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1. Introduction

Optimal control methods have a wide field of applications such as modeling
of various practical systems, studying of some classes of inverse and ill-posed
problems [2,3], etc. It is known that the Cauchy–Neumann problem for elliptic
equations, particularly for the Poisson equation, is an ill-posed problem (see [6,
11]). The necessity to study the ill-posed problems of mathematical physics and
their well-posed formulation was first noted by A.N. Tikhonov. It was stimulated
by the fact that some physical processes mathematically are described by these
problems. Systematic studying of these problems has begun since the 50-th of the
last century, and various methods have been developed for their investigation.

In [1], optimal control methods are applied to the solution of the ill-posed
Cauchy–Dirichlet problem for the Poisson equation. Here we consider the ill-
posed Cauchy–Neumann problem for the Poisson equation that reduces to the
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solution of the optimal control problem with specially constructed functional. It
takes us to the adjoint problem with naturally simple form.

Note that the interest to the studying of this problem is encouraged with
the strong relations of the Poisson equation with several applications as well as
problems of electrostatics, mathematical engineering, and theoretical physics.

2. Problem Statement

In the domain Q = {(x, t) | 0 < x < π, −1 < t < 1} , consider the boundary
problem

∂2u

∂x2
+

∂2u

∂t2
= f(x, t), (x, t) ∈ Q, (2.1)

∂u(x, t )
∂x

∣∣∣∣
x=0

= 0,
∂u(x, t)

∂x

∣∣∣∣
x=π

= 0, t ∈ (−1, 1), (2.2)

u(x, t)|t=−1 = ϕ0(x),
∂u(x, t)

∂t

∣∣∣∣
t=−1

= ϕ1(x), x ∈ (0, π). (2.3)

It is supposed that ∂u(x, t)
∂t

∣∣∣
t=1

∈ U∂ , where U∂ is a convex closed set in L2(0, π),

0 ∈ U∂ and f ∈ L2(Q), ϕ0 ∈ W 1
2 (0, π), ϕ1 ∈ L2(0, π) are given functions.

It is known that (2.1)–(2.3) is an ill-posed problem [4, 7].
Let us introduce an optimal control problem in correspondence with the prob-

lem above. For this purpose, we replace the conditions (2.3) by the following ones:

∂u(x, t)
∂t

∣∣∣∣
t=−1

= ϕ1(x),
∂u(x, t)

∂t

∣∣∣∣
t=1

= v(x), x ∈ (0, π) (2.4)

and consider the problem on finding in U∂ the minimum of the functional

J(v) =

π∫

0

[u(x, −1)− ϕ0(x)]2 dx (2.5)

subject to (2.1), (2.2), (2.4).
As is known from the general optimal control theory, (2.1), (2.2), (2.4), (2.5)

is also an ill-posed problem. Note that if f ∈ L2(Q), ϕ1 ∈ L2(0, π), v ∈ L2(0, π),
then the boundary problem (2.1), (2.2), (2.4) has the unique solution from
W 1

2 (Q) [5].

3. Regularization of the Optimal Control Problem (2.1), (2.2),
(2.4), (2.5)

The regularization method is one of important techniques used for solving ill-
posed problems [5, 10]. We apply this method to solve the problem (2.1), (2.2),
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(2.4), (2.5). We take the functional ε
∫ π
0 |v(x)|2 dx (ε > 0) as a stabilizer in the

considering problem. Thus, for the minimization, we obtain the functional

Jε(v) = J(v) + ε

π∫

0

|v(x)|2 dx =

π∫

0

[u(x, −1)− ϕ0(x)]2 dx + ε

π∫

0

|v(x)|2 dx (3.1)

in the class U∂ subject to (2.1), (2.2), (2.5).
Let u(x, t; v) be a solution of the problem (2.1), (2.2), (2.4) corresponding to

the given control v ∈ U∂ ; u(x, t; 0) be a solution of the problem (2.1), (2.2), (2.4)
for v(x) ≡ 0.

Let us define

a(v1, v2) =

π∫

0

[u(x, −1; v1)− u(x,−1; 0)] [u(x,−1; v2)− u(x,−1; 0)] dx

+ε

π∫

0

v1(x)v2(x) dx,

L(v) =

π∫

0

[ϕ0(x)− u(x,−1; 0)] [u(x,−1; v)− u(x,−1; 0)] dx,

where a(v1, v2) is a bilinear continuous symmetric form on U∂ ; L(v) is a linear
form on U∂ .

Using these definitions and taking v1 = v2 = v in the expression for a(v1, v2),
the functional (3.1) can be rewritten in the form

Jε(v) = a(v, v)− 2L(v) +

π∫

0

[u(x,−1; 0)− ϕ0(x)]2 dx.

Since a(v1, v2) is a bilinear continuous symmetric form and it satisfies the condi-
tion (see definition for a(v1, v2))

a(v, v) ≥ ε ‖v‖2
L2

,

it follows from the well-known theorem from [8, page 13] that the theorem below
is valid.

Theorem 3.1. For the optimal control problem (2.1), (2.2), (2.4), (3.1) there
exists the element v̄ ∈ U∂ such that Jε(v̄) = inf

v∈U∂

Jε(v) and this element is unique.
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Basing on the theorem from [8, page 18], we can easily prove the theorem
below.

Theorem 3.2. For v̄ ∈ U∂ to be an optimal control, it is necessary and
sufficient to fulfill the inequality

J ′εv(v̄)(v − v̄ ) ≥ 0 ∀v ∈ U∂ ,

which is equivalent to

π∫

0

[u(x, −1; v̄)− ϕ0(x)]uv(x, −1; v̄) [v(x)− v̄(x)] dx

+ε

π∫

0

v̄(x) [v(x)− v̄(x)] dx ≥ 0 ∀v ∈ U∂ , (3.2)

where J ′εv is a Gateaux derivative with respect to v; uv(x, t; v) is a derivative of
the solution of the problem (2.1), (2.2), (2.5) with respect to v.

Let us transform inequality (3.2). The linear boundary problem (2.1), (2.2),
(2.4) can be rewritten in an operator form

Au = F ≡ {f, ϕ1, v} ,

where A is an unbounded linear operator from the space L2(Q) to the Hilbert
space L2(Q)× L2(0, π)× L2(0, π),

A : u(x, t) 7→
{

∆u(x, t),
∂u(x, t)

∂t

∣∣∣∣
t=−1

,
∂u(x, t)

∂t

∣∣∣∣
t=1

}
.

As the domain of A, we take a set of functions from W 2
2 (Q) satisfying the condi-

tions

∂u(x, t )
∂x

∣∣∣∣
x=0

= 0,
∂u(x, t)

∂x

∣∣∣∣
x=π

= 0, t ∈ (−1, 1).

Then the operator A admits the closure Ā that has an inverse. It means that
the operator equation above has a generalized solution u = Ā−1F belonging to
W 1

2 (Q) [5,10].
Let us take a derivative of this solution in the direction v−v̄ : uv(x, t; v̄) [v − v̄]

= u(x, t ; v)− u (x, t ; v̄).
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Then inequality (3.2) takes the form

π∫

0

[u(x, −1; v̄)− ϕ0(x)] [u(x, −1; v)− u(x, −1; v̄)] dx

+ ε

π∫

0

v̄(x) [v(x)− v̄(x)] dx ≥ 0 ∀v ∈ U∂ . (3.3)

4. Optimality Condition

Let us introduce the adjoint boundary problem

∂2ψ

∂x2
+

∂2ψ

∂t2
= 0, (x, t) ∈ Q, (4.1)

∂ψ(x, t)
∂x

∣∣∣∣
x=0

=
∂u(x, t)

∂x

∣∣∣∣
x=π

= 0, t ∈ (−1, 1), (4.2)

∂ψ(x, t)
∂t

∣∣∣∣
t=−1

= u(x,−1; v̄)− ϕ0(x),
∂ψ(x, t)

∂t

∣∣∣∣
t=1

= 0, x ∈ (0, π). (4.3)

Note that the problem (4.1)–(4.3) has the unique solution from W 2
2 (Q) [5].

Using the boundary problem (4.1)–(4.3), we can transform the first term of
inequality (3.3). If to take ũ(x, t) = u(x, t; v)− u(x, t; v̄), then it is clear that

∫∫

Q

[
∂2ũ

∂x2
+

∂2ũ

∂t2

]
ψ(x, t; v̄) dxdt = 0.

Integrating by parts in the above equation and taking into account (2.2), (2.4),
(4.1)–(4.3), we have

∫

Q

∫ [
∂2ũ

∂x2
+

∂2ũ

∂t2

]
ψ(x, t; v̄)dxdt =

π∫

0

[v(x)− v̄(x)] ψ(x, 1; v̄)dx

+

π∫

0

[u(x,−1; v)− u(x,−1; v̄)]
∂ψ(x, t; v̄ )

∂t

∣∣∣∣
t=−1

dx = 0, (4.4)

where ψ(x, t; v̄) is a solution of the problem (4.1)–(4.3) corresponding to the
control v̄ ∈ U∂ .
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Taking into account the first condition of (4.3) from (4.4), we can obtain

π∫

0

[u (x,−1; v̄)− ϕ0(x)] [u (x,−1; v)− u (x,−1; v̄)] dx

= −
π∫

0

ψ(x, 1; v̄) [v (x)− v̄ (x)] dx. (4.5)

Then from (3.3) and (4.5) it follows that

π∫

0

[−ψ(x, 1; v̄) + εv̄(x)] [v(x)− v̄(x)] dx ≥ 0 ∀v ∈ U∂ . (4.6)

This proves the optimality condition in the form of the following theorem.

Theorem 4.1. Let the function v̄(x) ∈ U∂ be an optimal control for the prob-
lem (2.1), (2.2), (2.4), (3.1). Then it is necessary and sufficient that this function
satisfy the boundary problems (2.1), (2.2), (2.4), (4.1)–(4.3) and variational in-
equality (4.6).

5. Application of the Fourier Method

Now we analyze the boundary problems (2.1), (2.2), (2.4) and (4.1)–(4.3) by
using the Fourier method. The applicability of this method to the considered
problems is shown in [5]. We will look for the solutions of the boundary problems
in the forms

u(x, t) = u0(t) +
∞∑

k=1

uk(t)Xk(x), ψ(x, t) = ψ0(t) +
∞∑

k=1

ψk(t)Xk(x),

where

X0(x) =
1√
π

, λo = 0, Xk(x) =

√
2
π

cos k x ; λk = −k2, k = 1, 2, . . . (5.1)

are the systems of orthonormal eigenfunctions and eigenvalues of the spectral
problem

X ′′(x) = λX(x), X ′(0) = X ′(π) = 0.

From (2.1), (2.2), (2.4), (4.1)–(4.3) and (4.6) we obtain
{

ük(t)− k2uk(t) = fk(t), t ∈ (−1, 1),
u̇k(−1) = ϕ1k, u̇k(1) = v̄k, k = 0, 1, 2, . . . ,

(5.2)
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{
ψ̈k(t)− k2ψk(t) = 0, t ∈ (−1, 1),
ψ̇k(−1) = uk(−1)− ϕ0k, ψ̇k(1) = 0, k = 0, 1, 2, . . . ,

(5.3)

[−ψk(1) + εv̄k] [vk − v̄k] ≥ 0 ∀vk, k = 0, 1, 2, . . . , (5.4)

where fk(t), ϕ0k, ϕ1k, v̄k, vk, k = 0, 1, 2, . . . are Fourier coefficients of the func-
tions f(x, t), ϕ0(x), ϕ1(x), v̄(x), v(x) with respect to the system (5.1).

From the general theory of the boundary problems for the ordinary differential
equations [9], we can conclude that the solutions of the boundary problem (5.2)
for k = 1, 2, . . . can be written in the form

uk(t) = v̄k
ch k(1 + t)

k sh 2k
− ϕ1k

ch k(1− t)
k sh 2k

+

1∫

−1

Gk(t; τ)fk(τ)dτ, (5.5)

where

Gk(t, τ) =




−ch k(1− τ) ch k(1 + t)

k sh 2k
, t ∈ [−1, τ ],

1
k

sh k(t− τ)− ch k(1− τ) ch k(1 + t)
k sh 2k

, t ∈ [τ, 1]

is a Green function for the problem (5.2).
For the problem (5.3), we have

ψk(t) = −uk(−1)− ϕ0k

k sh 2k
ch k(1− t). (5.6)

For k = 0, the solutions of the problems (5.2), (5.3) are in the forms

u0(t) =

t∫

−1

(t− s)f0(s)ds + ϕ10(t + 1) + ϕ00,

ψ0(t) = c,

where c is a random constant and
∫ 1
−1 f0(t)dt + ϕ10 = v̄0, moreover,

ϕ00 = 1√
π

∫ π
0 ϕ0(x)dx, ϕ10 = 1√

π

∫ π
0 ϕ1(x)dx, v̄0 = 1√

π

∫ π
0 v(x)dx, f0(t) =

1√
π

∫ π
0 f(x, t)dx.

From (5.5), (5.6) and (5.4), we get

uk(−1) =
v̄k

k sh 2k
− ϕ1k

cth 2k
k

+

1∫

−1

Gk(−1; τ)fk(τ)dτ, k = 1, 2, . . . ,

−ψk(1) =
uk(−1)− ϕ0k

k sh 2k
, k = 1, 2, . . . ,
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[uk(−1)− ϕ0k + εk sh 2k · v̄k] [vk − v̄k] ≥ 0 ∀vk, k = 1, 2, . . . . (5.7)

The condition (5.7) can be transformed as


−ϕ1k

cth 2k

k
+ v̄k

(
1

k sh 2k
+ εk sh 2k

)
− ϕok +

1∫

−1

Gk(−1; τ)fk(τ)dτ




×(vk − v̄k) ≥ 0 ∀vk, k = 1, 2, . . . . (5.7′)

Now let us consider the case U∂ = L2(0, π). Then from (5.7′) we obtain

v̄k = β−1
kε


ϕ0k + ϕ1k

cth 2k

k
−

1∫

−1

Gk(−1; τ)fk(τ)dτ


 , (5.8)

where

βkε =
1 + εk2 sh2 2k

k sh 2k
, k = 1, 2, . . . .

As follows from (5.4), v̄0 = ψ0(1)
ε for k = 0.

Since we are interested in the bounded value of v̄0 for ε → 0, the value ψ0(1)
should be equal to zero. Then v̄0 = 0, and the solution of the problem (5.3) for
k = 0 is equal to zero.

Since the solution of the problem (5.2) for k = 0 has the form

u0(t) =

t∫

−1

(t− s)f0(s)ds + ϕ10(t + 1) + ϕ00,

it is necessary to fulfill the condition
∫ 1
−1 f0(t)dt + ϕ10 = 0.

Thus, we have the optimal values of the Fourier coefficients v̄k for the function
v̄(x). Then, for ε → 0 from (5.5), (5.8), we have

uk0(t) = lim
ε→0

uk(t) = ϕ0k ch k(1 + t)+
ϕ1k

k sh 2k
[ch 2k ch k(1 + t)− ch k(1− t)]

− ch k(1 + t)

1∫

−1

Gk(−1; τ)fk(τ)dτ +

1∫

−1

Gk(t; τ)fk(τ)dτ, k = 1, 2, . . . . (5.9)

v̄k0 = lim
ε→0

v̄k = ϕ0kk sh 2k + ϕ1k ch 2k − k sh 2k

1∫

−1

Gk(−1; τ)fk(τ)dτ, k = 1, 2, . . . .

(5.10)

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 4 419



H.F. Guliyev, Y.S. Gasimov, and S.M. Zeynalli

Note that the solution uk(t) given by (5.5) and corresponding to the optimal
Fourier coefficients v̄k, k = 1, 2, . . . given by (5.8), satisfies the limit relations
lim
ε→0

uk(−1) = ϕ0k. This is consistent with the condition u(x,−1) = ϕ0(x)

from (2.3).
Thus the exact solution of the problem (2.1), (2.2), (2.4), (2.5) has the form

v̄(x) =
∞∑

k=1

√
2
π

sh 2k


kϕ0k + ϕ1k cth 2k − k

1∫

−1

Gk(−1; τ)fk(τ)dτ


 cos kx.

Then the solution of the initial problem (2.1)–(2.3) has the form

u(x, t) =
1√
π

u0(t)

+
∞∑

k=1

√
2
π

{
ϕ0k ch k(1 + t) +

ϕ1k

k sh 2k
[ch 2k ch k (1 + t)− ch k (1− t)]

− ch k (1 + t)

1∫

−1

Gk (−1; τ) fk (τ) dτ +

1∫

−1

Gk (t; τ) fk (τ) dτ

}
cos kx.

Now let us consider the analogue of the Hadamard example for the problem
(2.1)–(2.3). For this purpose we take

f(x, t) = 0, ϕ0(x) = 0, ϕ1(x) =
1
k

exp
{
−
√

k
}

cos kx, k ∈ N.

In this case, the solution of the Cauchy–Neumann problem for the Laplace
equation is unique and has the form

u(x, t) =
1
k2

exp
{
−
√

k
}

cos kx sh k(1 + t), k ∈ N. (5.11)

At the same time, for k →∞, the function ϕ1(x) tents to zero uniformly and all
its derivatives belong to L2(0, π). However, the solution (5.11) for any t > −1
has a cosinusodial form with arbitrary large amplitude not belonging to L2(Q).

For the function ϕ1(x) to satisfy {exp {2k}ϕ1k}∞k=1 ∈ l2, it is necessary and
sufficient that the Fourier coefficients ϕ1k have asymptotics of order
exp {−(2 + ε)k} for sufficiently large k, where ε > 0. In our case, we have only
asymptotics of order exp

{
−
√

k
}

that is not enough to provide the well-posedness
of the Cauchy–Neumann problem for the Laplace equation.
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