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The long-standing problem of a divergent behaviour of the Aharonov-Bohm scattering amplitude in the forward

direction is reconsidered. We show that this divergence has no physical consequences, being an artefact of the

approximation that neglects the transverse size of a magnetic vortex. As long as the vortex transverse size is taken

into account, this divergence is tamed but, however, in a certain sense manifests itself as a forward peak of the

Fraunhofer diffraction. The peak is becoming more transparent in the limit of high energies of scattered particles.
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1. INTRODUCTION

The theoretical prediction of the Aharonov-Bohm ef-
fect in 1959 [1] was one of the most intriguing achieve-
ments in quantum theory. Now this effect has been
long recognized for its crucial role in demonstrating
that in addition to the usual local (classical) influence
of electromagnetic field on charged particles, there
exists the unusual nonlocal (purely quantum) influ-
ence of electromagnetic fluxes confined in the regions
which are inaccessible to charged particles. A par-
ticular example is quantum-mechanical scattering of
charged particles by an impermeable straight and in-
finitely long solenoid that encloses a magnetic flux:
as was shown in [1], this process depends periodically
on the value of the enclosed flux. However, the am-
plitude of this process, as was first obtained in [1],
diverges in the strictly forward direction, and all pre-
vious attempts to eliminate this divergence failed un-
successfully, see [2, 3]. Therefore, we reconsider this
problem in the present paper.

Let us study scattering of a charged particle by an
obstacle in the form of an impermeable tube which
is filled with magnetic field of total flux Φ (magnetic
vortex). The particle wave function out of the vortex
obeys the Schrödinger equation
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where Φ0 = 2πh̄ce−1 is the London flux quantum,
and our concern is in the motion in the plane which
is orthogonal to the axis of the tube, since the motion
along the axis is free; r and k are the two-dimensional

vectors in this plane, ϕ is the angle between them.
We impose condition

lim
r→∞ eikrψk(r)|ϕ=±π = 1, (2)

signifying that the incident wave comes from the far
left; the forward direction is ϕ = 0, and the backward
direction is ϕ = ±π.

In the next section we consider scattering by an
infinitely thin magnetic vortex. The transverse size
of the vortex is taken into account in Section 3. The
conclusions are drawn in Section 4.

2. INFINITELY THIN MAGNETIC
VORTEX

If the transverse size of the tube is neglected, then
it follows immediately that the finite solution to (1)
satisfying (2) is

ψk(r) =
∑
n∈Z

einϕei(|n|−
1
2 |n−μ|)πJ|n−μ|(kr), (3)

where μ = ΦΦ−1
0 , and Z is the set of integer numbers.

The asymptotics of the wave function at large dis-
tances from the origin is

ψk(r) = eikr cos ϕeiμ[ϕ−sgn(ϕ)π] + f(k, ϕ)
ei(kr+π/4)

√
r

+O(r−3/2), (4)

where it is implied that −π < ϕ < π,

f(k, ϕ) = i

√
2π
k

sin(μπ)Γ(ν)(ϕ), (5)

Γ(ν)(ϕ) =
1

2πi

∑
n∈Z

sgn(n− μ)einϕ, (6)
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ν is the integer part of μ, and

sgn(u) =
{

1, u > 0,
−1, u < 0.

Correspondingly, the S-matrix in this case takes
form

S(k, ϕ; k′, ϕ′) = cos(μπ)
1
k
δ(k − k′)Δ(ϕ− ϕ′)

+ δ(k − k′)
i√
2πk

f(k, ϕ− ϕ′), (7)

where
Δ(ϕ) =

1
2π

∑
n∈Z

einϕ (8)

is the delta-function for the azimuthal angle, Δ(ϕ +
2π) = Δ(ϕ).

The condition of the unitarity of the S-matrix,
S†S = SS† = I, results, in view of equality

Γ(ν)(ϕ) +
[
Γ(ν)(−ϕ)

]∗
= 0, (9)

in the following relation:

sin2(μπ)Δ(ϕ′ − ϕ′′)

=
k

2π

π∫
−π

dϕ f∗(k, ϕ− ϕ′)f(k, ϕ− ϕ′′). (10)

Thus, we see that the optical theorem which should
be derived from (10) by putting ϕ′ = ϕ′′ = 0 is hardly
informative, being a relation between infinite quanti-
ties, Δ(0).

It is instructive to derive the explicit form of
Γ(ν)(ϕ) (6) here. Using elementary trigonometric re-
lation

cot(ϕ/2) {sin[(n+ 1)ϕ] − sin(nϕ)}

= cos[(n+ 1)ϕ] + cos(nϕ),

one can get

π∫
0

dϕ cot(ϕ/2) sin(Nϕ) = π, N = 1, 2, 3, . . . ,

which results in relation

cot
ϕ

2
= 2

∑
n∈Z
n≥1

sin(nϕ).

The use of the latter along with the definition (8)
yields∑
n∈Z
n≥N

einϕ = πΔ(ϕ)−eiNϕ(eiϕ−1)−1, N = 1, 2, 3, . . . ,

(11)
whence it follows that

Γ(ν)(ϕ) =
ei(ν+ 1

2 )ϕ

2π
1

sin(ϕ/2)
, (12)

where the divergence at ϕ = 2πl (l ∈ Z) in (12), as
well as in the second term in (11), is to be understood
in the principal-value sense.

Although amplitude f (5) with Γ(ν) (12) (first ob-
tained more than half a century by Aharonov and
Bohm [1] and then rederived in the framework of dif-
ferent approaches; perhaps the one presented here is
the simplest and the most straigtforward) diverges in
the forward direction, this divergence has no physical
consequences, because there is a crossover to another
regime in the strictly forward direction: amplitude f ,
instead of being proportional to k−1/2, becomes, for-
mally, proportional to r1/2. This is most easily seen
from the following expression which is valid for all
scattering angles and has been obtained in [4]:

f(k, ϕ)
ei(kr+π/4)

√
r

= i sin(μπ)eikr cos ϕei(ν+ 1
2 )ϕ

×sgn [sin(ϕ/2)] erfc
[
e−iπ/4

√
2kr| sin(ϕ/2)|

]
, (13)

where erfc(z) = 2√
π

∞∫
z

du e−u2
is the complementary

error function. In the strictly forward direction one
gets a discontinuity,

lim
ϕ→±0

f(k, ϕ)
ei(kr+π/4)

√
r

= ±i sin(μπ)eikr , (14)

which cancels the discontinuity of the incident wave
(first term in (4)). Consequently, wave function (4)
is finite and continuous in the forward direction:

ψk(r)|ϕ=0 = cos(μπ)eikr , (15)

that is consistent with its exact expression (3). The
appearance of factor cos(μπ) in the transmitted wave
(15) can be intuitively understood as a result of self-
interference from different sides of the vortex [5, 6].

The divergence of the scattering amplitude and
the total cross section, as well as the failure with
the optical theorem, has no physical meaning, be-
ing an artefact of the approximation which neglects
the vortex thickness: this is certainly an excessive
idealization, whereas any realistic vortex is of finite
nonzero thickness. As long as the vortex thickness
is taken into account, all these drawbacks are elimi-
nated.

3. MAGNETIC VORTEX OF NONZERO
TRANSVERSE SIZE

We consider the wave function out of the vortex of
finite thickness 2rc and impose the Robin boundary
condition at the edge of the vortex{[

cos(ρπ) + rc sin(ρπ)
∂

∂r

]
ψk(r)

}∣∣∣∣
r=rc

= 0; (16)

hence, ρ = 0 corresponds to the Dirichlet condition
(perfect conductivity of the boundary)

ψk(r)|r=rc
= 0, (17)
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and ρ = 1/2 corresponds to the Neumann condition
(absolute rigidity of the boundary)

[
∂

∂r
ψk(r)

]∣∣∣∣
r=rc

= 0. (18)

Then (3) is changed to

ψk(r) =
∑
n∈Z

einϕei(|n|−
1
2 |n−μ|)π

[
J|n−μ|(kr)

−Υ(ρ)
|n−μ|(krc)H

(1)
|n−μ|(kr)

]
, (19)

and (5) is changed to

f(k, ϕ) = i

√
2π
k

sin(μπ)Γ(ν)(ϕ)

+i

√
2
kπ

∑
n∈Z

einϕei(|n|−|n−μ|π)Υ(ρ)
|n−μ|(krc), (20)

where

Υ(ρ)
α (u) =

cos(ρπ)Jα(u) + sin(ρπ)u d
duJα(u)

cos(ρπ)H(1)
α (u) + sin(ρπ)u d

duH
(1)
α (u)

.

(21)
In the limit of high energies of scattered particles,

krc�1, the S-matrix unitarity condition becomes

1
i

√
k

2π
cos(μπ) [fc(k, ϕ′ − ϕ′′)−f∗

c (k, ϕ′′ − ϕ′)]

+ 2 sin2(μπ)Δ(ν)
krc

(ϕ′ − ϕ′′) +O(
√
krc)

=
k

2π

π∫
−π

dϕ f∗
c (k, ϕ− ϕ′)fc(k, ϕ− ϕ′′), (22)

where fc is given by the second line in (20), and

Δ(ν)
x (ϕ) =

1
2π

∑
|n−μ|≤x

einϕ (23)

is the regularized (smoothed) angular delta-function,

lim
x→∞Δ(ν)

x (ϕ) = Δ(ϕ), Δ(ν)
x (0) =

x

π
.

The optical theorem in this limit takes form

2

√
2π
k

cos(μπ)Im fc(k, 0)

+
4π
k

sin2(μπ)Δ(ν)
krc

(0) +O(k−1) = σ, (24)

where

σ =

π∫
−π

dϕ|fc(k, ϕ)|2 (25)

is the total cross section in the high-energy limit,
krc � 1.

The scattering amplitude in the high-energy limit
is shown to be given by expression (see also [7]):

fc(k, ϕ) = i

√
2π
k

[
cos(μπ)Δ(ν)

krc
(ϕ)−sin(μπ)Γ(ν)

krc
(ϕ)

]

−
√
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2
| sin(ϕ/2)| exp {−2ikrc| sin(ϕ/2)|

+iμ [ϕ −sgn(ϕ)π] } exp
{
−i

[
2χ(ρ)(krc, ϕ) + π/4

]}
+
√
rcO

[
(krc)−1/6

]
, krc � 1, (26)

where

Γ(ν)
x (ϕ) =

1
2πi

∑
|n−μ|≤x

sgn(n− μ)einϕ, (27)

and

χ(ρ)(krc, ϕ) = arctan
[

2krc| sin3(ϕ/2)|
2cot(ρπ) sin2(ϕ/2) − 1

]
.

(28)
The explicit form of Δ(ν)

krc
(ϕ) (23) and Γ(ν)

krc
(ϕ) (27) is

as follows:

Δ(ν)
krc

(ϕ) =
ei(ν+ 1

2 )ϕ

2π
sin(scϕ)
sin(ϕ/2)

(29)

and

Γ(ν)
krc

(ϕ) =
ei(ν+ 1

2 )ϕ

2π
1 − cos(scϕ)

sin(ϕ/2)
(30)

in the case

[[krc + μ]] − ν = [[krc − μ]] + ν + 1 = sc, (31)

or

Δ(ν)
krc

(ϕ) =
ei(ν+ 1

2∓ 1
2 )ϕ

2π
sin

[(
sc + 1

2

)
ϕ
]

sin(ϕ/2)
(32)

and

Γ(ν)
krc

(ϕ) =
ei(ν+ 1

2∓ 1
2 )ϕ

2π

{
1 − cos

[(
sc + 1

2

)
ϕ
]

sin(ϕ/2)

−tan(ϕ/4) ± i

}
(33)

in the case

[[krc+μ]]−ν− 1
2
± 1

2
= [[krc−μ]]+ν+

1
2
∓ 1

2
= sc. (34)

In the strictly forward direction we get:

fc(k, 0) = i

√
2k
π
rc cos(μπ) +O(k−1/2). (35)

The Fraunhofer diffraction on the vortex in the for-
ward direction is described by the first line in (26),
while the classical reflection from the vortex in other
directions is described by the second two lines; evi-
dently, (35) is due to the Fraunhofer diffraction, since
the classical reflection in the strictly forward direction
is absent.
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It should be noted that the left-hand side of (24)
in the nonvanishing order involves the contribution of
the diffraction peak only, whereas the right-hand side
of (24) includes the contribution of the classical re-
flection as well. We show that the total cross section
in the high-energy limit (25) is independent of the
vortex flux, as well as of the choice of the boundary
condition from the variety of the Robin ones:

σ = 4rc +O(k−1), (36)

this is twice the classical total cross section, the lat-
ter been equal to 2rc. Thus, the contribution of the
diffraction peak to the total cross section is flux in-
dependent and is equal to that of classical reflection.

4. CONCLUSION

We conclude that the flux of an impermeable mag-
netic vortex serves as a gate for the propagation of
high-energy (almost classical) particles: the penetra-
tion of the particles in the strictly forward direction,
see (15) and (35), is maximally possible at integer
values of μ (i.e. for the flux of even number of the
Abrikosov vortices) and is completely absent at half-
integer values of μ (i.e. for the flux of odd number of
the Abrikosov vortices).
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