] + F(T,m,t), \qquad (11)$$

где – Т (m, t) – температура струи воздуха; C_p (T, m, t) – его теплоемкость, λ (T,°m, t) – теплопроводность; \overline{V} - скорость потока; F (T, m, t) – функция плотности источников (стоков) тепла; γ (T, m, t) – коэффициент температурной конверсии. Уравнение (11), если исключить источники тепла, также сводится к (3) или (4).

4. Классификация моделей

Нелинейные модели теплофизики геотехносферы (НМТГТ), как следует из вышеизложенного, базируются, в основном, на нелинейных параболических уравнениях в частных производных. Согласно классификации краевых задач математической физики «7HE» [1], эти модели одновременно являются прямыми и локальными моделями. Далее сужаем класс рассматриваемых моделей, вычленяя из НМТГТ только ординарные, одномерные и однородные модели. Последнее означает, что в коэффициентах всех уравнений, зависимостью их от x_i и t пренебрегаем (в частности проницаемость массива: K_i (P, x_i, t) \rightarrow K_i (P)).

В рассмотренных моделях (уравнениях) встречались две, преобразуемых друг в друга, вида нелинейности: х – нелинейности и t – нелинейности. Граничные условия в моделях также могут быть нелинейными (простейший пример: условия II-го рода на границе теплоизлучающего тела). В правой части уравнения может присутствовать нелинейно зависящая от потенциала переноса функция плотности источников (стоков) массы или тепла. Последний упоминавшийся вид нелинейностей – задачи типа Стефана.

Классификация нелинейных задач переноса предложена Л.А. Коздобой [30], она носит общетеплофизический характер, но недостаточно наглядна. Математики называют уравнения, коэффициенты которых зависят от потенциала переноса, квазилинейными, а уравнения, где нелинейна правая часть – функция плотности источников (стоков) – полулинейными. Мы предлагаем следующую, более удобную для прикладных исследований, классификацию. Квазилинейные задачи будем называть задачами с внутренней нелинейностью. Задачи с нелинейными граничными условиями и (или) функциями плотности источников – задачами с внешней нелинейностью. Задачи Стефана относим к третьему классу НМТГТ.

Методы решения нелинейных краевых задач теплофизики весьма многообразны и постоянно пополняются новыми, что свидетельствует об отсутствии среди них достаточно общего и строгого, но доступного для прикладников. Широкий обзор этих методов, их преимущества и недостатки можно найти в [7, 13-16, 27, 30-33].

Ранее была обоснована [7] необходимость разработки гибридного, аналитико-числового метода решения задач теплофизики геотехносферы, базирующегося на методах П.В. Цоя и функций Грина [34]. Необходимы различные версии метода: для задач с внутренней нелинейностью; для задач с внешней нелинейностью; для задач типа Стефана; для комбинаций вышеприведенных; для многомерных задач; для всех задач при необходимости учета неоднородности и нестационарности среды; для обратных задач всех классов.

Реализация столь сложной и обширной программы потребует коллективных усилий, использования современных аналитических и численных методов, учета результатов фундаментальных работ (в частности [35-37]). Далее излагается метод решения краевых задач с внутренней нелинейностью – базисных среди НМТГТ.

5. Метод решения задач с внутренней нелинейностью

5.1. Постановка задачи. В силу известных аналогий моделей процессов переноса, будем использовать (не ограничивая общности) язык теории теплопроводности. Рассматриваем область $x \in (0, L)$, $t \in (0, t_m)$. Т.к. упрощение нелинейных уравнений путем их преобразования к «односторонне-нелинейным» уравнениям (3), (4) иллюзорно (приходится наряду с новой искомой функцией переходить к новым начальным и граничным условиям, а затем «возвращаться»; все этапы не тривиальны), будем рассматривать нелинейное одномерное уравнение в общей форме:

$$C(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[\lambda(T)\frac{\partial T}{\partial x} \right], \ \mathbf{x} \in (0, \, \mathbf{L}), \ \mathbf{t} \in (0, \, \mathbf{t}_{\mathrm{m}}), \qquad \mathbf{T} \in (\mathbf{T}_{1}, \, \mathbf{T}_{2}), \ (13)$$

Для диапазона изменения T (x, t) ∈ (T₁, T₂) считаем известными:

$$C(T) = C(T_1) + \left[C(T_2) - C(T_1)\right] \left(\frac{T - T_1}{T_2 - T_1}\right)^{\alpha} ,$$

$$\lambda(T) = \lambda(T_1) + \left[\lambda(T_2) - \lambda(T_1)\right] \left(\frac{T - T_1}{T_2 - T_1}\right)^{\beta}$$
(14)

где – α , β = const, а функции С (Т) и λ (Т) монотонные. Если монотонными функциями (14) имеющиеся данные аппроксимировать нельзя, то интервал (Т₁, Т₂) разбивается на подинтервалы монотонности, для каждого из которых устанавливаются зависимости (14). Поскольку предлагаемый метод – аналитико-числовой, возникающие усложнения устраняются его компьютерной компонентой.

Краевые условия к (13) имеют вид:

$$T (x, 0) = T_0 (x), x \in (0, L), T (0, t) = \mu^{(-)} (t),$$

$$T (L, t) = \mu^{(+)} (t), t \in (0, t_m),$$
(15)

где функции $T_0(x)$, $\mu^{(\pm)}(t)$ – известные. Поскольку все температуры Т (x, t) лежат внутри диапазона (T_1 , T_2), общие зависимости (14) необходимо уметь пересчитывать для более узких диапазонов температуры [$\mu^{(-)}(t)$, $\mu^{(+)}(t)$], в зависимости от которых вместо α и β появятся другие параметры – n и m. Способ такого пересчета укажем на

простом примере. Пусть f(x) > 0 монотонно возрастает от $f(x_1)$ до $f(x_2)$ в интервале $x \in [x_1, x_2]$. Аналитическое выражение f(x) известно, но эту функцию мы хотим представить в виде:

$$\hat{f}(x) = f(x_1) + \left[f(x_2) - f(x_1) \right] \left(\frac{x - x_1}{x_2 - x_1} \right)^n, \quad n = \text{const}$$
(16)

Определение n \in [0, ∞) решает задачу, т.к. x₁, x₂, f (x₁), f (x₂) известны. Требуем равенства норм $|| f(x) ||_{L1}$ и $|| \stackrel{\wedge}{f}(x) ||_{L1}$:

$$\|f(x)\|_{L^{1}} = \int_{x_{1}}^{x_{2}} f(x)dx = \|\hat{f}(x)\|_{L^{1}} = \int_{x_{1}}^{x_{2}} \hat{f}(x)dx, \qquad (17)$$

и подставив (16) в (17), получаем:

$$n = \frac{f(x_2) - \langle f \rangle}{\langle f \rangle - f(x_1)}, \quad \langle f \rangle = (x_2 - x_1)^{-1} \int_{x_1}^{x_2} f(x) dx \,. \tag{18}$$

Применив этот прием к (14), получим $n = n(\alpha)$ и $m = m(\beta)$:

$$\tilde{n} = \frac{\left(\theta^{(+)}\right)^{\alpha} - \frac{\Delta T}{\Delta \mu} \Phi(\theta)}{\frac{\Delta T}{\Delta \mu} \Phi(\theta) - \left(\theta^{(-)}\right)^{\alpha}}, \quad \tilde{m} = \frac{\left(\theta^{(+)}\right)^{\beta} - \frac{\Delta T}{\Delta \mu} \Phi(\theta)}{\frac{\Delta T}{\Delta \mu} \Phi(\theta) - \left(\theta^{(-)}\right)^{\beta}}, \tag{19}$$

$$\theta^{(-)} = \frac{\mu^{(-)} - T_1}{\Delta\mu(t)}, \quad \theta^{(+)} = \frac{\mu^{(+)} - T_1}{\Delta\mu(t)}, \quad \Phi_{\nu}(\theta) = \frac{\left(\theta^{(+)}\right)^{\nu+1} - \left(\theta^{(-)}\right)^{\nu+1}}{\nu+1}, \quad (20)$$

$$\Delta T = T_2 - T_1, \quad \Delta \mu(t) = \mu^{(+)}(t) - \mu^{(-)}(t), \quad \nu = \alpha, \beta$$

При совпадении интервалов Δ Т и Δ μ из (19), (20) следует: n = α , m = β .

5.2. Идея метода. В математической физике известен метод Ротэ [38], заключающийся в переходе к дискретным временным отсчетам

 $t_j = j\tau$, $j = \overline{0,N}$, N $\tau = t_m$ и в «замораживании» переменных коэффициентов параболического уравнения в частных производных на каждом из интервалов $t \in [j\tau, (j + 1)\tau]$. Аналогичный метод «смены стационарных состояний» был предложен Л.С. Лейбензоном [39]. При анализе основ неравновесной термодинамики [40] было обнаружено, что введение неравновесной энтропии в нелинейном случае корректно лишь в случае дискретного изменения теплофизпараметров элементарного объема.

Исходя из изложенного, предлагается метод «крупных шагов» (т.к. «шаговые» интервалы $\tau \ll t_m$, но существенно превышают таковые в конечно-разностных схемах), состоящий в том, что с момента $t_0 = 0$ решается линейная задача с переменными параметрами C_0 (х) и λ_0 (х). Зависимости этих параметров от координаты устанавливаются пересчетами от температурных зависимостей (14): C_0 (х) = C (T(x, 0)) = C (T_0 (х)), λ_0 (х) = λ (T_0 (х)). Решение определяется для t = τ : T (x, t) = T (x, τ) = T_1 (х).

Перед вторым шагом теплофизпараметры вновь пересчитываются, принимая значения $C_1(x) = C(T_1(x))$ и $\lambda_1(x) = \lambda(T_1(x))$ и «замораживаются» (по температуре; зависимость от x остается). Начальным условием для решения краевой задачи – второго шага – служит функция $T_1(x)$. Далее процесс продолжается, так, что на j-м шаге начальной функцией является решение предыдущего шага – $T_{j-1}(x)$, по которой пересчитываются параметры $C_{j-1}(x) = C(T_{j-1}(x))$, $\lambda_{j-1}(x) = \lambda(T_{j-1}(x))$ используемые на j-м шаге.

Т.о., нелинейная задача сводится к последовательности линейных задач с параметрами, зависящими от пространственной координаты. Методы решения последних весьма громоздки и известны для частных видов функций С (х) и λ (х) [41-43]. Поэтому реализация метода «крупных шагов» требует предварительного решения ряда подзадач: 1. Перейти к обобщенной постановке краевой задачи для неоднородной одномерной области и определить структуру решения. 2. Определить (унифицированным образом) элементы структуры решения. 3. Найти функцию Грина задачи. 4. Решить задачу, получив формулы, описывающие какой-либо (т.к. описание всех шагов стандартно) шаг. Далее коротко изложены решения этих подзадач.

5.3. Обобщенная формулировка и структура решения задачи.

Согласно [41], уравнение теплопроводности в неоднородной среде:

$$C(x)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x} \right), \ t \ge 0, \ x \in (0, L)$$
(21)

с начальным

$$T(x, 0) = T_0(x), \ x \in (0, L)$$
(22)

и граничными условиями

T (0, t) =
$$\mu^{(-)}(t)$$
, T (L, t) = $\mu^{(+)}(t)$, t > 0 (23)

представляет собой первую краевую задачу в классической постановке. Для перехода к обобщенной постановке [44] умножаем (21) – (23) на $\theta(t)$ (единичную ступенчатую функцию Хевисайда, производная которой есть δ-функция) и записываем задачу относительно $\tilde{T}(x,t) = \theta(t)T(x,t)$. Попутно переходим к безразмерной координате $\eta = x/L$ и получаем:

$$\left[L^2 C(\eta) \frac{\partial}{\partial t} - \frac{\partial}{\partial \eta} \left(\lambda(\eta) \frac{\partial}{\partial \eta}\right)\right] \widetilde{T}(\eta, t) = \mathcal{L}\{\widetilde{T}(\eta, t)\} = L^2 C(\eta) T_0(\eta) \delta(t) .$$
(24)

$$\tilde{T}(0,t) = \tilde{\mu}^{(-)}(t), \quad \tilde{T}(1,t) = \tilde{\mu}^{(+)}(t), \quad \tilde{\mu}^{(\pm)}(t) = \theta(t)\mu^{(\pm)}(t). \quad (25)$$

Обобщенную краевую задачу (24), (25) приводим к однородной, используя структуру решения вида:

$$\widetilde{T}(\eta,t) = \widetilde{u}(\eta,t) + \widetilde{\vartheta}(\eta,t) , \qquad (26)$$

где $u(\eta, t)$ удовлетворяет нулевым граничным условиям и уравнению:

$$\mathcal{Z}\{\widetilde{u}(\eta,t)\} = \widetilde{F}(\eta,t) = L^2 C(\eta,t) T_0(\eta) \delta(t) - \mathcal{Z}\{\widetilde{\vartheta}(\eta,t)\}$$
(27)

Функция $\vartheta(\eta, t)$ простейшего вида, удовлетворяющая граничным условиям:

$$\tilde{\vartheta}(\eta, t) = \tilde{\mu}^{(-)}(t) + \left[\tilde{\mu}^{(+)}(t) - \tilde{\mu}^{(-)}(t)\right]\eta.$$
(28)

Подстановка (28) в (27) дает:

$$\mathcal{L}\{\widetilde{u}(\eta,t)\} = \widetilde{F}(\eta,t) =$$

$$= L^{2}C(\eta) \left\{ T_{0}(\eta)\delta(t) - \frac{\partial}{\partial t} \left[\widetilde{\mu}^{(-)}(t) + \left(\widetilde{\mu}^{(+)}(t) - \widetilde{\mu}^{(-)}(t) \right) \eta \right] \right\} + \frac{\partial\lambda(\eta)}{\partial\eta} \Delta\widetilde{\mu}(t) ,$$

$$\Delta\widetilde{\mu}(t) = \widetilde{\mu}^{(+)}(t) - \widetilde{\mu}^{(-)}(t) . \qquad (29)$$

Уравнение (29) дает искомую обобщенную формулировку задачи, решение для которой может быть сразу представлено в виде [44]:

$$\widetilde{u}(\eta,t) = \int_{0}^{1} d\eta' \int_{0}^{t} dt' \widetilde{G}(\eta,\eta',t-t') \widetilde{F}(\eta',t'), \qquad (30)$$

где - $\tilde{F}(\eta',t')$ определено (29), а $\tilde{G}(\eta,\eta',t)$ - функция Грина задачи, удовлетворяющая условиям:

$$\mathcal{L}\left\{\tilde{G}\left(\eta,\eta',t\right)\right\} = \delta\left(\eta-\eta'\right)\delta(t), \quad \tilde{G}\left(0,\eta',t\right) = \tilde{G}\left(1,\eta',t\right) = 0.$$
(31)

Т.о. структура решения задачи определена.

5.4. Определение структурных элементов решения.

Для использования (30) на каждом из шагов, надо получить унифицированные выражения для $\tilde{F}(\eta, t)$ и $\tilde{G}(\eta, \eta', t)$. Для первого шага имеем $\tilde{F}_1(\eta, t)$, определяемую по (29), где $C(\eta) = C_0(\eta)$, $\lambda(\eta) = \lambda_0(\eta)$, $T_0(\eta)$ – начальное распределение температуры из (22), а функция $\tilde{\mu}^{(\pm)}(t)$ изменяется известным образом в интервале $t \in (0, \tau]$. Для второго шага используем $\tilde{F}_2(\eta, t)$, также согласно (29), но при $C(\eta) = C_1(\eta)$, $\lambda(\eta) = \lambda_1(\eta)$. Вместо $T_0(\eta)$ подставляется решение, полученное на первом шаге – $T(\eta, \tau) = T_1(\eta)$, а динамика $\tilde{\mu}^{(\pm)}(t)$ соответствует интервалу времени (т, 2т]. Аналогичным образом имеем для j-го шага (j = $\overline{1,N}$, t \in ((j-1) τ , j τ]):

$$\tilde{F}_{j}(\eta,t) = L^{2}C_{j-1}(\eta)\left\{T_{j-1}(\eta)\delta(t) - \frac{\partial}{\partial t}\left[\tilde{\mu}^{(-)}(t) + \left(\tilde{\mu}^{(+)}(t) - \tilde{\mu}^{(-)}(t)\right)\eta\right]\right\} + ,$$
$$+\Delta\tilde{\mu}(t)\frac{\partial\lambda_{j-1}}{\partial\eta}$$
(32)

Все температуры $T_j(\eta)$ представляем унифицированной степенной функцией:

$$T_{j-1}(\eta) = \tilde{\mu}^{(-)}(t_{j-1}) + \left[\tilde{\mu}^{(+)}(t_{j-1}) - \tilde{\mu}^{(-)}(t_{j-1})\right] \eta^{\gamma_{j-1}},$$

$$\gamma_{j-1} = \text{const}, \ t_{j-1} = (j-1)\tau.$$
(33)

Показатели степени уі определяются согласно (18):

$$\gamma_{j-1} = \frac{\tilde{\mu}^{(+)}(t_{j-1}) - \left\langle T_{j-1}(\eta) \right\rangle}{\left\langle T_{j-1}(\eta) \right\rangle - \tilde{\mu}^{(-)}(t_{j-1})}, \quad \left\langle T_{j-1}(\eta) \right\rangle = \int_{0}^{1} d\eta T_{j-1}(\eta), \quad j = \overline{1, N}.$$
(34)

Для первого шага (j = 1) в (33) и (34) вместо $\tilde{\mu}^{(\pm)}(0)$ подставляются, соответственно, T₀ (0) и T₀ (1). Параметры пересчета от общих (для T \in [T₁, T₂]) формул (14) к формулам:

$$C(T) = C(\mu^{(-)}(t)) + \left[C(\mu^{(+)}(t)) - C(\mu^{(-)}(t))\right] \left[\frac{T - \mu^{(-)}(t)}{\mu^{(+)}(t) - \mu^{(-)}(t)}\right]^{\tilde{n}}, \quad (35)$$

$$\lambda(T) = \lambda(\mu^{(-)}(t)) + \left[\lambda(\mu^{(+)}(t)) - \lambda(\mu^{(-)}(t))\right] \left[\frac{T - \mu^{(-)}(t)}{\mu^{(+)}(t) - \mu^{(-)}(t)}\right]^{\tilde{m}}, \quad (36)$$

определяются (19), (20), откуда для $j = \overline{0, N-1}$ следует:

$$\tilde{n}_{j} = \frac{(\theta_{j}^{(+)})^{\alpha} - \frac{\Delta T}{\Delta \mu_{j}} \mathcal{\Phi}(\theta_{j})}{\frac{\Delta T}{\Delta \mu_{j}} \mathcal{\Phi}(\theta_{j}) - (\theta_{j}^{(-)})^{\alpha}}; \quad \tilde{m}_{j} = \tilde{n}_{j} (\alpha \rightarrow \beta); \Delta \mu_{j} = \mu^{(+)}(t_{j}) - \mu^{(-)}(t_{j});$$

$$\theta_{j}^{(-)} = \frac{\mu^{(-)}(t_{j}) - T_{1}}{\Delta \mu_{j}}; \quad \theta_{j}^{(+)} = \frac{\mu^{(+)}(t_{j}) - T_{1}}{\Delta \mu_{j}};$$
$$\Phi(\theta_{j}) = \frac{(\theta_{j}^{(+)})^{\nu+1} - (\theta_{j}^{(-)})^{\nu+1}}{\nu+1}; \quad \nu = \alpha, \beta$$
(37)

Величины \tilde{n}_0 и \tilde{m}_0 находятся аналогично, но принимается $\mu^{(-)}(0) = T_0(0), \mu^{(+)}(0) = T_0(1)$. Необходимые для расчета $\tilde{F}_j(\eta, t)$ согласно (32) величины С_{j-1}(η) и $\lambda_{j-1}(\eta)$. определяются подстановками в (35) и (36): t = t_{j-1}, T = T_{j-1} (согласно (33)). В результате находим:

$$C_{j-1}(\eta) = C\left(\mu^{(-)}(t_{j-1})\right) + \left[C\left(\mu^{(+)}(t_{j-1})\right) - C\left(\mu^{(-)}(t_{j-1})\right)\right]\eta^{n_{j-1}}, (38)$$

$$\lambda_{j-1}(\eta) = \lambda \Big(\mu^{(-)}(t_{j-1}) \Big) + \Big[\lambda \Big(\mu^{(+)}(t_{j-1}) \Big) - \lambda \Big(\mu^{(-)}(t_{j-1}) \Big) \Big] \eta^{m_{j-1}}, \quad (39)$$

где – $\mathbf{n}_{j-1} = \gamma_{j-1} \cdot \tilde{n}$, $m_j = \gamma_{j-1} \cdot \tilde{m}$.

5.5. Определение функции Грина.

Задачу (31) решаем приближенно [34]. Преобразовав (31) по Лапласу, получаем:

$$\overline{\mathcal{L}}\left\{\overline{G}(\eta,\eta',p)\right\} = \delta(\eta-\eta'), \quad \overline{G}(0,\eta',p) = \overline{G}(1,\eta',p) = 0.$$
(40)

Здесь р – параметр Лапласа, черта сверху обозначает функцииизображения и

$$\overline{\mathcal{L}} = L^2 C(\eta) p - \frac{\partial}{\partial \eta} \left[\lambda(\eta) \frac{\partial}{\partial \eta} \right].$$

Приближенное решение (n-е приближение) (40) ищем в виде:

$$\overline{G}^{(n)}(\eta, \eta', p) = \sum_{k=1}^{n} \overline{B}_{k}(\eta', p) \Psi_{k}(\eta), \qquad (41)$$

где $\Psi_k(\eta)$ - семейство координатных функций $(\Psi_k(\eta) = (1 - \eta)\eta^k)$, а $\overline{B}_k(\eta', p)$ определяются из условий ортогональности операторной невязки $\overline{\varepsilon}^{(n)} = \overline{\clubsuit} \{\overline{G}(\eta, \eta', p)\} - \overline{\clubsuit} \{\overline{G}^{(n)}(\eta, \eta', p)\}$ ко всем координатным функциям: $(\overline{\varepsilon}^{(n)}, \Psi_j) = 0, (j = \overline{1, n})$. Отсюда следует система из п алгебраических уравнений относительно п неизвестных – коэффициентов $\overline{B}_k(\eta', p)$:

$$\sum_{k=1}^{n} \overline{B}_{k}(\eta', p) \left(\Psi_{j}, \overline{Z} \{\Psi_{k}\}\right) = \left(\Psi_{j}, \delta(\eta - \eta')\right), j = \overline{1, n}.$$

$$(42)$$

Выбор достаточного числа приближений в (41) (т.е. n) обусловлен величиной «крупного» шага т. С одной стороны, чем т меньше, тем больше точность решения. С другой стороны, используемый метод таков, что при малых т требуется увеличивать n в (41).

В [34] проведено сравнение приближенных решений рядя задач с точными их решениями, из которого вытекает, что первое приближения метода П.В. Цоя удовлетворительно согласуется с точным решением при $\tau \ge \tau_1 = 0,025 \text{ L}^2/a$ (a – температуропроводность среды). Второе приближение практически совпадает с точным решением при $\tau_2 = 0,0125 \text{ L}^2/a$. Критерием «малости» промежутка времени τ в теории теплопроводности обычно принимают такое его значение, для которого можно область $x \in (0, L)$ заменить на $x \in (0, \infty)$, т.е. для которого зона термического влияния границы x = 0 не достигает точки x = L/2. Поскольку для оценки ширины зоны термического влияния можно использовать формулу $\delta(\tau) = 4\sqrt{a\tau}$ [40], то «малым» следует считать значение $\tau = \tau_0 = 0,0125 \text{ L}^2/a$. Т.к. $\tau_2 < \tau_0$, то $\tau = \tau_2 = 0,0125 \text{ L}^2/a$ ($F_0 = a \tau_2/L^2 = 0,0125$) можно считать достаточно малым, но в то же время и «крупным» шагом, для которого второе приближение (т.е. n = 2 в (41), (42)) будет достаточным.

Функция Грина во втором приближении:

$$\overline{G}^{(2)}(\eta, \eta', p) = \overline{B}_1(\eta', p)\Psi_1(\eta) + \overline{B}_2(\eta', p)\Psi_2(\eta)$$
(43)

определяется из системы двух уравнений (42). После довольно громоздких вычислений эта система была решена и обратное преобразование Лапласа в (43) дало:

$$\tilde{G}_{j}^{(2)}(\eta,\eta',t) =$$

$$+\theta(t) \Big[N_{11}^{(j-1)}(\eta') \exp(-p_{1}^{(j-1)}t) + N_{12}^{(j-1)}(\eta') \exp(-p_{2}^{(j-1)}t) \Big] \Psi_{1}(\eta) +$$

$$+\theta(t) \Big[N_{21}^{(j-1)}(\eta') \exp(-p_{1}^{(j-1)}t) + N_{22}^{(j-1)}(\eta') \exp(-p_{2}^{(j-1)}t) \Big] \Psi_{2}(\eta) . (44)$$

Полученные выражения для $N_{rs}^{(j-1)}$ (r, s = 1, 2; j = $\overline{1,N}$) и $p_v^{(j-1)}(v=1,2)$ не приводим в силу их громоздкости (которая, впрочем, при конкретных числовых расчетах на компьютере не существена). Таким образом, по найденной функции Грина (44), используя (32) и (30) можно, последовательно осуществляя шаги j = 1, 2,..., N найти решение задачи для t \in (0, t_m].

Выводы

1. Математические модели процессов переноса в теплофизике геотехносферы преимущественно нелинейны, их построение и исследование – актуальная задача.

2. Классификация моделей как характеризующихся внутренней и внешней нелинейностью и задач типа Стефана удобна для прикладных исследований. Базисными моделями являются, как наиболее распространенные, модели с внутренней нелинейностью.

3. Известные методы исследования таких моделей (решение краевых задач) весьма трудоемки, громоздки и недостаточно (для многообразия ситуаций в теплофизике геотехносферы) общи. Требуется разработка нового метода.

4. Метод решения задач с внутренней нелинейностью – аналитико-числовой, базирующийся на методах П.В. Цоя и функций Грина предложен в настоящей работе. Его последующая «компьютеризация» позволит решать широкий круг задач, важных для разработки и проектирования технологических систем и прогноза их функционирования в штатных и аварийных условиях.

СПИСОК ЛИТЕРАТУРЫ

- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели).
 Введение в анализ парадигмы. – Препринт ДонФТИ.-2002.-1.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-36с.
- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели). 2. Массоперенос в горных массивах.– Препринт ДонФТИ.-2002.-2.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-104с.
- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели).
 Массоперенос в горных выработках.– Препринт ДонФТИ.-2002.-3.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-101с.
- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели). 4. Теплоперенос в горных массивах. – Препринт ДонФТИ.-2002.-4.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-101с.
- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели).
 Теплоперенос в горных выработках.– Препринт ДонФТИ.-2002.-5.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-103с.
- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели).
 Процессы переноса при подземных пожарах.– Препринт ДонФТИ.-2002.-6.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-88с.
- Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (Математические модели).
 Принципы развития парадигмы.– Препринт ДонФТИ.-2002.-7.-Донецк: ДонФТИ им. А.А. Галкина НАН Украины, 2002.-111с.
- 8. Черняк В.П., Фиалко Н.М., Меронова Н.О. Об учете нелинейностей при математическом моделировании процессов теплопереноса в условиях нагрева горного массива пожарными газами.-ДАН Украины, сер. А, 1994, №10, с. 67-70.
- 9. Черняк В.П., Полубинский А.С. Достижения и новые задачи горной теплофизики.– Промышленная теплотехника, 1997, т. 19, №№ 2-3, с. 9-19.

- Медведский Р.И., Сигунов Ю.А. Моделирование воздействия горных пород на нефтегазовые скважины в рамках контактных задач Стефана.– ИФЖ, 1990, т. 59, № 4, с. 698.
- 11. Красовицкий Б.А. Динамика оледенения подземного трубопровода.– ИФЖ, 1986, т. 51, № 5, с. 802-809.
- Хомченко А.Н. Модели конечных элементов для расчетов температурных полей подземных трубопроводов.– ИФЖ, 1985, т. 49, № 2, с. 321-323.
- 13. Азиз Х., Сеттари Э. Математическое моделирование пластовых систем.– Пер. с англ.– М.: Недра, 1982.– 407 с.
- 14. Огибалов П.М. Мирзаджанзаде А.Х. Механика физических процессов. – М.: Изд-во МГУ, 1976. – 370 с.
- 15. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
- 16. удовкин М.А., Волков И.К. Краевые задачи математической теории теплопроводности в приложении к расчетам температурных полей в нефтяных пластах при заводнении.– Казань: Изд-во КГУ,1978.– 188 с.
- Храмченков М.Г., Старосуд А.М. Математическая модель неравновесного вымывания соли в условиях изменяющейся пористости среды без учета продольной дисперсии.– ФТПРПИ, 1989, № 2, с. 95-98.
- Колоколов О.В., Эйшинский А.М., Микенберг А.М. Математические алгоритмы термохимической геотехнологии. – Днепропетровск: Изд-во ДГУ, 1992. – 216 с.
- 19. Чистяков В.К., Саламатин А.Н., Фомин С.А., Чугунов В.А. Тепломассоперенос при контактном плавлении (применительно к условиям теплового бурения).– Казань: Изд-во КГУ, 1984.– 176 с.
- 20. Галидов В.А., Мамедкеримов В.И. и др. К вопросу распределения температуры в призабойной зоне скважин при их термохимической обработке.– ИФЖ, 1991, т. 61, № 3, с. 414-421.
- 21. Аренс В.Ж., Дмитриев А.П., Дядькин Ю.Д. и др. Теплофизические аспекты освоения ресурсов недр / Колл. монография. – Л.: Недра, Л.о., 1988. – 336 с.
- 22. Базов В.Ф., Филиппов Н.Ф., Образцов А.П., Ицхакин В.Д. Электротермическое и электротермомеханическое разрушение крепких горных пород.– Киев: Техніка, 1989.– 144 с.
- 23. Лейбензон Л.С. Движение природных жидкостей и газов в пористой среде. М.-Л.: Гостехтеориздат, 1947. 244 с.

- 24. Кричевский Р.М. О выделении метана из угольного массива в подготовительные выработки.– Бюлл. МакНИИ.– Макеевка, 1947, № 16, с. 22-31.
- 25. Айруни А.Т. Теория и практика борьбы с рудничными газами на больших глубинах.– М.: Недра, 1981.– 335 с.
- 26. Фельдман Л.П. Исследование движения и диффузии газовых смесей в выработанных простриствах участков угольных шахт численными методами.– Известия ВУЗов. Горный журнал, 1977, № 2, с. 74-81.
- 27. Рубинштейн Л.И. Проблема Стефана.– Рига: Звайгзне, 1967.– 457 с.
- 28. Абрамов Ф.А., Фельдман Л.П., Святный В.А. Моделирование динамических процессов рудничной аэрологии. Киев: Наукова думка, 1981, 284 с.
- 29. Медведев Б.И. К расчету неплотных воздухопроводов с оттоком воздуха.– В кн.: Разработка месторождений полезных ископаемых, вып. 62 / Респ. межвед. сб-к.– Киев: Техніка, 1982, с. 3-9.
- 30. Коздоба Л.А. Методы решения нелинейных задач теплопроводности.– М.: Наука, 1975.– 230 с.
- 31. Колесников П.М. Методы теории переноса в нелинейных средах.– Минск: Наука и техника, 1981.– 336 с.
- Михайлов Ю.А., Глазунов Ю.Т. Вариационные методы в теории нелинейного тепло- и массопереноса.– Рига: Зинатне, 1985.– 190 с.
- 33. Коздоба Л.А. Вычислительная теплофизика. Киев: Наукова думка, 1992. 224 с.
- 34. Цой П.В. Методы расчета задач тепломассопереноса. М.: Энергоатомиздат, 1984. 416 с.
- 35. Христианович С.А., Коваленко Ю.Ф. Об измерении давления газа в угольных пластах.– ФТПРПИ, 1988, № 3, с. 3-24.
- Малышев Ю.Н., Трубецкой К.Н., Айруни А.Т. Фундаментальноприкладные методы решения проблемы метана угольных пластов. – М.: Изд-во Академии горных наук, 2000. – 519 с.
- 37. Алексеев А.Д., Фельдман Э.П., Василенко Т.А. и др. Массоперенос метана в угле, обусловленный совместной фильтрацией и диффузией.– ФТВД, 2004, т. 14, № 3, с. 107-118.
- Ладыженская О.А. Краевые задачи математической функции.– М.: Наука, 1973.– 408 с.

- 39. Лейбензон Л.С. Руководство по нефтепромысловой механике.-М.-Л.: Изд-во АН СССР, 1931.- 147 с.
- 40. Венгеров И.Р. Хроноартефакты термодинамики.– Донецк: Норд-Пресс, 2005.– 236 с.
- 41. Лыков А.В., Михайлов Ю.А. Теория тепло- и массопереноса.-М.-Л.: Госэнергоиздат, 1963. 536 с.
- 42. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
- 43. Райченко А.И. Математическая теория диффузии в приложениях. Киев: Наукова думка, 1981. 396 с.
- 44. Владимиров В.С. Уравнения математической физики.– Изд-е 3-е.– М.: Наука, 1976.– 528 с.