L - and M -structure in lush spaces

Elias Pipping
Fachbereich Mathematik und Informatik, Freie Universität Berlin 10115, Berlin, Germany
E-mail:pipping@math.fu-berlin.de
Received September 9, 2010
Let X be a Banach space which is lush. It is shown that if a subspace of X is either an L-summand or an M-ideal then it is also lush.

Key words: Lushness, M-summand, M-ideal, L-summand.
Mathematics Subject Classification 2000: 46B20, 46B04.

Introduction

Toeplitz defined [1] the numerical range of a square matrix A over the field \mathbb{F} (either \mathbb{R} or \mathbb{C}), i.e. $A \in \mathbb{F}^{n \times n}$ for some $n \geq 0$, to be the set

$$
W(A)=\left\{\langle A x, x\rangle:\|x\|=1, \quad x \in \mathbb{F}^{n}\right\}
$$

which easily extends to operators on Hilbert spaces. In the 1960s, Lumer [2] and Bauer [3] independently extended this notion to arbitrary Banach spaces. For a Banach space X whose unit sphere we denote by S_{X} and an operator $T \in B(X)=\{T: X \rightarrow X: T$ linear, continuous $\}$, we thus call
$V(T)=\left\{x^{*}(T x): x^{*}(x)=1, x^{*} \in S_{X^{*}}, x \in S_{X}\right\}$ and $v(T)=\sup \{|\lambda|: \lambda \in V(T)\}$
the numerical range and radius of T, respectively. By construction, we have $v(T) \leq\|T\|$ for all $T \in B(X)$. The greatest number $m \geq 0$ that satisfies

$$
m\|T\| \leq v(T) \quad \text { for every } T \in B(X)
$$

is called the numerical index of X and denoted by $n(X)$. A summary of what is and what is not known about the numerical index can be found in [4] and [5]. In the special case $n(X)=1$ the operator norm and the numerical radius coincide on $B(X)$.

Several attempts have been made to characterize the spaces with numerical index one among all Banach spaces geometrically, one of them in [6]. We denote by

$$
S\left(B_{X}, x^{*}, \alpha\right):=\left\{x \in B_{X}: \operatorname{Re} x^{*}(x)>1-\alpha\right\}
$$

for any $x^{*} \in S_{X^{*}}$ and $\alpha>0$ an open slice of the unit ball. Setting $\mathbb{T}:=$ $\{\omega \in \mathbb{F}:|\omega|=1\}$ and writing $\operatorname{co}(F)$ for the convex hull of a subset $F \subseteq X$ allows us to write the absolutely convex hull of F as $\operatorname{co}(\mathbb{T} F)$.

Definition. Let X be a Banach space. If for every two points $u, v \in S_{X}$ and $\varepsilon>0$ there is a functional $x^{*} \in S_{X^{*}}$ that satisfies

$$
u \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(v, \operatorname{co}\left(\mathbb{T} S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon,
$$

the space X is said to be lush.
Unfortunately, whilst lush spaces do have numerical index one, spaces with numerical index one need not be lush [7, Rem. 4.2]. Lushness has proved invaluable in constructing a Banach space whose dual has strictly smaller numerical index - answering a question that up until then had been open for decades. Consequently, the property deserves attention.

Let us recall some results about sums of Banach spaces.
Proposition (M. Martín and P. Payá [8, Prop. 1]). Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces. Then

$$
n\left(c_{0}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)\right)=n\left(\ell^{1}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)\right)=n\left(\ell^{\infty}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)\right)=\inf _{n \in \mathbb{N}} n\left(X_{n}\right)
$$

In particular, the following statements are equivalent:
(i) every X_{n} has numerical index one,
(ii) the space $c_{0}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)$ has numerical index one,
(iii) the space $\ell^{1}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)$ has numerical index one, and
(iv) the space $\ell^{\infty}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)$ has numerical index one.

A notion that has been introduced in [9] is that of a CL space. Originally defined for real spaces, it has proven inappropriate for complex spaces. Thus we will deal with a weakening introduced in [10] that had previously been used in [11] but remained unnamed.

Definition. Let X be a Banach space. If for every convex subset $F \subseteq S_{X}$ that is maximal in S_{X} with respect to convexity, $\overline{\operatorname{co}}(\mathbb{T} F)=B_{X}$ holds, then X is called an almost-CL space.

Almost-CL spaces are easily seen to be lush spaces but the converse does not hold [6, Ex. 3.4(c)]. With regard to sums, the following result has been obtained.

Proposition (M. Martín and P. Payá [12, Prop. $8 \& 9]$). Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces. Then the following are equivalent:
(i) every X_{n} is an almost-CL space,
(ii) the space $c_{0}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)$ is almost- $C L$, and
(iii) the space $\ell^{1}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)$ is almost- $C L$.

For the recently introduced lushness property, however, only part of the corresponding equivalence has been shown.

Proposition (Boyko et al. [13, Prop. 5.3]). Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces. If every X_{n} is lush, then so are the spaces

$$
c_{0}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right), \quad \ell^{1}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right), \quad \text { and } \quad \ell^{\infty}\left(\left(X_{n}\right)_{n \in \mathbb{N}}\right)
$$

We seek to improve this result, bringing it up to par with what has been proved for almost-CL spaces and spaces with numerical index one.

Inheritance of Lushness

To this end we will show that if X and Y are arbitrary Banach spaces and one of the two spaces $X \oplus_{1} Y$ or $X \oplus_{\infty} Y$ is lush, then X and Y are lush themselves.

Such a relation between the spaces X, Y, and their sum can also be expressed in terms of projections.

Definition. Let Z be a Banach space and $P: Z \rightarrow Z$ a linear projection that satisfies $\|z\|=\max \{\|P z\|,\|z-P z\|\}$ for every $z \in Z$. Then P and ran P are called an M-projection and an M-summand, respectively.

Definition. Let Z be a Banach space and $P: Z \rightarrow Z$ a linear projection that satisfies $\|z\|=\|P z\|+\|z-P z\|$ for every $z \in Z$. Then P and ran P are called an L-projection and an L-summand, respectively.

Basic results of L- and M-structure theory that will be used from here on can be found in [14, Sec. I.1]. If a subspace $X \subseteq Z$ is an M-summand, its annihilator X^{\perp} is an L-summand in Z^{*}. However, an L-summand of Z^{*} need not be the annihilator of any space $X \subseteq Z$, nor must subspaces $X \subseteq Z$ for which X^{\perp} is an L-summand in Z^{*} be M-summands. Subspaces $X \subseteq Z$ for which X^{\perp} is an L-summand in Z^{*} are referred to as M-ideals.

M-summands

We can now proceed to show that M -summands inherit lushness.
Proposition 1. Let X be an M-summand in a lush space Z. Then X is lush.
Proof. Let $u, v \in S_{X}$ and $\varepsilon \in(0,1)$ be arbitrary. Since X is an Msummand there is an M-projection $P: Z \rightarrow Z$ with $\operatorname{ran}(P)=X$. Because Z is lush, there is a functional $z^{*} \in S_{Z^{*}}$ satisfying $u \in S\left(B_{Z}, z^{*}, \varepsilon / 2\right)$ and

$$
\operatorname{dist}\left(v, \operatorname{co}\left(\mathbb{T} S\left(B_{z}, z^{*}, \varepsilon / 2\right)\right)\right)<\varepsilon / 2
$$

Hence there are points $z_{1}, \ldots, z_{n} \in S\left(B_{Z}, z^{*}, \varepsilon / 2\right)$ and corresponding $\theta_{1}, \ldots, \theta_{n}$ $\in \mathbb{F}$ that satisfy $\sum_{k=1}^{n}\left|\theta_{k}\right| \leq 1$ such that $\left\|\sum_{k=1}^{n} \theta_{k} z_{k}-v\right\|<\varepsilon / 2$ holds. The projection P allows us to split these points up into

$$
x_{k}:=P z_{k} \quad \text { and } \quad y_{k}:=P x_{k}-x_{k},
$$

of which the x_{k} appear to approximate v mostly by themselves:

$$
\left\|\sum_{k=1}^{n} \theta_{k} z_{k}-v\right\|=\max \left\{\left\|\sum_{k=1}^{n} \theta_{k} y_{k}\right\|,\left\|\sum_{k=1}^{n} \theta_{k} x_{k}-v\right\|\right\} .
$$

By $\operatorname{Re} z^{*}(x)>1-\varepsilon / 2$ and $\left\|z^{*}\right\|=1$ we clearly have $\operatorname{Re} z^{*}\left(y_{k}\right) \leq \varepsilon / 2\left\|x_{k}\right\| \leq \varepsilon / 2$ for every k and thus

$$
\operatorname{Re} z^{*}\left(x_{k}\right)=\operatorname{Re} z^{*}\left(z_{k}\right)-\operatorname{Re} z^{*}\left(y_{k}\right)>1-\varepsilon
$$

leaving us with $x_{k} \in S\left(B_{X}, z^{*}, \varepsilon\right)$, and therefore

$$
\operatorname{dist}\left(v, \operatorname{co}\left(\mathbb{T} S\left(B_{X}, z^{*}, \varepsilon\right)\right)\right)<\varepsilon
$$

By restricting z^{*} to X and normalizing the restriction, we obtain the desired functional.

M-ideals

The celebrated principle of local reflexivity due to Lindenstrauss and Rosenthal [15] can be used to extend Proposition 1 to M-ideals. More precisely, we require a refined statement.

Theorem (Johnson et al. [16, Sec. 3]). Let X be a Banach space, $E \subseteq X^{* *}$ and $F \subseteq X^{*}$ finite dimensional and $\varepsilon>0$ arbitrary. Then there is an operator $T: E \rightarrow X$ with $\|T\|\left\|T^{-1}\right\| \leq 1+\varepsilon$ that satisfies $\left(T \circ i_{X}\right)(x)=x$ for every $x \in X$ with $i_{X}(x) \in E$ and $x^{* *}\left(x^{*}\right)=x^{*}\left(T x^{* *}\right)$ for every $x^{*} \in F, x^{* *} \in E$.

An elementary proof is given in [17, Th. 2].
Remark 1. We shall only be concerned with the case $X \neq\{0\}$ in the above theorem. Without loss of generality, we can then assume $E \cap i_{X}(X) \neq\{0\}$. Consequently, the ε-isometry T can be chosen to satisfy

$$
1-\varepsilon \leq\left\|T z^{* *}\right\| \leq 1+\varepsilon \quad \text { for every } z^{* *} \in S_{E} .
$$

With that in mind extending Proposition 1 to M-ideals is straightforward.
Theorem 2. Let X be an M-ideal in a lush space Z. Then X is lush as well.
Pr oof. Let the points $u, v \in S_{X}$ be arbitrary and $\varepsilon>0$. The lushness of Z now guarantees that there is a functional $z^{*} \in S_{Z^{*}}$ with $u \in S\left(B_{Z}, z^{*}, \varepsilon / 2\right)$ as well as an absolutely convex combination of points $z_{1}, \ldots, z_{n} \in S\left(B_{Z}, z^{*}, \varepsilon / 2\right)$ and corresponding scalars $\theta_{1}, \ldots, \theta_{n} \in \mathbb{F}$ such that $\left\|\sum_{k=1}^{n} \theta_{k} z_{k}-v\right\|<\varepsilon / 2$ and $\sum_{k=1}^{n}\left|\theta_{k}\right| \leq 1$. We observe $Z^{* *}=X^{\perp \perp} \oplus_{\infty} M$ for some subspace $M \subseteq Z^{* *}$. For $k \in\{1, \ldots, n\}$ we can now find a decomposition $i_{Z}\left(z_{k}\right)=x_{k}^{* *}+y_{k}^{* *}$ with $x_{k}^{* *} \in X^{\perp \perp}$ and $y_{k}^{* *} \in M$. By

$$
\operatorname{Re}\left(i_{Z^{*}}\left(z^{*}\right)\right)\left(i_{Z}(u)\right)=\operatorname{Re} z^{*}(u)>1-\varepsilon / 2,
$$

we clearly have

$$
\left|y^{* *}\left(z^{*}\right)\right| \leq \varepsilon / 2 \quad \text { for every } y^{* *} \in S_{M} .
$$

The functionals $x_{k}^{* *}$ satisfy

$$
\operatorname{Re} x_{k}^{* *}\left(z^{*}\right)=\operatorname{Re} z^{*}\left(z_{k}\right)-\operatorname{Re} y_{k}^{* *}\left(z^{*}\right)>1-\varepsilon
$$

and in particular

$$
1-\varepsilon \leq\left\|x_{k}^{* *}\right\| \leq\left\|z_{k}\right\|=1
$$

We also remark

$$
\left\|\sum_{k=1}^{n} \theta_{k} z_{k}-v\right\|=\max \left\{\left\|\sum_{k=1}^{n} \theta_{k} y_{k}^{* *}\right\|,\left\|\sum_{k=1}^{n} \theta_{k} x_{k}^{* *}-i_{Z}(v)\right\|\right\} .
$$

Since $X^{\perp \perp}$ and $X^{* *}$ can be identified, we have shown that the functionals $x_{k}^{* *}$ meet the requirements of lushness for $i_{X}(u)$ and $i_{X}(v)$ in $X^{* *}$.

In applying the principle of local reflexivity to the finite dimensional subspace $E:=\operatorname{lin}\left\{x_{1}^{* *}, \ldots, x_{n}^{* *}, i_{Z}(v)\right\} \subseteq X^{* *}$, we obtain an operator $T: E \rightarrow X$ that satisfies

- $\left(T \circ i_{X}\right) x=x$ for every $x \in X$ with $i_{X}(x) \in E$,
- $z^{*}\left(T z^{* *}\right)=z^{* *}\left(z^{*}\right)$ for $z^{* *} \in E$ and
- $1-\varepsilon / 2 \leq\left\|T z^{* *}\right\| \leq 1+\varepsilon / 2$ for $z^{* *} \in S_{E}$ (as per Remark 1$)$.

We can now project $x_{k}^{* *}$ onto X with any relevant structure preserved. For $x_{k}:=$ $T x_{k}^{* *} \in X$ we observe

$$
\left\|\sum_{k=1}^{n} \theta_{k} x_{k}-v\right\|=\left\|\sum_{k=1}^{n} \theta_{k} T x_{k}^{* *}-\left(T \circ i_{Z}\right) v\right\| \leq(1+\varepsilon / 2)\left\|\sum_{k=1}^{n} \theta_{k} x_{k}^{* *}-i_{Z}(v)\right\|<\varepsilon
$$

and $\operatorname{Re} z^{*}\left(x_{k}\right)=\operatorname{Re} x_{k}^{* *}\left(z^{*}\right)>1-\varepsilon$. What remains to be done is normalizing. We thus continue to set $\tilde{x}_{k}:=x_{k} /\left\|x_{k}\right\|$ and obtain

$$
\begin{aligned}
\left\|x_{k}-\tilde{x}_{k}\right\| & =\left|\left\|x_{k}\right\|-1\right| \\
& \leq\left|\left\|x_{k}\right\|-\left\|x_{k}^{* *}\right\|\right|+\left|\left\|x_{k}^{* *}\right\|-1\right| \\
& \leq\left|\left\|T x_{k}^{* *}\right\|-\left\|x_{k}^{* *}\right\|\right|+\varepsilon / 2 \\
& =\varepsilon\left\|x_{k}^{* *}\right\| / 2+\varepsilon / 2 \\
& \leq \varepsilon
\end{aligned}
$$

and therefore

$$
\left\|\sum_{k=1}^{n} \theta_{k} \tilde{x}_{k}-v\right\| \leq\left\|\sum_{k=1}^{n} \theta_{k}\left(x_{k}-\tilde{x}_{k}\right)\right\|+\left\|\sum_{k=1}^{n} \theta_{k} x_{k}-v\right\| \leq \max _{k \leq n}\left\|x_{k}-\tilde{x}_{k}\right\|+\varepsilon \leq 2 \varepsilon
$$

as well as

$$
\operatorname{Re} z^{*}\left(\tilde{x}_{k}\right) \geq \operatorname{Re} z^{*}\left(x_{k}\right)-\left\|x_{k}-\tilde{x}_{k}\right\|>1-2 \varepsilon
$$

L-summands

Lushness is also inherited by L-summands. To see this we replace the complementary parts y_{k} of z_{k} with elements $\xi_{k} \in X$ on which the functional z^{*} nearly attains its norm, such that the $\theta_{k} \xi_{k}$ nearly add up to zero.

Theorem 3. Let X be an L-summand of a lush space Z. Then X is lush.
Proof. Let $u, v \in S_{X}$ and $\varepsilon>0$ be arbitrary. Since Z is lush, for any $\eta>0$ there is a functional $z^{*} \in S_{Z^{*}}$ as well as $z_{1}, \ldots, z_{n} \in S\left(B_{Z}, z^{*}, \eta\right)$ and $\theta_{1}, \ldots, \theta_{n}$ $\in \mathbb{F}$ with $\sum_{k=1}^{n}\left|\theta_{k}\right| \leq 1$ satisfying $u \in S\left(B_{Z}, z^{*}, \eta\right)$ and $\left\|\sum_{k=1}^{n} \theta_{k} z_{k}-v\right\|<\eta$. Let P be the L-projection onto X. We set $x_{k}:=P z_{k}, y_{k}:=z_{k}-x_{k}$ and note

$$
\left\|\sum_{k=1}^{n} \theta_{k} z_{k}-v\right\|=\left\|\sum_{k=1}^{n} \theta_{k} x_{k}-v\right\|+\left\|\sum_{k=1}^{n} \theta_{k} y_{k}\right\|
$$

In particular, this gives $\left\|\sum_{k=1}^{n} \theta_{k} x_{k}-v\right\|<\eta$ and $\left\|\sum_{k=1}^{n} \theta_{k} y_{k}\right\|<\eta$. Replacing y_{k} with $\xi_{k}:=\left\|y_{k}\right\| /\|u\| u$ by setting $\tilde{x}_{k}:=x_{k}+\xi_{k}$ yields $\left\|\tilde{x}_{k}\right\| \leq\left\|z_{k}\right\| \leq 1$ and

$$
\begin{aligned}
\operatorname{Re} z^{*}\left(\tilde{x}_{k}\right) & =\operatorname{Re} z^{*}\left(z_{k}-y_{k}+\xi_{k}\right) \\
& >(1-\eta)-\left\|y_{k}\right\|+(1-\eta)\left\|y_{k}\right\| \\
& =1-\eta-\eta\left\|y_{k}\right\| \\
& \geq 1-2 \eta .
\end{aligned}
$$

We observe

$$
\begin{equation*}
\operatorname{Re} z^{*}\left(y_{k}\right)=\operatorname{Re} z^{*}\left(z_{k}\right)-\operatorname{Re} z^{*}\left(x_{k}\right) \geq(1-\eta)-\left\|x_{k}\right\| \geq\left\|y_{k}\right\|-\eta, \tag{1}
\end{equation*}
$$

which we will utilize to prove

$$
\begin{equation*}
\left(\operatorname{Im} z^{*}\left(y_{k}\right)\right)^{2} \leq 2\left\|y_{k}\right\| \eta \tag{2}
\end{equation*}
$$

Since (2) trivially holds if $\left\|y_{k}\right\| \leq \eta$ is satisfied, we shall assume $\left\|y_{k}\right\|>\eta$, leaving us with

$$
\begin{aligned}
\left(\operatorname{Im} z^{*}\left(y_{k}\right)\right)^{2} & \leq\left(\operatorname{Re} z^{*}\left(y_{k}\right)\right)^{2}+\left(\operatorname{Im} z^{*}\left(y_{k}\right)\right)^{2}-\left(\left\|y_{k}\right\|-\eta\right)^{2} \\
& =\left|z^{*}\left(y_{k}\right)\right|^{2}-\left\|y_{k}\right\|^{2}+2\left\|y_{k}\right\| \eta-\eta^{2} \\
& \leq 2\left\|y_{k}\right\| \eta-\eta^{2} \\
& <2\left\|y_{k}\right\| \eta .
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
\left|\sum_{k=1}^{n} \theta_{k} \operatorname{Re} z^{*}\left(y_{k}\right)\right| & =\left|\sum_{k=1}^{n} \theta_{k} z^{*}\left(y_{k}\right)-i \sum_{k=1}^{n} \theta_{k} \operatorname{Im} z^{*}\left(y_{k}\right)\right| \\
& \leq \| \sum_{k=1}^{n} \theta_{k} y_{k}| |+\max _{k \leq n}^{n}\left|\operatorname{Im} z^{*}\left(y_{k}\right)\right| \\
& \leq \eta+\max _{k \leq n} \sqrt{2\left\|y_{k}\right\| \eta} \\
& \leq \eta+2 \sqrt{\eta}
\end{aligned}
$$

Applying (1) to $\delta_{k}:=\left\|y_{k}\right\|-\operatorname{Re} z^{*}\left(y_{k}\right)$ yields $\left|\delta_{k}\right| \leq \eta$; we conclude

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \theta_{k} \xi_{k}\right\| & \leq\left|\sum_{k=1}^{n} \theta_{k} \operatorname{Re} z^{*}\left(y_{k}\right)\right|+\left|\sum_{k=1}^{n} \theta_{k} \delta_{k}\right| \\
& \leq 2 \eta+2 \sqrt{\eta}
\end{aligned}
$$

and thus

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \theta_{k} \tilde{x}_{k}-v\right\| & =\left\|\sum_{k=1}^{n} \theta_{k}\left(x_{k}+\xi_{k}\right)-v\right\| \\
& \leq\left\|\sum_{k=1}^{n} \theta_{k} x_{k}-v\right\|+\left\|\sum_{k=1}^{n} \theta_{k} \xi_{k}\right\| \\
& \leq 3 \eta+2 \sqrt{\eta} .
\end{aligned}
$$

Going back and choosing η such that $3 \eta+2 \sqrt{\eta}<\varepsilon$ and $2 \eta<\varepsilon$ are satisfied yields

$$
\operatorname{Re} z^{*}\left(\tilde{x}_{k}\right)>1-\varepsilon \quad \text { for every } k \in\{1, \ldots, n\}
$$

and

$$
\operatorname{dist}\left(v, \operatorname{co}\left(\mathbb{T} S\left(B_{X}, z^{*}, \varepsilon\right)\right)\right)<\varepsilon
$$

as desired.

References

[1] O. Toeplitz, Das Algebraische Analogon zu Einem Satze von Fejér. - Math. Z. 2 (1918), No. 1-2, 187-197, DOI 10.1007/BF01212904.
[2] G. Lumer, Semi-Inner-Product Spaces. - Trans. Amer. Math. Soc. 100 (1961), 29-43.
[3] F.L. Bauer, On the Field of Values Subordinate to a Norm. - Numer. Math. 4 (1962), 103-113.
[4] M. Martín, A Survey on the Numerical Index of a Banach Space. - Extracta Math. 15 (2000), No. 2, 265-276. III Congress on Banach Spaces (Jarandilla de la Vera, 1998)
[5] V. Kadets, M. Martín, and P. Payá, Recent Progress and Open Questions on the Numerical Index of Banach Spaces. - RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), No. 1-2, 155-182.
[6] K. Boyko, V. Kadets, M. Martin, and D. Werner, Numerical Index of Banach Spaces and Duality. - Math. Proc. Cambridge Philos. Soc. 142 (2007), No. 1, 93-102, DOI 10.1017/S0305004106009650.
[7] K. Boyko, V. Kadets, M. Martín, J. Merí, and V. Shepelska, Lushness, Numerical Index One and Duality. - J. Math. Anal. Appl. 357 (2009), No. 1, 15-24, DOI 10.1016/j.jmaa.2009.03.055.
[8] M. Martín and P. Payá, Numerical Index of Vector-Valued Function Spaces. Studia Math. 142 (2000), No. 3, 269-280.
[9] R.E. Fullerton, Geometrical Characterizations of Certain Function Spaces. Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960. Jerusalem Academic Press, Jerusalem (1961), 227-236.
[10] A. Lima, Intersection Properties of Balls in Spaces of Compact Operators. - Ann. Inst. Fourier (Grenoble) 28 (1978), No. 3, 35-65.
[11] J. Lindenstrauss, Extension of Compact Operators. - Mem. Amer. Math. Soc. No. 48 (1964).
[12] M. Martín and P. Payá, On CL-Spaces and Almost CL-Spaces. - Ark. Mat. 42 (2004), No. 1, 107-118.
[13] K. Boyko, V. Kadets, M. Martín, and J. Merí, Properties of Lush Spaces and Applications to Banach Spaces with Numerical Index 1. - Studia Math. 190 (2009), No. 2, 117-133, DOI 10.4064/sm190-2-2.
[14] P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, 1547, Springer-Verlag, Berlin, 1993.
[15] J. Lindenstrauss and H.P. Rosenthal, The \mathcal{L}_{p} Spaces. - Israel J. Math. 7 (1969), 325-349.
[16] W.B. Johnson, H.P. Rosenthal, and M. Zippin, On Bases, Finite Dimensional Decompositions and Weaker Structures in Banach Spaces. - Israel J. Math. 9 (1971), 488-506.
[17] A. Martínez-Abejón, An Elementary Proof of the Principle of Local Reflexivity. Proc. Amer. Math. Soc. 127 (1999), No. 5, 1397-1398, DOI 10.1090/S0002-9939-99-04687-0.

