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1. Results and Discussions

The paper deals with the Hermitian (real symmetric) n×n random matrices

Hn = An + U †
nBnUn, (1.1)

where An and Bn are Hermitian (real symmetric) random matrices such that if
{λAn

l }n
l=1 and {λBn

l }n
l=1 are eigenvalues of An and Bn and NAn and NBn are their

Normalized Counting Measures (NCM), defined as

NAn(∆) = #{λAn
l ∈ ∆, l = 1, . . . , n}n−1,

NBn(∆) = #{λBn
l ∈ ∆, l = 1, . . . , n}n−1 (1.2)
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for any interval ∆ ⊂ R, then there exist nonrandom probability measures NA

and NB and for any ε > 0

lim
n→∞P{|NAn(∆)−NA(∆)| > ε} = 0,

lim
n→∞P{|NBn(∆)−NB(∆)| > ε} = 0, ∀∆ ⊂ R. (1.3)

We assume further that Un in (1.1) is the random unitary (orthogonal) matrix,
whose probability law is given by the normalized to unity Haar measure on the
unitary (orthogonal) group U(n), and all three random matrices An, Bn and Un

are independent. We will confine ourselves to the technically simplest case of the
Hermitian An and Bn and unitary Un in (1.1).

Our goal in this paper is to study the eigenvalue distribution of Hn of (1.1),
given that of An and Bn. The simplest but important for practically any random
matrix problem is the weak convergence of the Normalized Counting Measures
of eigenvalues {λHn

l }n
l=1 of Hn

Nn(∆) = #{λHn
l ∈ ∆, l = 1, . . . , n}n−1 (1.4)

to a nonrandom measure as n → ∞. Following general ideas of spectral theory,
we study Nn via the resolvent

Gn(z) = (Hn − z)−1, Im z 6= 0, (1.5)

of Hn and its normalized trace

gn(z) = n−1TrGn(z), (1.6)

related to the Normalized Counting Measures of eigenvalues of Hn by spectral
theorem

gn(z) =
∫

Nn(dλ)
λ− z

, Im z 6= 0. (1.7)

Here and below the integrals without limits denote integrals over R. To study the
asymptotic behavior of gn we use an approach, based on certain differentiation
formulas (matrix analogs of the integration by parts), leading to certain identities
for the moments of gn and to bounds for the variance of gn, allowing one to
convert the identities into functional equations, determining uniquely gn, hence
the limiting measure.

In [12] the following theorem was proved.

Theorem 1.1. Consider the random matrices (1.1) and assume (1.3). Then
there exists a nonrandom probability measure N such that

lim
n→∞P{|Nn(∆)−N(∆)| > ε} = 0, ∀∆ ⊂ R. (1.8)
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Moreover, the Stieltjes transform

f(z) =
∫

N(dλ)
λ− z

, Im z 6= 0,

of N is a unique solution of the system




f(z) = fA(hB(z)),
f(z) = fB(hA(z)),

(f(z))−1 = z − hA(z)− hB(z),
(1.9)

where

fA,B(z) =
∫

NA,B(dλ)
λ− z

, (1.10)

f(z) is a Nevanlinna function, hA,B(z) are analytic in C\R and

f(z) = −z−1 + o(z−1), hA,B(z) = z + o(z), z →∞. (1.11)

In [13] the following theorem was proved for the nonrandom matrices An and
Bn.

Theorem 1.2. Consider random matrices (1.1), assume that NAn and NBn

converge weakly to the probability measures NA and NB, respectively, and that

sup
n

∫
|λ|4NAn,Bn(dλ) ≤ M < ∞. (1.12)

Then we have for gn of (1.5)–(1.7) and n-independent z1,2 ∈ C\R

Cov{gn(z1), gn(z2)} =
1
n2

Sn(z1, z2) + ψn(z1, z2), (1.13)

where

Sn(z1, z2) =
∂2

∂z1∂z2
log

(hAn(z1)− hAn(z2))(hBn(z1)− hBn(z2))
(z1 − z2)(rn(z1)− rn(z2))

, (1.14)

rn(z) = − 1
E{gn(z)} , (1.15)

hAn(z) = z − E{n−1TrGn(z)An}
E{gn(z)} , hBn(z) = z − E{n−1TrGn(z)U †

nBnUn}
E{gn(z)}

(1.16)
and ψn(z1, z2) admits the bound

|ψn(z1, z2)| ≤ C/n3,

where C is independent of n and finite if min{|Im z1|, |Im z2|} > 0.
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R e m a r k 1.3. It follows from Theorem 1.1 that for z1,2 ∈ C\R we have

lim
n→∞Sn(z1, z2) = S(z1, z2) =

∂2

∂z1∂z2
log

(hA(z1)− hA(z2))(hB(z1)− hB(z2))
(z1 − z2)(r(z1)− r(z2))

,

(1.17)
where r(z) = −f−1(z) and S(z1, z2) is defined also for z1 = z2 as well as
Sn(z1, z2). Indeed, using (1.9) and (1.10), we obtain

r(z1)− r(z2) =
z1 − z2

f(z1)f(z2)
IA(z1, z2)IB(z1, z2) (1.18)

×
(

IA(z1, z2) + IB(z1, z2)− IA(z1, z2)IB(z1, z2)
fn(z1)fn(z2)

)−1

,

hA(z1)− hA(z2) = I−1
B (z1, z2)f(z1)f(z2)(r(z1)− r(z2)),

hB(z1)− hB(z2) = I−1
A (z1, z2)f(z1)f(z2)(r(z1)− r(z2)),

where we denote

IA(z1, z2) : =
∫

NA(dλ)
(λ− hB(z1))(λ− hB(z2))

,

IB(z1, z2) : =
∫

NB(dλ)
(λ− hA(z1))(λ− hA(z2))

.

Note that for z1 = z2 the term in the parentheses in the r.h.s. (1.18) coincides up
to a factor with with the determinant of linear system on the triple of derivatives
(f ′, h′A, h′B), which is nonzero. Using (1.18) we can rewrite Sn(z1, z2) in the form,
which has no singularity at z1 = z2

S(z1, z2) = − ∂2

∂z1∂z2
log

(
IA(z1, z2) + IB(z1, z2)− IA(z1, z2)IB(z1, z2)

fn(z1)fn(z2)

)
.

Moreover, because of (1.17) and Theorem 1.2, Sn(z1, z2) is also defined at z1 = z2

for sufficiently large n.

In this paper we study the asymptotic behaviour of the covariance
Cov{gn(z1), gn(z2)} of the normalized traces of resolvents (1.6) for random An

and Bn of (1.1). An analogous problem for the normalized traces of moments of
(1.1) was considered in the recent paper [17] under the condition that An and Bn

have the second order distribution in the following sense.

Definition 1.4. [17]. Let Mn be a Hermitian random matrix. Then, we say
that it has a second order limit distribution if for any p, q ≥ 1 the limits

m
(p)
M := lim

n→∞E{n−1TrMp
n}
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and
m

(p,q)
M := lim

n→∞Cov{TrMp
n, TrMm

n }

exist and if for all r ≥ 3 and all p(1), . . . , p(r) ≥ 1,

lim
n→∞ kr(TrMp(1)

n , . . . ,TrMp(r)
n ) = 0

where kr denotes the rth classical multivariate cumulant.

It was proved in [17, 18] by a rather involved and nontrivial combinatorial
analysis that under these conditions on An and Bn the random matrix (1.1) has
also the second order limit distribution. Moreover, if

m
(p)
A := lim

n→∞E{n−1TrAp
n}, m

(p)
B := lim

n→∞E{n−1TrBp
n},

m
(p)
H := limn→∞E{n−1TrHp

n}, m
(p,q)
A := lim

n→∞Cov{TrAp
n, TrAq

n},
m

(p,q)
B := limn→∞Cov{TrBp

n, TrBq
n}, m

(p,q)
H := lim

n→∞Cov{TrHp
n, TrHq

n},
(1.19)

and

fA(z) := −
∞∑

p=1

m
(p)
A

zp+1
, fB(z) := −

∞∑

p=1

m
(p)
B

zp+1
,

f(z) := −
∞∑

p=1

m
(p)
H

zp+1
, CA(z1, z2) :=

∞∑

p,q=1

m
(p,q)
A

zp+1
1 zq+1

2

,

CB(z1, z2) :=
∞∑

p,q=1

m
(p,q)
B

zp+1
1 zq+1

2

, C(z1, z2) :=
∞∑

p,q=1

m
(p,q)
H

zp+1
1 zq+1

2

are the correspondent formal power series then the second order R-transforms
RA(w1, w2), RB(w1, w2) and RH(w1, w2) defined in [17] as

CA(z1, z2)

=
(

RA(fA(z1), fA(z2)) +
1

(fA(z1)− fA(z2))2

)
f ′A(z1)f ′A(z2)− 1

(z1 − z2)2
,

CB(z1, z2)

=
(

RB(fB(z1), fB(z2)) +
1

(fB(z1)− fB(z2))2

)
f ′B(z1)f ′B(z2)− 1

(z1 − z2)2
,

C(z1, z2)

=
(

R(f(z1), f(z2)) +
1

(f(z1)− f(z2))2

)
f ′(z1)f ′(z2)− 1

(z1 − z2)2
, (1.20)
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satisfy
R(w1, w2) = RA(w1, w2) + RB(w1, w2). (1.21)

We will prove an asymptotic relation between the covariance of gn(z) for
z = z1, z2 and those of n−1Tr (An − z)−1, z = z1, z2 and n−1Tr (Bn − z)−1,
z = z1, z2. The relation can be viewed as a version of the second order asymptotic
distribution in the terms of traces of resolvents rather than of traces of powers
of the corresponding matrices as in Definition 1.4. This requires the existence
(in fact boundedness in n) of expectations of traces of several first powers of
corresponding random matrices rather than all moments as in (1.19). If, in
addition, the limits of covariances of Tr (An− z)−1, z = z1, z2 and Tr (Bn− z)−1,
z = z1, z2 exist, then we obtain a formula relating the limit of covariance of
ngn(z) for z = z1, z2 and those of Tr (An − z)−1 and Tr (Bn − z)−1. The formula
is a version of equality (1.21), but is valid as the equality of analytic functions
rather than the formal power series.

Thus our goal is to express

Cn(z1, z2) = Cov{gn(z1), gn(z2)} (1.22)

via the covariances of the normalized traces of resolvent of the summands of (1.1)

CAn(z1, z2) = Cov{gAn(z1), gAn(z2)}, CBn(z1, z2) = Cov{gBn(z1), gBn(z2)},
(1.23)

where

gAn(z) =
∫

NAn(dλ)
λ− z

= n−1Tr GAn(z), gBn(z) =
∫

NBn(dλ)
λ− z

= n−1Tr GBn(z)

(1.24)
and

GAn(z) = (An − z)−1, GBn(z) = (Bn − z)−1, Im z 6= 0. (1.25)

Note that because of (1.3) the covariances (1.23) tend to zero as n →∞ as well
as the variances

uAn(z) = Var{gAn(z)}, uBn(z) = Var{gBn(z)}. (1.26)

The second question is: are the rates of convergence to zero of the covariance
(1.22) and the variance

un = Var{gn(z)}
the same as for uAn and uBn?

The main result of this paper is

Theorem 1.5. Consider the random matrices of the form (1.1). Assume
(1.3) and the following asymptotic relations:
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(i) for any n-independent z with Im z 6= 0

ũAn := E{|gAn(z)−E{gAn(z)}|4} = o (uAn(z)) ,
ũBn := E{|gBn(z)−E{gBn(z)}|4} = o (uBn(z))

(1.27)

as n →∞;

(ii)

sup
n

E
{∫

λ4NAn,Bn(dλ)
}
≤ M < ∞, M ≥ 1; (1.28)

(iii) for any z ∈ K-compact, K ⊂ C \ R
Var

{∫ |λ|NAn(dλ)
}

= O (uAn(z)) ,
Var

{∫ |λ|NBn(dλ)
}

= O (uBn(z)) ,
(1.29)

E
{∣∣∫ |λ|NAn(dλ)−E

{∫ |λ|NAn(dλ)
}∣∣4

}
= o (uAn(z)) ,

E
{∣∣∫ |λ|NBn(dλ)−E

{∫ |λ|NBn(dλ)
}∣∣4

}
= o (uBn(z))

(1.30)

as n →∞.

Then we have for any z1,2 ∈ K-compact, K ⊂ Γα,β

Cn(z1, z2) = CAn(hBn(z1), hBn(z2))h′Bn
(z1)h′Bn

(z2)
+ CBn(hAn(z1), hAn(z2))h′An

(z1)h′An
(z2)

+ n−2Sn(z1, z2) + ψn(z1, z2),
(1.31)

where

Γα,β = {z ∈ C : |Re z| ≤ α|Im z|, |Im z| ≥ β} , α > 0, β ≥ (11α + 15)M, (1.32)

ψn(z1, z2) = o
(
max{n−2, CAn(z1, z2), CBn(z1, z2)}

)
, n →∞. (1.33)

In the proof of the theorem the techniques of [12] are used and it is given in
the next section. Here we discuss the theorem and its applications.

(i) Conditions on absolute moments (1.29), (1.30) are technical. For example,
they can be omitted in the case of uniformly in n bounded matrices,
sup

n
||An|| < ∞, sup

n
||Bn|| < ∞. They can be replaced by the following conditions

on the moments
Var

{∫
λ2NAn(dλ)

}
= O (uAn) ,

Var
{∫

λ2NBn(dλ)
}

= O (uBn) ,
(1.34)

and
E

{∣∣∫ λ2NAn(dλ)−E
{∫

λ2NAn(dλ)
}∣∣4

}
= o (uAn) ,

E
{∣∣∫ λ2NBn(dλ)−E

{∫
λ2NBn(dλ)

}∣∣4
}

= o (uBn) .
(1.35)
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(ii) Conditions (1.27), (1.34), (1.35) can be verified directly for Gaussian
ensembles via Poincaré–Nash inequality [3, 10] (e.g., Gaussian unitary ensemble
or Marchenko–Pastur ensemble with Gaussian entry). It can be also verified
for the general matrix models. Indeed, it was proved in [14] that if we have
probability distribution of Hermitian random matrix Mn

pn(Mn)dMn =
1

Zn
exp{−nTrV (Mn)}dMn, (1.36)

where

dMn =
n∏

j=1

dMjj

n∏

1≤j<k≤n

(dRe Mjk)(dImMjk)

obeying conditions

V (λ) ≥ (2 + ε) ln |λ|, ε > 0, λ →∞,

and
|V (λ)− V (µ)| ≤ C(L)|λ− µ|γ , γ > 0, |λ|, |µ| ≤ L,

then for any smooth bounded function ϕ : R→ C with bounded derivative we
have the bound for r-th classical cumulant of n−1Trϕ(Mn)

|kr(n−1Trϕ(Mn))| ≤ Cϕr!ar

nr
, a > 0, r ≥ 2, (1.37)

where constant Cϕ depends only of L∞-norm of ϕ and ϕ′. Since we have

ϕ(λ) = (λ− z)−1, |ϕ(λ)| ≤ 1
|Im z| ,

∣∣ϕ′(λ)
∣∣ ≤ 1

|Im z|2 ,

k2(a) = Var {a} , E
{
|a−E {a}|4

}
= k4(a) + 3k2

2(a),

then condition (1.27) follows directly from (1.37). The rest of the conditions also
follow from (1.37) and the fact that the support of the limiting NCM of (1.36)
is compact and that NCM of (1.36) decays exponentially apart of this compact
(see, e.g., [11]).

(iii) Theorem 1.5 is related with the result of recent paper [17] as follows. First,
fixing in addition to the conditions of Theorem 1.5, the order of covariances of
Stieltjes transforms by n−2 and supposing the convergence of their asymptotics
we have

lim
n→∞n2CAn(z1, z2) = CA(z1, z2), lim

n→∞n2CBn(z1, z2) = CB(z1, z2),

lim
n→∞n2Cn(z1, z2) = C(z1, z2).
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Then, multiplying (1.31) by n2 and passing to the limit n →∞, we obtain

C(z1, z2) = CA(hB(z1), hB(z2))h′B(z1)h′B(z2)
+ CB(hA(z1), hA(z2))h′A(z1)h′A(z2)
+ S(z1, z2).

(1.38)

Besides, (1.9) and (1.20) imply

CA(hB(z1), hB(z2)) =
(

RA(f(z1), f(z2)) +
1

(f(z1)− f(z2))2

)

× f ′A(hB(z1))f ′A(hB(z2))− 1
(hB(z1)− hB(z2))2

.

Using this relation, an analogous relation for CB(hA(z1), hA(z2)) and the
equalities

h′A(z) =
f ′(z)

f ′B(hA(z))
, h′B(z) =

f ′(z)
f ′A(hB(z))

,

we obtain from (1.38)

C(z1, z2) =
(

RA(f(z1), f(z2)) + RB(f(z1), f(z2)) +
1

(f(z1)− f(z2))2

)

×f ′(z1)f ′(z2)− 1
(z1 − z2)2

.

This leads to

R(f(z1), f(z2)) = RA(f(z1), f(z2)) + RB(f(z1), f(z2)).

Thus, because of Nevanlinnianess of f(z) and one-to-one correspondence
f :,C±→ C± (see [4]) we have obtained for w1,2 ∈ C\R the analytic functions
equality

R(w1, w2) = RA(w1, w2) + RB(w1, w2).

Moreover, supposing the existence of k+1-th moments of the measures NA,B and
using k + 1 first terms of the asymptotic expansion oin z−1

1,2 of analytic functions
in (1.38), we can obtain the relations for moment covariances, moments and free
cumulants up to the k-th order correspondent with the relations obtained in [17].

(iv) Conditions (1.27)–(1.30) are verified for the second order distributions,
having convergent resolvent asymptotic power series. Indeed, since the orders of
all variances of moments and Stieltjes transforms are fixed by n−2

lim
n→∞n2uAn = CA(z, z), lim

n→∞n2uBn = CB(z, z),
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and due to the correspondence between moments and cumulants

E {a◦b◦c◦d◦} = k4(a◦, b◦, c◦, d◦) + k2(a◦, b◦)k2(c◦, d◦)
+k2(a◦, c◦)k2(b◦, d◦) + k2(a◦, d◦)k2(b◦, c◦),

where

a◦ = a−E {a} , b◦ = b−E {b} ,

c◦ = c−E {c} , d◦ = d−E {d} , (1.39)

we obtain, in view of convergence of the correspondent series,

E{|gAn(z)−E{gAn(z)}|4}

= n−4
∞∑

p1,p2,p3,p4=1

E{(TrAp1
n )◦ (TrAp2

n )◦ (TrAp3
n )◦ (TrAp4

n )◦}
zp1+p2+2zp3+p4+2

= n−4(3C2
A(z, z) + o(1)) = O(u2

An
) = o (uAn) ,

E{|gBn(z)−E{gBn(z)}|4} = n−4(3C2
B(z, z) + o(1)) = O(u2

Bn
) = o (uBn) .

Thus, the condition (1.27) is verified. The rest of conditions follow directly from
the behavior in n of k2 and k4 and the existence of all moments of the measures
NA,B.

2. Proofs

We denote 〈. . .〉 the conditional expectation with respect to the normalized
Haar measure of U(n). We are going to use often the following fact on this
expectation.

Proposition 2.1. Let Hn be the space of n × n Hermitian matrices, and
Φ : Hn → C be a continuously differentiable function. Then we have for any
X ∈ Hn: 〈

Φ′(U †MU) · [X,U †MU ]
〉

= 0,

where
[M1,M2] = M1M2 −M1M2.

The proof of the proposition is given in [12].
We will use the resolvent identity for resolvents G1 and G2 of two Hermitian

matrices M1 and M2:

G2(z)−G1(z) = G1(z)(M1 −M2)G2(z) = G2(z)(M1 −M2)G1(z), (2.1)

Journal of Mathematical Physics, Analysis, Geometry, 2010, vol. 6, No. 1 105



V. Vasilchuk

the formula for the derivative of the resolvent of a Hermitian matrix M :

G′ ·X = −GXG, ∀X ∈ Hn (2.2)

and the bounds valid for any matrices M1 and M2 and Hermitian matrix Q:

|TrM1M2| ≤ (TrM1M
†
1)1/2(TrM2M

†
2)1/2, (2.3)

|TrM1Q| ≤ ||M1||Tr|Q|, |Q| =
√

Q†Q =
√

QQ†. (2.4)

We will also need the notion of the Nevanlinna functions (see, e.g., [1]).
Namely, an analytic in C\R function f is a Nevanlinna function if

f(z) = f(z), Im f(z)Im z > 0, Im z 6= 0. (2.5)

Any Nevanlinna function admits the representation

f(z) = az + b +
∫

1 + µz

µ− z
m(dµ), (2.6)

where a ≥ 0, b ∈ R, m is a finite nonnegative measure and we write here and
below the integrals without limits for the integrals over R. The representation
takes the form

f(z) =
∫

m(dµ)
µ− z

, (2.7)

with a finite nonnegative m if and only if supy≥1 |yf(iy)| < ∞, and in this case

lim
y→∞ |yf(iy)| = m(R) < ∞.

Lemma 2.2. Assume (1.28) and denote

F (z1, z2) : = ψ(gn(z1), gn(z2)),
FA(z1, z2) : = ψ(δAn(z1), δAn(z2)),

δAn(z1) : = n−1TrGn(z)An,

δBn(z1) : = n−1TrGn(z)U †
nBnUn,

where ψ : C× C→ C is a smooth enough function. Then for z1,2 ∈ Γα,β (1.32)
we have

Cov{F (z1, z2), gn(z2)} = Cov{F (z1, z2), gAn(hBn(z2))}
+

1
E{gn(z2)} (Cov{F (z1, z2), g◦n(z2)kAn(z2)}

− Cov{F (z1, z2), δ◦Bn
(z2)pAn(z2)}

)

+
1
n2

γAnBn(z1, z2),
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and

Cov{FA(z1, z2), δAn(z2)} = Cov{F (z1, z2), gAn(hBn,An(z2))}hBn(z2)

+
1

E{gn(z2)}
(
Cov{FA(z1, z2), g◦n(z2)k̃An(z2)}

− Cov{FA(z1, z2), δ◦Bn
(z2)p̃An(z2)}

)

+
1
n2

γ̃AnBn(z1, z2),

where

kAn(z) = n−1TrGAn(hBn(z))U †
nBnUnGn(z),

k̃An(z) = n−1TrGAn(hBn(z))AnU †
nBnUnGn(z), (2.8)

pAn(z) = n−1TrGAn(hBn(z))Gn(z),
p̃An(z) = n−1TrGAn(hBn(z))AnGn(z),

and

γAnBn(z1, z2)

=
E{ψ′1(gn(z1), gn(z2))n−1TrGAn(hBn(z))[U †

nBnUn, G2
n(z1)]Gn(z2)}

E{gn(z2)}

+
E{ψ′2(gn(z1), gn(z2))n−1TrGAn(hBn(z))[U †

nBnUn, G2
n(z2)]Gn(z2)}

E{gn(z2)} ,

γ̃AnBn(z1, z2)

=
E{ψ′1(δAn(z1), δAn(z1))n−1TrGAn(hBn(z))[U †

nBnUn, Gn(z1)AnGn(z1)]Gn(z2)}
E{gn(z2)}

+
E{ψ′2(δAn(z1), δAn(z1))n−1TrGAn(hBn(z))[U †

nBnUn, Gn(z2)AnGn(z2)]Gn(z2)}
E{gn(z2)} .

P r o o f. We omit the subscript n in An, Bn and Gn(z) in the cases where
there will be no confusion.

(i) Denote {Gjk(z)}n
j,k=1 the matrix of G(z). Taking in Proposition 2.1 Φ =

F ◦(z1, z2)Gac(z2), a, c = 1, . . . , n and using (2.2), we obtain
〈
F ◦(z1, z2)

(
G(z2)[X,U †BU ]

)
ac

〉

+
〈
ψ′1(gn(z1), gn(z2))

(
n−1TrG(z1)

[
X, U †BU

]
G(z1)

)
Gac(z2)

〉

+
〈
ψ′2(gn(z1), gn(z2))

(
n−1TrG(z2)

[
X, U †BU

]
G(z2)

)
Gac(z2)

〉
= 0.
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Take here X = E(a,b) and then apply the operation n−1
n∑

a=1
. This yields the

matrix relation

〈F ◦(z1, z2)δBn(z2)G(z2)〉 =
〈
F ◦(z1, z2)gn(z2)U †BUG(z2)

〉

+
1
n2

(〈
ψ′1(gn(z1), gn(z2))

[
U †BU,G2(z1)

]
G(z2)

〉

+
〈
ψ′2(gn(z1), gn(z2))

[
U †BU,G2(z2)

]
G(z2)

〉)
.

Writing (cf (1.39))

δBn(z2) = δ◦Bn
(z2) + E{δBn(z2)}, gn(z2) = g◦n(z2) + E{gn(z2)}

and regrouping terms, we obtain

E{δBn(z2)} 〈F ◦(z1, z2)G(z2)〉 −E{gn(z2)}
〈
F ◦(z1, z2)U †BUG(z2)

〉

=
〈
F ◦(z1, z2)g◦n(z2)U †BUG(z2)

〉
− 〈

F ◦(z1, z2)δ◦Bn
(z2)G(z2)

〉

+
1
n2

(〈
ψ′1(gn(z1), gn(z2))

[
U †BU,G2(z1)

]
G(z2)

〉

+
〈
ψ′2(gn(z1), gn(z2))

[
U †BU,G2(z2)

]
G(z2)

〉)
.

Now the resolvent identity

−U †BUG(z2) = AG(z2)− z2G(z2)− I

allows us to write

E{gn(z2)}(A− hBn(z2)) 〈F ◦(z1, z2)G(z2)〉 = E{gn(z2)} 〈F ◦(z1, z2)〉 I (2.9)

+
〈
F ◦(z1, z2)g◦n(z2)U †BUG(z2)

〉
− 〈

F ◦(z1, z2)δ◦Bn
(z2)G(z2)

〉

+
1
n2

(〈
ψ′1(gn(z1), gn(z2))

[
U †BU,G2(z1)

]
G(z2)

〉

+
〈
ψ′2(gn(z1), gn(z2))

[
U †BU,G2(z2)

]
G(z2)

〉)
.

Besides, in view of (1.28) and relations

E{gn(z)} = −1
z
(1−E{δAn(z)} −E{δBn(z)}),

hAn,Bn(z) = z

(
1 +

E{δAn,Bn(z)}
1−E{δAn(z)} −E{δBn(z)}

)

= z
1−E{δBn,An(z)}

1−E{δAn(z)} −E{δBn(z)} , (2.10)
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where

|gn(z)| ≤ 1
|Im z| , |δAn,Bn(z)| ≤ m

(1)
An,Bn

|Im z| , m
(k)
An,Bn

=
∫
|λ|kNAn,Bn(dλ), (2.11)

we have for any z ∈ Γα,β (1.32)

|E{gn(z)}| ≥ 1
|z|

(
1− 2M

β

)
≥ 13

15|z| ,

|hAn,Bn(z)| ≤ |z|
1 +

M

β

1− 2M

β

≤ |z|16
13

,

|ImhAn,Bn(z)| ≥ β


1−

|z|M
β

1− 2M

β


 ≥ 12M. (2.12)

Hence, the matrix A − hBn(z2) is invertible uniformly in n for any z ∈∈ Γα,β

(1.32) and

GAn(hBn(z2)) = (A− hBn(z2))
−1 , ||GAn(hBn(z2))|| ≤ 1

12M
.

Thus, multiplying (2.9) from the left by GAn(hBn(z2)), then applying n−1Tr,
and taking the expectation E{...} of the result, we obtain the first identity.
The second identity can be proved analogously by using Proposition 2.1 with
Φ = F ◦

A(z1, z2) (G(z2)A)ac and taking into account that the traces of resolvents
of the matrices

An + U †
nBnUn and UnAnU †

n + Bn

coincide.

Lemma 2.3. Under conditions (1.28)–(1.27) we have for z ∈ K-compact,
K ⊂ Γα,β (1.32) as n →∞

(i)

un := Var{gn(z)} = O
(
max{n−2, uAn , uBn}

)
,

vn := Var{δAn(z)} = O
(
max{n−2, uAn , uBn}

)
,

wn := Var{δBn(z)} = O
(
max{n−2, uAn , uBn}

)
;

(ii)
Var{pAn(z)} = O

(
max{n−2, uAn , uBn}

)
;
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(iii)
Var{kAn(z)} = O

(
max{n−2, uAn , uBn}

)
;

(iv)

ũn := E{|gn(z)−E{gn(z)}|4} = o
(
max{n−2, uAn , uBn}

)
,

ṽn := E{|δAn(z)−E{δAn(z)}|4} = o
(
max{n−2, uAn , uBn}

)
,

w̃n := E{|δBn(z)−E{δBn(z)}|4} = o
(
max{n−2, uAn , uBn}

)
.

P r o o f. (i) Note that we have

un = Var{gn(z)} = Cov{gn(z), gn(z̄)}.
On the other hand, the resolvent identity implies that

zGn(z) + I = AnGn(z) + U †
nBnUnGn(z). (2.13)

We obtain
gn(z) =

1
z
(δAn(z) + δBn(z)− 1), (2.14)

hence

Cov{gn(z), gn(z̄)} =
1
z̄

(Cov{gn(z), δAn(z̄)}+ Cov{gn(z), δBn(z̄)}) . (2.15)

This and the Schwarz inequalities

|Cov{gn(z), δAn(z̄)}| ≤ u1/2
n v1/2

n , |Cov{gn(z), δBn(z̄)}| ≤ u1/2
n w1/2

n ,

yield that for z ∈ Γα,β (1.32)

un ≤ 1
|z|

(
u1/2

n v1/2
n + u1/2

n w1/2
n

)
≤ α12u

1/2
n v1/2

n + α13u
1/2
n w1/2

n , (2.16)

where
α13 = α12 =

1
15

. (2.17)

Taking into account that

vn = Var{δAn(z)} = Cov{δAn(z), δAn(z̄)}.
and the second identity of Lemma 2.2 with FA(z1, z2) = δAn(z1), we obtain for
z1 = z, z2 = z̄

Var{δAn(z)} = Cov{δAn(z), gAn(hBn(z̄))}hBn(z̄) +
I1 − I2

E{gn(z̄)} +
γ̃AnBn(z, z̄)

n2
,

(2.18)
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where
I1 = E{δ◦An

(z)g◦n(z̄)k̃An(z̄)}, I2 = E{δ◦An
(z)δ◦Bn

(z̄)p̃An(z̄)}.
Furthermore, (2.14) and the resolvent identity GAn(z)An = zGAn(z) + I imply

g◦n(z̄) =
1
z̄

(
δ◦An

(z̄) + δ◦Bn
(z̄)

)
, k̃An(z̄) = hBn(z̄)kAn(z̄) + δBn(z̄),

hence
I1 =

hBn(z̄)
z̄

(I3 + I4) +
1
z̄

(I5 + I6) ,

where

I3 = E{δ◦An
(z)δ◦An

(z̄)kAn(z̄)}, I4 = E{δ◦An
(z)δ◦Bn

(z̄)kAn(z̄)},
I5 = E{δ◦An

(z)δ◦An
(z̄)δBn(z̄)}, I6 = E{δ◦An

(z)δ◦Bn
(z̄)δBn(z̄)}.

According to (2.4), we have for p̃An and kAn of (2.8)

|p̃An(z̄)| ≤ m
(1)
An

|Im z||ImhBn(z)| , |kAn(z̄)| ≤ m
(1)
Bn

|Im z||Im hBn(z)| .

Thus, using the centered quantities of absolute moments (2.11)
(
m

(1)
An

)◦
= m

(1)
An
−E

{
m

(1)
An

}
,

(
m

(1)
Bn

)◦
= m

(1)
Bn
−E

{
m

(1)
Bn

}

and (2.4), we obtain

|I2| ≤
E

{
m

(1)
An

}
E{∣∣δ◦An

(z)||δ◦Bn
(z̄)

∣∣}+ E
{∣∣δ◦An

(z)||δ◦Bn
(z̄)

∣∣
(
m

(1)
An

)◦}

|Im z||Im hBn(z)|

≤ Mv
1/2
n w

1/2
n

|Im z||ImhBn(z)| +
E {|δAn(z)|}E

{∣∣δ◦Bn
(z̄)

∣∣
(
m

(1)
An

)◦}

|Im z||Im hBn(z)|

+
E

{∣∣δAn(z)||δ◦Bn
(z̄)

∣∣
(
m

(1)
An

)◦}

|Im z||ImhBn(z)|

≤ Mv
1/2
n w

1/2
n

|Im z||ImhBn(z)| +
2ME

{∣∣δ◦Bn
(z̄)

∣∣
∣∣∣
(
m

(1)
An

)◦∣∣∣
}

|Im z|2|ImhBn(z)|

+
2ME

{∣∣δ◦Bn
(z̄)

∣∣
∣∣∣
(
m

(1)
An

)◦∣∣∣
}

+ E
{∣∣δ◦Bn

(z̄)
∣∣
∣∣∣
(
m

(1)
An

)◦∣∣∣
2
}

|Im z|2|ImhBn(z)|
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≤ Mv
1/2
n w

1/2
n

|Im z||ImhBn(z)| +
2MVar1/2

{
m

(1)
An

}
w

1/2
n

|Im z|2|ImhBn(z)|

+
E {|δBn(z̄)|}Var

{
m

(1)
An

}

|Im z|2|ImhBn(z)| +
E

{
|δBn(z̄)|

∣∣∣
(
m

(1)
An

)◦∣∣∣
2
}

|Im z|2|ImhBn(z)|

≤ Mv
1/2
n w

1/2
n

|Im z||ImhBn(z)| +
2MVar1/2

{
m

(1)
An

}
w

1/2
n

|Im z|2|ImhBn(z)| +
2MVar

{
m

(1)
An

}

|Im z|3|Im hBn(z)| .

Analogously, we have

|I3| ≤ Mvn

|Im z||ImhBn(z)| +
2MVar1/2

{
m

(1)
Bn

}
v

1/2
n

|Im z|2|Im hBn(z)|

+
Var1/2

{
m

(1)
An

}
Var1/2

{
m

(1)
Bn

}(
2M + Var1/2

{
m

(1)
An

})

|Im z|3|Im hBn(z)| ,

|I4| ≤ Mv
1/2
n w

1/2
n

|Im z||Im hBn(z)| +
2MVar1/2

{
m

(1)
Bn

}
w

1/2
n

|Im z|2|Im hBn(z)|

+
Var1/2

{
m

(1)
An

}
Var1/2

{
m

(1)
Bn

}(
2M + Var1/2

{
m

(1)
Bn

})

|Im z|3|Im hBn(z)| ,

|I5| ≤ Mvn

|Im z| +
2MVar1/2

{
m

(1)
Bn

}
v

1/2
n

|Im z|2

+
Var1/2

{
m

(1)
An

}
Var1/2

{
m

(1)
Bn

}(
2M + Var1/2

{
m

(1)
An

})

|Im z|3 ,

|I6| ≤ Mv
1/2
n w

1/2
n

|Im z| +
2MVar1/2

{
m

(1)
Bn

}
w

1/2
n

|Im z|2

+
Var1/2

{
m

(1)
An

}
Var1/2

{
m

(1)
Bn

}(
2M + Var1/2

{
m

(1)
Bn

})

|Im z|3 .

Substituting the above bounds into (2.18), we obtain

vn ≤ a(z)vn + b(z)v1/2
n w1/2

n + c(z)v1/2
n + d(z)w1/2

n + |hBn(z)|v1/2
n u

1/2
An

(hBn(z))

+
|γ̃AnBn |

n2
+ κn,
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and in view of (1.29), (2.11) and (2.12) we have for z ∈ K-compact, K ⊂ Γα,β

(1.32)

a(z) =
M

|E{gn(z̄)}||Im z|
( |hBn(z̄)|
|z||Im hBn(z)| +

1
|Im z|

)
≤ 1

5
,

b(z) =
M

|E{gn(z̄)}||Im z|
(

2 |hBn(z̄)|
|z||Im hBn(z)| +

1
|Im z|

)
≤ 3

5
,

c(z) =
2MVar1/2

{
m

(1)
Bn

}

|E{gn(z̄)}||Im z|2
( |hBn(z̄)|
|z||ImhBn(z)| +

1
|Im z|

)

≤
Var1/2

{
m

(1)
Bn

}

36
= O

(
u

1/2
Bn

)
,

d(z) =
2M

|E{gn(z̄)}||Im z|2

×

 |hBn(z̄)|

(
Var1/2

{
m

(1)
An

}
+ Var1/2

{
m

(1)
Bn

})

|z||ImhBn(z)| +
Var1/2

{
m

(1)
Bn

}

|Im z|




≤
Var1/2

{
m

(1)
An

}
+ Var1/2

{
m

(1)
Bn

}

12
= O

(
u

1/2
Bn

)
,

|γ̃AnBn | ≤
2E

{√
m

(2)
Bn

m
(2)
An

}

|Im z|3 |E{gn(z̄)}||ImhBn(z)| ≤
1
32

,
|γ̃AnBn |

n2
= O(n−2),

|hBn(z)|u1/2
An

(hBn(z)) = O
(
u

1/2
An

)
,

κn =
Var1/2

{
m

(1)
An

}
Var1/2

{
m

(1)
Bn

}

|E{gn(z̄)}||Im z|3
×

(
4M + Var1/2

{
m

(1)
An

}
+ Var1/2

{
m

(1)
Bn

})

×
(

2 |hBn(z̄)|
|z||ImhBn(z)| +

1
|Im z|

)

= O(max{uAn , uBn}).
Thus, we obtained the bound (cf (2.16))

vn ≤ α23v
1/2
n w1/2

n + β22v
1/2
n + β23w

1/2
n + γ2n, (2.19)

where

α23 =
3
4
, β22 = β23 = O

(
max

{
u

1/2
An

, u
1/2
Bn

})
, γ2n = O

(
max

{
n−2, uAn , uBn

})
.

(2.20)
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Similarly, using the second identity of Lemma 2.2 with interchanged An and
Bn and FB(z1, z2) = δBn(z1), z1 = z̄2 = z and Schwarz inequality, we obtain
an analog of (2.16) and (2.19)

wn ≤ α32w
1/2
n v1/2

n + β32v
1/2
n + β33w

1/2
n + γ3n, (2.21)

where

α32 =
3
4
, β32 = β33 = O

(
u

1/2
An

)
, γ3n = O

(
max

{
n−2, uAn , uBn

})
. (2.22)

Now, introducing new variables

s1 = u1/2
n , s2 = v1/2

n , s3 = w1/2
n

and the quantities

βn = max{β22, β23, β32, β33},
γn = max{γ2n, γ3n}, (2.23)

we rewrite (2.16), (2.19) and (2.21) as the system of quadratic inequalities

s2
i ≤

3∑

j=1,j 6=i

αijsisj + βn(s2 + s3) + γn, i = 1, 2, 3.

Let i0 be defined as si0 = maxi=1,2,3 ui. Then we have for s̄ = si0

s̄2 ≤ s̄2
3∑

j=1,j 6=i

αij + 2βns̄ + γn ≤ 3
4
s̄2 + 2βns̄ + γn, (2.24)

where we took into account that
∑3

j=1,j 6=i αij ≤ 3/4 (see (2.17), (2.20) and
(2.22)). This implies that s̄ = O(βn), and, in view of (2.17), (2.20), (2.22) and
(2.23), assertion (i) of the lemma.

(ii) Note that we have

Var{pAn(z)} = Cov{pAn(z), pAn(z̄)}.

Taking in Proposition 2.1 Φ = p◦An
(z)Gac(z̄) and using (2.2), we obtain for any

a.c = 1, . . . , n:
〈
p◦An

(z)
(
G(z̄)

[
X, U †BU

]
G(z̄)

)
ac

〉

+
〈(

n−1TrG(z)
[
X, U †BU

]
G(z)GAn(hBn(z))

)
Gac(z̄)

〉
= 0.
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We take X = E(a,b) and apply the operation n−1
n∑

a=1
to the result. This yields

the matrix relation
〈
p◦An

(z)δBn(z̄)G(z̄)
〉

=
〈
p◦An

(z)gn(z̄)U †BUG(z̄)
〉

+
1
n2

〈[
U †BU,G(z)GAn(hBn(z))G(z)

]
G(z̄)

〉
.

Then, applying the same procedure as in the proof of Lemma 2.2, i.e., regrouping
the terms, using the centered quantities g◦n(z) and δ◦Bn

(z), multiplying from the
left by the G2

An
(hBn(z̄)), then applying n−1Tr and taking the expectation E{...},

we obtain

Var{pAn(z)} = Cov{pAn(z), g′An
(hBn(z̄))} (2.25)

+
1

E{gn(z̄)}
(
E{p◦An

(z)g◦n(z̄)k̂An(z̄)}

− E{p◦An
(z)δ◦Bn

(z̄)p̂An(z̄)}) +
γ̂n

n2
,

where

g′An
(hBn(z̄)) = n−1TrG2

An
(hBn(z̄))

k̂An(z̄) = n−1TrG2
An

(hBn(z̄))U †
nBnUnGn(z̄),

p̂An(z̄) = n−1TrG2
An

(hBn(z̄))Gn(z̄),

γ̂n =
E{n−1TrG2

An
(hBn(z̄))

[
U †BU,G(z)GAn(hBn(z))G(z)

]
G(z̄)}

E{gn(z̄)} .

Besides, we have for z ∈ K-compact, K ⊂ Γα,β (1.32)

|E{p◦An
(z)g◦n(z̄)k̂An(z̄)}|
|E{gn(z̄)}| ≤ E{m(1)

Bn
}Var1/2{pAn(z)}u1/2

n

|ImhBn(z)|2|Im z||E{gn(z̄)}|

+
2Var1/2{pAn(z)}Var1/2

{
m

(1)
Bn

}

|ImhBn(z)|2|Im z|2|E{gn(z̄)}|

≤ Var1/2{pAn(z)}u1/2
n

10

+
Var1/2{pAn(z)}Var1/2

{
m

(1)
Bn

}

10
,
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|E{p◦An
(z)δ◦Bn

(z̄)p̂An(z̄)}|
|E{gn(z̄)}| ≤ Var1/2{pAn(z)}w1/2

n

|ImhBn(z)|2|Im z||E{gn(z̄)}|

≤ Var1/2{pAn(z)}w1/2
n

10
,

|γ̂n| ≤ 2E{m(1)
Bn
}

|ImhBn(z)|3|Im z|3|E{gn(z̄)}| ≤
1
10

and then the analyticity of gAn(z) for z ∈ C\R and Cauchy theorem imply that

Var{g′An
(hBn(z̄))} = O(uAn(hBn(z̄))), n →∞. (2.26)

Thus, we obtain from (2.25) by using Schwarz inequality

Var{pAn(z)} ≤ Var1/2{pAn(z)}
(
Var1/2{g′An

(hBn(z))}

+0, 1
(
u1/2

n + w1/2
n + Var1/2

{
m

(1)
Bn

}))
+ 0, 1n−2.

This, assertion (i) and (2.26) yield (ii).
(iii) It follows from (2.13) and zGAn(z) + I = GAn(z)An that

GAn(hBn(z))U †
nBnUnGn(z) = GAn(hBn(z))−Gn(z)

+(z − hBn(z))GAn(hBn(z))Gn(z),

hence
kAn(z) = gAn(hBn(z))− gn(z) + (z − hBn(z))pAn(z).

Using this relation and the Schwarz inequality, we obtain

Var{kAn(z)} ≤Var{gAn(hBn(z))}+ un + |z − hBn(z)|2Var{pAn(z)}
+ 2|z − hBn(z)|Var1/2{pAn(z)}

(
Var1/2{gAn(hBn(z))}+ u1/2

n

)

+ 2Var1/2{gAn(hBn(z))}u1/2
n .

This and the assertions (i) and (ii) yield (iii).
(iv) Note that in view of assertion (i) and (1.29) we already have for

z ∈ K-compact, K ⊂ Γα,β (1.32)

ũn, ṽn, w̃n = O
(
max{n−2, uAn , uBn}

)
. (2.27)

To prove (iv) we apply the procedure analogous to that of the proof of assertion
(i) and obtain the system of inequalities, now not a quadratic one, but of the
degree four. We have

ũn = Cov{(g◦n(z))2 g◦n(z̄), g(z̄)}.
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Using (2.14), we get

Cov{(g◦n(z))2 g◦n(z̄), g(z̄)} =
1
z̄
Cov{(g◦n(z))2 g◦n(z̄), δBn(z̄)}

+
1
z̄
Cov{(g◦n(z))2 g◦n(z̄), δAn(z̄)}.

Thus, using the Schwarz inequality, we obtain for z ∈ K-compact, K ⊂ Γα,β

ũn ≤ 1
|z|

(
ũ3/4

n ṽ1/4
n + ũ3/4

n w̃1/4
n

)
≤ α12ũ

3/4
n ṽ1/4

n + α13ũ
3/4
n w̃1/4

n ,

where α12 and α13 are given in (2.17). Besides, using the assertion of Lemma 2.2
with FA(z1, z2) =

(
δ◦An

(z1)
)2

δ◦An
(z2), z1 = z, z2 = z̄, we obtain

E{|δ◦An
(z)|4} = Cov{(δ◦An

(z)
)2

δ◦An
(z̄), gAn(hBn(z̄))}hBn,(z̄)

+
Ĩ1 − Ĩ2

E{gn(z̄)} +
γ̃AnBn(z, z̄)

n2
, (2.28)

where

Ĩ1 = Cov{(δ◦An
(z)

)2
δ◦An

(z̄), g◦n(z̄)k̃An(z̄)},
Ĩ2 = Cov{(δ◦An

(z)
)2

δ◦An
(z̄), δ◦Bn

(z̄)p̃An(z̄)}.
On the other hand, the Schwarz inequality, (1.30), (2.11), (2.12) and (2.27) yield
for z ∈ K-compact, K ⊂ Γα,β

|Cov{(δ◦An
(z)

)2
δ◦An

(z̄), gAn(hBn(z̄))}| ≤ ṽ3/4
n ũ

1/4
An

(hBn(z))

= o
(
max{n−2, uAn , uBn}

)
,

|Ĩ1| ≤ Mṽn

|Im z̄|
( |hBn(z)|
|z| |Im hBn(z)| +

1
|Im z|

)

+
Mṽ

3/4
n w̃

1/4
n

|Im z|
( |hBn(z)|
|z| |Im hBn(z)| +

1
|Im z|

)

+o
(
max{n−2, uAn , uBn}

)
,

|Ĩ2| ≤ Mṽ
3/4
n w̃

1/4
n

|Im z||ImhBn(z)| + o
(
max{n−2, uAn , uBn}

)
,

|γ̃AnBn(z, z̄)| ≤ 8E1/2{m(2)
Bn
}E1/2{m(4)

An
}v1/2

n

|Im z|3 E{gn(z)}||Im hBn(z)| ,

|γ̃AnBn(z, z̄)|
n2

= o
(
max{n−2, uAn , uBn}

)
.
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These inequalities and (2.28) imply

ṽn ≤ α23ṽ
3/4
n w̃1/4

n + γ̃2n,

where α23 = 3/4 and γ̃2n = o
(
max{n−2, uAn , uBn}

)
, n → ∞. Analogously, the

version of assertion of Lemma 2.2 in which An and Bn are interchanged and
FB(z1, z2) =

(
δ◦Bn

(z1)
)2

δ◦Bn
(z2), z1 = z, z2 = z̄, we obtain the inequality

w̃n ≤ α32w̃
3/4
n ṽ1/4

n + γ̃3n,

where α32 = 3/4, and γ̃3,n = o
(
max{n−2, uAn , uBn}

)
, n →∞. Now, introducing

again the new variables

s̃1 = ũ1/4
n , s̃2 = ṽ1/4

n , s̃3 = w̃1/4
n ,

we obtain the system of inequalities of the degree four

s̃4
i ≤

3∑

j=1,j 6=i

αij s̃
3
i s̃j + γ̃n, i = 1, 2, 3, γn = max{γ̃2n, γ̃3n}.

Solving this system by the same arguments as in the case of (2.24), we obtain
that s̃i = O(γ1/4

n ) uniformly in n for z ∈ K-compact, K ⊂ Γα,β, which completes
the proof of (iv).

P r o o f o f T h e o r e m 1.5. Using the assertion of Lemma 2.2 with
F (z1, z2) = gn(z1), we obtain

Cn(z1, z2) = Cov{gn(z1), gAn(hBn(z2))}
+

1
E{gn(z2)} (E{g◦n(z1)g◦n(z2)kAn(z2)}

− E{g◦n(z1)δ◦Bn
(z2)pAn(z2)}

)
+

γAnBn(z1, z2)
n2

.

Then, substituting in this relation

kAn(z2) = k◦An
(z2) + E{kAn(z2)}, pAn(z2) = p◦An

(z2) + E{pAn(z2)}

and regrouping the terms, we obtain

Cn(z1, z2) = αA(z2)Cn(z1, z2)− βA(z2)Cov{gn(z1), δBn(z2)} (2.29)
+ Cov{gn(z1), gAn(hBn(z2))}+ n−2γAnBn(z1, z2) + TAnBn ,
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where

αA(z2) =
E{kAn(z2)}
E{gn(z2)} , βA(z2) =

E{pAn(z2)}
E{gn(z2)} ,

γAnBn(z1, z2) =
E{n−1TrGAn(hBn(z))[U †

nBnUn, G2
n(z1)]Gn(z2)}

E{gn(z2)} ,

TAnBn =
E{g◦n(z1)g◦n(z2)k◦An

(z2)} −E{g◦n(z1)δ◦Bn
(z2)p◦An

(z2)}
E{gn(z2)} .

In [13] the following relations were proved for the case of nonrandom An and Bn

αA(z2) =
hBn(z2)− z

rn(z2)
r′An

(hBn(z2)) + o(1), n →∞, (2.30)

βA(z2) = − 1
rn(z2)

r′An
(hBn(z2)) + o(1), n →∞,

γAnBn(z1, z2) =
∂

∂z1

(
1

z1 − z2
− 1

hBn(z1)− hBn(z2)
(2.31)

− r′An
(hBn(z2))

hBn(z1)− hBn(z2)− z1 + z2

(z1 − z2) (rn(z1)− rn(z2))

)
,

+ o(1), n →∞.

where

rAn,Bn(z) = − 1
E{gAn,Bn(z)} , r′An,Bn

(z) =
E{g′An,Bn

(z)}
E2{gAn,Bn(z)} . (2.32)

They can be easy generalized for the case of random An and Bn. We also have

|TAn,Bn | ≤
ṽ

1/2
n

√
Var{kAn(z2)}+ ũ

1/4
n w̃

1/4
n

√
Var{pAn(z2)}

|E{gn(z2)}| .

This and Lemma 2.3 yield for z1,2 ∈ K-compact, K ⊂ Γα,β (1.32)

TAnBn = o
(
max{n−2, uAn , uBn}

)
, n →∞.

It follows from the assertion of Lemma 2.2 that we also have the symmetric to
(2.29) with respect to An and Bn relation:

Cn(z1, z2) = αB(z2)Cn(z1, z2)− βB(z2)Cov{gn(z1), δAn(z2)} (2.33)
+ Cov{gn(z1), gBn(hAn(z2))}+ n−2γBnAn(z1, z2) + TBnAn ,
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where αB(z2), βB(z2) and γBnAn(z1, z2) are given by (2.30) and (2.31)
with interchanged An and Bn and by the same arguments

TBnAn = o
(
max{n−2, uAn , uBn}

)
, n →∞.

This and the identity (2.14), implying

z2Cn(z1, z2) = Cov{gn(z1), δAn(z2)}+ Cov{gn(z1), δBn(z2)},

lead to the system




(1− αA(z2))Cn(z1, z2) + βA(z2)CδB
(z1, z2) = Cov{gn(z1), gAn(hBn(z2))}

+n−2γAB(z1, z2) + TAnBn

(1− αB(z2))Cn(z1, z2) + βB(z2)CδA
(z1, z2) = Cov{gn(z1), gBn(hAn(z2))}

+n−2γBA(z1, z2) + TBnAn ,
z2Cn(z1, z2)− CδA

(z1, z2)− CδB
(z1, z2) = 0,

(2.34)
where

(
Cn(z1, z2);CδA

(z1, z2) = Cov{gn(z1), δAn(z2)};
CδB

(z1, z2) = Cov{gn(z1), δBn(z2)}
)
.

It was shown in [13] that the determinant D(z2) of the system satisfies the fol-
lowing relation:

D(z2) =
1

r(z2)
J(z2) + o(1), n →∞,

where

J(z) = r′A(hB(z))+r′B(hA(z))−r′A(hB(z))r′B(hA(z)) = 1+o(1), z →∞. (2.35)

Thus, (2.34) is uniquely solvable for sufficiently large n and z2 and its solution is

Cn(z1, z2) = −Cov{gn(z1), gAn(hBn(z2))}βB(z2)
D(z2)

−Cov{gn(z1), gBn(hAn(z2))}βA(z2)
D(z2)

− 1
n2

γAnBn(z1, z2)βB(z2) + γBnAn(z1, z2)βA(z2)
D(z2)

+ Tn

= Cov{gn(z1), gAn(hBn(z2))}h′Bn
(z2) (2.36)

+Cov{gn(z1), gBn(hAn(z2))}h′An
(z2)

+
1
n2

(
γAnBn(z1, z2)h′Bn

(z2) + γBnAn(z1, z2)h′An
(z2)

)
+ Tn,
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where
Tn = o

(
max{n−2, uAn , uBn}

)
, n →∞.

To find Cov{gn(z1), gAn,Bn(hBn,An(z2))} we use a simpler version of the above
scheme. It follows from Proposition 2.1 with Φ = Gac(z1) and (2.2) that

〈(
G(z1)

[
X,U †BU

]
G(z1)

)
ac

〉
= 0.

Choosing here X = E(a,b) and applying the operation n−1
n∑

a=1
to the result, we

obtain
〈δBn(z1)G(z1)〉 =

〈
gn(z1)U †BUG(z1)

〉
.

Then the same procedure as in the proof of Lemma 2.2, i.e.,the regrouping of the
terms, the using of the centered quantities g◦n(z1) and δ◦Bn

(z1), the multiplying
from the left by GAn(hBn(z2)) and then the applying of n−1Tr, yields

〈gn(z1)〉 = gAn(hBn(z1)) +
〈g◦n(z1)kAn(z1)〉 −

〈
δ◦Bn

(z1)pAn(z1)
〉

E{gn(z1)} .

Multiplying this relation by g◦An
(hBn(z2)) and taking the expectation E{...}, we

obtain (cf (2.29))

Cov{gn(z1), gAn(hBn(z2))} = αA(z1)Cov{gn(z1), gAn(hBn(z2))}
− βA(z1)Cov{δBn(z1), gAn(hBn(z2))}
+ CAn(hBn(z1), hBn(z2)) + T̂AnBn ,

where αA(z) and βA(z) are the same as in the (2.29) and

T̂AnBn

=
E{g◦An

(hBn(z2))g◦n(z1)k◦An
(z1)} −E{g◦An

(hBn(z2))δ◦Bn
(z1)p◦An

(z1)}
E{gn(z1)} ,

|T̂AnBn |

≤ ũ
1/4
An

(hBn(z2))ũ
1/4
n

√
Var{kAn(z1)}+ ũ

1/4
An

(hBn(z2))w̃
1/4
n

√
Var{pAn(z1)}

|E{gn(z1)}| .

This and Lemma 2.3 yield for for z1,2 ∈ K-compact, K ⊂ Γα,β (1.32)

T̂AnBn = o
(
max{n−2, uAn , uBn}

)
, n →∞.
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Next, it can be shown that the covariance triple

CgA = Cov{gn(z1), gAn(hBn(z2))},
CgAδA

= Cov{δAn(z1), gAn(hBn(z2))},
CgAδB

= Cov{δBn(z1), gAn(hBn(z2))}

satisfies the uniquely solvable system (cf. (2.34))




(1− αA(z1))CgA + βA(z1)CgAδB
= CAn(hBn(z1), hBn(z2)) + T̂AnBn

(1− αB(z1))CgA + βB(z1)CgAδA
= T̂BnAn

z1CgA − CgAδA
− CgAδB

= 0

and that its solution is

Cov{gn(z1), gAn(hBn(z2))} = −CAn(hBn(z1), hBn(z2))βB(z1)
D(z1)

+ T̂n (2.37)

= CAn(hBn(z1), hBn(z2))h′Bn
(z1) + T̂n,

where
T̂n = o

(
max{n−2, uAn , uBn}

)
, n →∞.

Analogously, we obtain the relation with interchanged An and Bn

Cov{gn(z1), gBn(hAn(z2))} = CBn(hAn(z1), hAn(z2))h′An
(z1) + T̃n, (2.38)

where
T̃n = o

(
max{n−2, uAn , uBn}

)
, n →∞.

Substituting (2.37) and (2.38) in (2.36) and using (2.31), we obtain (1.31).

3. Central Limit Theorem

In Theorem 1.5 we did not suppose any convergence of n−1-asymptotics lead-
ing term of the covariances CAn(z1, z2) and CBn(z1, z2). This makes Theorem 1.5
applicable to the general case of matrix models having limiting NCMs supported
on more than one interval. In this case n−1-asymptotics leading terms of the
covariances of Stieltjes transforms of its NCMs do not have fixed limits. Now
we will study the case of compactly supported measures NAn,Bn and Nn, which
allows us to prove the central limit theorems for the linear eigenvalue statistics of
ensemble (1.1). Consider now the linear eigenvalues statistics of Hn (1.1), defined
by a test (measurable and bounded) function ϕ : R→ C as follows:

Nn[ϕ] := Trϕ(Hn) =
n∑

l=1

ϕ(λHn
l ) = n

∫
ϕ(λ)Nn(dλ).
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Theorem 3.1. Consider the random matrices of the form (1.1). Assume
(1.3) for nonrandom uniformly bounded An and Bn, supp NAn,Bn ⊂ [−T, T ],
and the function ϕ : R→ C to be analytic in the domain D such that

[−2T, 2T ] ⊂ C \DT ⊂ D, DT = {z ∈ C : ρ = min dist(z, [−2T, 2T ]) > 4T}

and Nn[ϕ] to be corresponding linear statistics. Then the random variable

N ◦
n [ϕ] = Nn[ϕ]−E{Nn[ϕ]}

converges in distribution to the Gaussian random variable with zero mean and
the variance

V [ϕ] =
1
π2

∫

C1

∫

C2

ϕ(z1)ϕ(z2)S(z1, z2)dz1dz2,

where C1,2 ⊂ D are closed contours encircluing [−2T, 2T ] and

S(z1, z2) =
∂2

∂z1∂z2
log

(hA(z1)− hA(z2))(hB(z1)− hB(z2))
(z1 − z2)(f(z1)− f(z2))

.

P r o o f. Since supp NAn,Bn ⊂ [−T, T ], we have supp NHn ⊂ [−2T, 2T ].
Note that due to the Cauchy theorem

N ◦
n [ϕ] =

n∑

l=1

(
ϕ(λHn

l )−E
{

ϕ(λHn
l )

})

= n

2T∫

−2T

ϕ(λ)Nn(dλ)− nE





2T∫

−2T

ϕ(λ)Nn(dλ)





=
n

2πi

∫

Γ

ϕ(z)




2T∫

−2T

Nn(dλ)
z − λ

−E





2T∫

−2T

Nn(dλ)
z − λ






 dz

= − n

2πi

∫

Γ

ϕ(z)g◦n(z)dz,

where Γ ⊂ D is any closed contour in the complex plane encircling the segment
[−2T, 2T ] in the real axis. Define the characteristic function

Zn(x) = E {en(x)} , x ∈ R,

where

en(x) = eixN ◦
n [ϕ] = exp



−

nx

2π

∫

Γ

ϕ(z)g◦n(z)dz



 .
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Since Zn(0) = 1 and

en(x) = 1 +

x∫

0

e′n(y)dy, Zn(x) = 1 +

x∫

0

Z ′n(y)dy, (3.1)

it is suffices to prove that there exist subsequences {Znj (x)} and {Z ′nj
(x)} that

converge uniformly on any finite interval and

lim
nj→∞

Znj (x) = Z(x), lim
nj→∞

Z ′nj
(x) = −xV [ϕ]Z(x).

Besides, due to the Cauchy theorem

d

dx
en(x) = − n

2π
en(x)

∫

Γ

ϕ(z)g◦n(z)dz

= − n

2π

∫

Γ1

ϕ(z1)en(x)g◦n(z1)dz1,

Z ′n(x) = − 1
2π

∫

Γ1

ϕ(z1)E {ne◦n(x)gn(z1)} dz1, (3.2)

where we choose the contour Γ1 ⊂ DT ∩D. To find E {ne◦n(x)gn(z1)} , we apply
the same procedure as in the previous section and obtain for the triple

(E {ne◦n(x)gn(z1)} ,E {ne◦n(x)δAn(z1)} ,E {ne◦n(x)δBn(z1)})
the uniquely solvable system





(1− αA(z1))E {ne◦n(x)gn(z1)}+ βA(z1)E {ne◦n(x)δBn(z1)} = CAB

(1− αB(z1))E {ne◦n(x)gn(z1)}+ βB(z1)E {ne◦n(x)δAn(z1)} = CBA

z1E {ne◦n(x)gn(z1)} −E {ne◦n(x)δAn(z1)} −E {ne◦n(x)δBn(z1)} = 0,
(3.3)

where

CAB = −xZn(x)
2π

∫

Γ2

ϕ(z2)γAB(z2, z1)dz2 + nTAnBn(z1)− τAnBn(z1, z2),

TAnBn(z1) =
E{e◦n(x)g◦n(z1)k◦An

(z1)} −E{e◦n(x)δ◦Bn
(z1)p◦An

(z1)}
E{gn(z1)} ,

τAnBn(z1, z2)

=

∫
Γ2

xϕ(z2)Cov{en(x), n−1TrGAn(hBn(z1))[U
†
nBnUn, G2

n(z2)]Gn(z1)}dz2

2πE{gn(z1)} ,
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contour Γ2 ⊂ DT ∩ D, and CBA is defined analogously to the CAB with inter-
changed A and B. Besides, in view of (2.10) we have for z ∈ DT the following
bounds:

|δAn,Bn(z)| ≤ 1
4
, |gn(z)| ≥ 1

2|z| , min dist(hAn,Bn(z), [−T, T ]) ≥ 2T,

||Gn(z)|| ≤ 1
4T

, ||GAn,Bn(hBn,An(z))|| ≤ 1
2T

, |en(x)| ≤ 1.

Moreover, by using the procedure from the previous section it can be shown that
uniformly for z1,2 ∈ K, K-compact, K ⊂ DT

Var
{

n−1TrGAn(hBn(z1))[U †
nBnUn, G2

n(z2)]Gn(z1)
}
≤ O(n−2).

Thus, using these bounds, the bounds for variances of kAn and pAn

Var {kAn(z)} = O(n−2), Var {pAn(z)} = O(n−2), z ∈ K

analogously to those obtained in Lemma 2.3 and Schwarz inequality, we obtain
uniformly in x on any finite interval and in z1,2 ∈ K, K-compact, K ⊂ DT

nTAnBn(z1) = O(n−1), τAnBn(z1, z2) = O(n−1).

Then, solving (3.3), we obtain uniformly in x on any finite interval

E {ne◦n(x)gn(z1)}

=
xZn(x)

2π

∫

Γ2

ϕ(z2)
(

γAB(z2, z1)βB(z1) + γBA(z2, z1)βA(z1)
D(z1)

)
dz2 + O(n−1)

=
xZn(x)

2π

∫

Γ2

ϕ(z2)Sn(z1, z2)dz2 + O(n−1).

Substituting this into (3.2), we obtain uniformly in x on any finite interval in
view of finiteness of the contours Γ1,2

Z ′n(x) = −xZn(x)
4π

∫

Γ1

∫

Γ2

ϕ(z1)ϕ(z2)Sn(z1, z2)dz1dz2 + O(n−1),

which completes the proof, due to the analyticity of ϕ(z1)ϕ(z2)Sn(z1, z2) in z1,2

for z1,2 ∈ C\[−2T, 2T ].
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