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Let H be a separable Hilbert space, A be a positive-definite selfadjoint ope-
rator in H. The domain of definition of the operator Aγ , γ ≥ 0, becomes a
Hilbert space Hγ with respect to the scalar product (x, y)γ = (Aγx,Aγy), x, y ∈
Hγ(H0 = H).

By L2 (R+;Hγ) we denote a Hilbert space of the vector functions f (t) with
values in Hγ , determined almost everywhere in R+ = (0,∞), measurable by
Bochner, for which

‖f‖L2(R+;Hγ) =




∞∫

0

‖f (t)‖2
γ dt




1/2

< ∞.

Further, by L (X,Y ) denote a space of linear bounded operators acting from
the space X to the space Y, σ (·) is a spectrum of the operator (·) , ρ (·) is a regular
set of the operator (·) , E is a unique operator in H.

In the sequel, everywhere du
dt = u′, d2u

dt2
= u′′ are derivatives of the vector

function u (t) in the sense of distribution theory [1].

c© S.S. Mirzoev and S.G. Veliev, 2010



S.S. Mirzoev and S.G. Veliev

Let us introduce the following spaces:

W 2
2 (R+;H) =

{
u : u ∈ L2 (R+; H2) , u′′ ∈ L2 (R+; H)

}
,

◦
W 2

2 (R+; H; 0, 1) =
{
u : u ∈ W 2

2 (R+;H) , u (0) = u′ (0) = 0
}

,

W 2
2 (R+; H; T ) =

{
u : u ∈ W 2

2 (R+; H) , u (0) = Tu′ (0) , T ∈ L
(
H1/2; H3/2

)}
,

W 2
2 (R+;H; K) =

{
u : u ∈ W 2

2 (R+; H) , u′ (0) = Ku (0) , K ∈ L
(
H3/2; H1/2

)}

(in these denotation the spaces W 2
2 (R+; H; T ) and W 2

2 (R+; H; K) depend on the
choice of the letters T and K, but it does not lead to misunderstandings in the
text).

Each of these linear sets becomes a Gilbert space with respect of the norm
[1, p. 23–29]

‖u‖W 2
2 (R+;H) =

(
‖u‖L2(R+;H) +

∥∥u′′
∥∥

L2(R+;H)

)1/2
.

For T = 0 we get the space

◦
W 2

2 (R+; H; 0) =
{
u : u ∈ W 2

2 (R+; H) , u (0) = 0
}

,

and for K = 0 we have

◦
W 2

2 (R+; H; 1) =
{
u : u ∈ W 2

2 (R+;H) , u′ (0) = 0
}

.

Notice that it follows from the theorem on traces [1, Sect. 1, Th. 3.2] that
u (0) ∈ H3/2, u′ (0) ∈ H1/2.

The space W 2
2 (R; H), where R = (−∞,∞) [1], is defined in the similar way.

By the theorem on intermediate derivatives [1, Sect. 1, Th. 2.3], the operator

A
d

dt
: W 2

2 (R+; H) → L2 (R+;H)

is bounded.
In this paper we will find the exact values of the norm of intermediate deriva-

tive operators acting from the indicated spaces to the space L2 (R+; H). Notice
that for the scalar functions (H = R, A = E) the exact values of the operator

d

dt
: W 2

2 (R+) → L2 (R+)

were found in [2–5]. Similar problems were considered in [6, 7] for some abstract
spaces.
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Denote

N0,0 = sup
06=u∈

◦
W 2

2 (R+;H;0,1)

∥∥Au′
∥∥

L2(R+;H)
‖u‖−1

W 2
2 (R+;H)

, (1)

N = sup
06=u∈W 2

2 (R+;H)

∥∥Au′
∥∥

L2(R+;H)
‖u‖−1

W 2
2 (R+;H)

, (2)

NT = sup
06=u∈W 2

2 (R+;H;T )

∥∥Au′
∥∥

L2(R+;H)
‖u‖−1

W 2
2 (R+;H)

, (3)

NK = sup
06=u∈W 2

2 (R+;H;K)

∥∥Au′
∥∥

L2(R+;H)
‖u‖−1

W 2
2 (R+;H)

. (4)

In particular, for T = 0 and K = 0 we denote the norms by N0 and N1,
respectively. Find the exact values of these norms.

First, we prove the following statement.

Lemma 1. For any u ∈ W 2
2 (R+; H) and β ∈ (0, 2) there exists the identity

‖u‖2
W 2

2 (R+;H) − β
∥∥Au′

∥∥2

L2(R+;H)
= ‖Φ(d/dt : β : A) u‖2

L2(R+;H)
+

(
R̃ (β) ϕ̃, ϕ̃

)
H2

,

(5)
where

Φ(d/dt : β : A) u =
d2u

dt2
+

√
2− βA

du

dt
+ Au2, (6)

R̃ (β) =



√

2− βE E

E
√

2− βE


 = R (β)⊗ Ẽ,

R (β) =



√

2− β 1

1
√

2− β


 , Ẽ =




E 0

0 E


 .

P r o o f. By D (R+; H2) we denote a set of all infinitely differentiable in
H vector functions with values in H2 that have compact supports in R+. Then
by the theorem on density [1, Sect. 1, Th. 2.1] this set is everywhere dense in
W 2

2 (R+; H). Since the operators Aj d2−j

dt2−j , j = 0, 2, are bounded from W 2
2 (R+; H)

to L2 (R+;H), then it follows from the theorem on traces that it suffices to prove
validity of equality (5) for the functions from the class D (R+; H2). Obviously,
for u ∈ D (R+; H2) there holds the equality
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‖Φ(d/dt : β : A) u‖2

L2(R+;H)
=

∥∥u′′ +
√

2− βAu′ + Au2
∥∥2

L2(R+;H)
= ‖u′′‖2

L2(R+;H)

+(2− β) ‖Au′‖2

L2(R+;H)
+

∥∥A2u
∥∥2

L2(R+;H)
+ 2Re

(
u′′, A2u

)
L2(R+;H)

+ 2
√

2− βRe (u′′, Au′)L2(R+;H) +2
√

2− βRe
(
Au′, A2u

)
L2(R+;H)

.

(7)
Integrating by parts, we get the validity of the following equalities:

Re
(
u′′, A2u

)
L2(R+;H)

=

∞∫

0

(
u′′, A2u

)
H

dt = Re


− (ϕ1, ϕ0)−

∞∫

0

(
Au′, Au′

)
H

dt




= −Re (ϕ1, ϕ0)−
∥∥Au′

∥∥2

L2(R+;H)
. (8)

In a similar way we obtain

(
u′′, Au′

)
L2(R+;H)

=

∞∫

0

(
u′′, Au′

)
H

dt = − (ϕ1, ϕ1)−
∞∫

0

(
Au′, u′′

)
H

dt

= −‖ϕ1‖2 − (
Au′, u′′

)
L2(R+;H)

, ϕ1 = A1/2u′ (0),

i.e.,
2Re

(
u′′, Au′

)
L2(R+;H)

= −‖ϕ1‖2 . (9)

Similarly, we get

2Re
(
Au′, A2u

)
L2(R+;H)

= −‖ϕ0‖2 , ϕ0 = A3/2u (0) . (10)

Taking into account (8)–(10) in equality (7), we get

‖Φ(d/dt : β : A) u‖2
L2(R+;H) = ‖u′′‖2

L2(R+;H) − β ‖Au′‖2
L2(R+;H) − [2Re (ϕ0, ϕ1)

+
√

2− β ‖ϕ0‖2 +
√

2− β ‖ϕ1‖2
]

+ ‖A2u‖2
L2(R+;H).

(11)
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On the other hand, there hold the equalities:

2Re (ϕ0, ϕ1) =







E 0

0 E







ϕ0

ϕ1


 ,




ϕ0

ϕ1







H2

,

‖ϕ0‖2 =







0 0

E 0







ϕ0

ϕ1


 ,




ϕ0

ϕ1







H2

,

‖ϕ1‖2 =







0 E

0 0







ϕ0

ϕ1


 ,




ϕ0

ϕ1







H2

.

Thus, the equality

‖Φ(d/dt : β : A) u‖2
L2(R+;H) =

∥∥u′′
∥∥2

W 2
2 (R+;H)

−β
∥∥Au′

∥∥2

L2(R+;H)
−

(
R̃ (β) ϕ̃, ϕ̃

)
H2

holds. The lemma is proved.
Hence we get the following corollaries.

Corollary 1. For u ∈
◦

W 2
2 (R+; H; 0, 1) and β ∈ (0, 2) there holds the equality

‖Φ(d/dt : β : A) u‖2

L2(R+;H)
= ‖u‖2

W 2
2 (R+;H) − β

∥∥Au′
∥∥2

L2(R+;H)
. (12)

Corollary 2. For u ∈ W 2
2 (R+; H; T ) and for β ∈ (0, 2) there holds the

equality

‖u‖2
W 2

2 (R+;H) − β
∥∥Au′

∥∥2

L2(R+;H)
= ‖Φ(d/dt : β : A) u‖2

L2(R+;H) + (RT (β) ϕ,ϕ) ,

(13)
where

(RT (β)ϕ, ϕ) = 2Re (Cϕ, ϕ) +
√

2− β
(
‖Cϕ‖2 + ‖ϕ‖2

)
,

C = A3/2TA−1/2, ϕ = A1/2u′ (0) ∈ H.

(14)

In particular, when T = 0 (C = 0), for u ∈
◦

W 2
2 (R+; H; 0) and for β ∈ (0, 2)

we have

‖u‖2
W 2

2 (R+;H) − β
∥∥Au′

∥∥2

L2(R+;H)
= ‖Φ(d/dt : β : A) u‖2

L2(R+;H) +
√

2− β ‖ϕ‖2 .

(15)
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Corollary 3. For u ∈ W 2
2 (R+; H; K) and for β ∈ (0, 2) there holds the

equality

‖u‖2
W 2

2 (R+;H) − β
∥∥Au′

∥∥2

L2(R+;H)
= ‖Φ(d/dt : β : A) u‖2

L2(R+;H) + (RK (β)ϕ, ϕ) ,

(16)
where

(RK (β) ϕ,ϕ) = 2Re (Sϕ,ϕ) +
√

2− β
(
‖Sϕ‖2 + ‖ϕ‖2

)
,

S = A1/2KA−3/2, ϕ = A3/2u (0) ∈ H.

(17)

In particular, when K = 0 (S = 0), for u ∈
◦

W 2
2 (R+; H; 1) and for β ∈ (0, 2)

we have

‖u‖2
W 2

2 (R+;H) − β
∥∥Au′

∥∥2

L2(R+;H)
= ‖Φ(d/dt : β : A) u‖2

L2(R+;H) +
√

2− β ‖ϕ‖2 .

(18)

Obviously, the lemma below holds

Lemma 2. σ
(
R̃ (β)

)
= σ (R (β)) as a geometrical set, where R̃ (β) and

R (β) are determined in Lemma 1.
Hence it follows that R̃ (β) may have only eigenvalues that coincide with

R (β).
Now we find the exact values of the norms of intermediate derivative operators

N0,0, NT , NK , N0, N1 and N , defined by formulae (1)–(4).

Theorem 1. The norm N0,0 = 1√
2
.

P r o o f. For u ∈
◦

W 2
2 (R+; H; 0, 1) and β ∈ (0, 2) equality (12) holds.

In this equality passing to the limit as β → 2 we can find that for any

u ∈
◦

W 2
2 (R+; H; 0, 1) the inequality

∥∥Au′
∥∥

L2(R+;H)
≤ 1√

2
‖u‖W 2

2 (R+;H)

holds, i.e., N0,0 ≤ 1√
2
. Prove that N0,0 = 1√

2
. Show that for any ε > 0 there

exists such a vector function uε (t) that

E (uε (t)) ≡ ‖uε‖2
W 2

2 (R;H) − (2 + ε)
∥∥Au′ε

∥∥2

L2(R;H)
< 0. (19)

Find uε (t) in the form uε (t) = g (t) ψε, where ψε ∈ H4 (‖ψε‖0 = 1), but g (t)
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is a scalar function from W 2
2 (R). Then by the Plancharel theorem

E (g (t) ψε) = ‖g′′ (t) ψε‖2
L2(R;H) +

∥∥g (t)A2ψε

∥∥2

L2(R;H)
− (2 + ε) ‖g′ (t) Aψε‖2

L2(R;H)

=
+∞∫
−∞

((
ξ4E + A4 − (2 + ε) ξ2A2

)
ψε, ψε

) |ĝ (ξ)|2 dξ ≡
+∞∫
−∞

q (ξ, ψε) |ĝ (ξ)|2 dξ,

where q (ξ, ψε) = ξ4+
∥∥A2ψε

∥∥2−(2 + ε) ξ2 ‖Aψε‖2, and ĝ (ξ) is a Fourier transform
of the function g (t).

It is obvious that the function q (ξ, ψε) takes its minimal value at the points
ξ = ± (2 + ε) equal to h (ε, ψε) =

∥∥A2ψε

∥∥2 − 1
4 (2 + ε)2 ‖Aψε‖4.

If the operator A has at least one eigenvector responding to eigenvalue µ,
we can take this normed eigenvector as ψε.

Thus in this case h (ε, ψε) = µ4 − 1
4 (2 + ε)2 µ4 < 0. If µ is a point of a con-

tinuous spectrum, we can find such a vector ψε (‖ψε‖ = 1) that Alψε = λlψε +
o (δ) , l = 1, 2, . . . , for δ → 0. Obviously, for small δ the function h (ε, ψε) < 0.
Now let us fix the vector ψε, for which h (ε, ψε) < 0, and find the function g (t).

Since the function q (ξ, ψε) is continuous with respect to the argument ξ, there
can be found (η0 (ε) , η1 (ε)), where q (ξ, ψε) < 0, i.e.,

ε (g (t) ψε) =

η1(ε)∫

η0(ε)

q (ξ, ψε)
∣∣∣∣
∧
g (ξ)

∣∣∣∣
2

dξ < 0.

Further, from the continuity of the functional E (·) in the space W 2
2 (R; H)

by the theorem on density of finite infinitely differentiable vector function [1,
p. 29] there exists a vector function uN,ε (t) ∈ W 2

2 (R; H) with the support
(−N, N) ⊂ R, for which E (uN,ε (t)) < 0. Assuming uε (t) = uN,ε (t + 2N),

we get uε (t) ∈
◦

W 2
2 (R+;H; 0, 1) and E (uε (t)) = E (uN,ε (t + 2N)) < 0. Thus,

N0,0 = 1√
2
. The theorem is proved.

Since
◦

W 2
2 (R+; H; 0, 1) ⊂ W 2

2 (R+; H; T ), then NT ≥ 1√
2
. Analogously,

N ≥ NK ≥ N0,0 = 1√
2
. Explain when NT = 1√

2
or NK = 1√

2
. The following

holds.

Theorem 2. The norm NT = 1√
2

(
NK = 1√

2

)
iff for all β ∈ (0, 2) and

ϕ ∈ H (RT (β)ϕ, ϕ) > 0 ((RK (β) ϕ,ϕ) > 0).
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P r o o f. Let NT = 1√
2
. Then for any u ∈ W 2

2 (R+; H; T ) and β ∈ (0, 2)
we have

‖u‖2
W 2

2 (R+;H) − β ‖Au′‖2
L2(R+;H)

= ‖u‖2
W 2

2 (R+;H)

(
1− β ‖Au′‖2

L2(R+;H) ‖u‖−2
W 2

2 (R+;H)

)

≥ ‖u‖2
W 2

2 (R+;H)

(
1− β sup

u∈W 2
2 (R+;H;T )

‖Au′‖2
L2(R+;H) ‖u‖−2

W 2
2 (R+;H)

)

= ‖u‖2
W 2

2 (R+;H)

(
1− β 1

2

)
> 0.

Then it follows from equality (13) that for any u ∈ W 2
2 (R+;H; T ) and β ∈ (0, 2)

‖Φ (d/dt : β : A) u‖2

L2(R+;H)
+ (RT (β) ϕ,ϕ) > 0, ∀ϕ ∈ H

(
ϕ = A1/2u′ (0) ∈ H

)
.

(20)

Since the characteristically polynomial Φ (λ : β : A) = λ2E +
√

2− βλA + A2

is represented in the form

Φ (λ : β : A) = (λE − ω1 (β) A) (λE − ω2 (β) A) ,

where ω1 (β) = ω2 (β) =
(−√2− β − i

√
2 + β

)
/2, (Reω1 (β) < 0, Reω2 (β) < 0),

we get that the Cauchy problem

Φ (d/dt : β : A)u = 0, u (0) = Tu′ (0) , u′ (0) = A−1/2ϕ, ∀ϕ ∈ H, (21)

has a unique solution from the space W 2
2 (R+; H)

u (t, β) =
1

ω2 − ω1

{
eω1(β)tA

(
ω2 (β) TA−1/2ϕ−A−3/2ϕ

)

+eω2(β)tA
(
A−3/2ϕ− ω1 (β) TA−1/2ϕ

)}
.

Obviously, ‖u (t, β; ϕ)‖ ≤ d1 (β) ‖ϕ‖ , d1 (β) > 0. Using the uniqueness of the
solution of the Cauchy problem and also using Banach’s theorem on invertible
operator, we get ‖u (t, β; ϕ)‖ ≥ d2 (β) ‖ϕ‖. Thus, it follows from equality (20)
that (RT (β) ϕ,ϕ) > 0 for β ∈ (0, 2) and ∀ϕ ∈ H.

Inversely, if (RT (β) ϕ,ϕ) > 0, then from equality (13) it follows that

‖u‖2
W 2

2 (R+;H) − β
∥∥Au′

∥∥2

L2(R+;H)
> 0

(∀β ∈ (0, 2) , ∀u ∈ W 2
2 (R+; H; T )

)
.
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By passing to the limit as β → 2, we get NT ≤ 1
2 . Consequently, NT = 1√

2
.

We prove in a similar way that NK = 1√
2

iff (RK (β) ϕ,ϕ) > 0 for β ∈ (0, 2) and
∀ϕ ∈ H.

Using this theorem we get the following statement.

Theorem 3. The norm NT = 1√
2

iff ReC ≥ 0 (see (14)).

In fact, if NT = 1√
2
, then (RT (β) ϕ,ϕ) > 0, β ∈ (0, 2) , ϕ ∈ H. By passing to

the limit as β → 2, we get ReC ≥ 0. Inversely, if ReC ≥ 0, then (RT (β) ϕ,ϕ) > 0,
for β ∈ (0, 2), i.e., NT = 1√

2
.

Similarly is proved

Theorem 4. The norm NK = 1√
2

iff ReS ≥ 0 (see (17)).

Notice that if ReC is not a non negative operator, then the following theorem
holds.

Theorem 5. Let inf
ϕ∈H

Re (Cϕ, ϕ) < 0,
(

inf
ϕ∈H

Re(Sϕ, ϕ) < 0
)

. Then the norm

NT =
1√
2

(
1− 2

∣∣∣∣ inf
‖ϕ‖=1

Re (Cϕ, ϕ)
1 + ‖Cϕ‖2

∣∣∣∣
2
)−1/2

(22)


NK =

1√
2

(
1− 2

∣∣∣∣ inf
‖ϕ‖=1

Re (Sϕ,ϕ)
1 + ‖Sϕ‖2

∣∣∣∣
2
)−1/2


 (23)

(see (14), (17)).
P r o o f. Let inf

ϕ∈H
ReC < 0. Then by Theorem 3 NT > 1√

2
. Therefore

N−2
T ∈ (0, 2). Then if in equality (13) as u (t) we take the solution of the Cauchy

problem (see (21)), for β ∈ (
0, N−2

T

)
and ‖ϕ‖ = 1 we get

(RT (β) ϕ,ϕ) = ‖u (t, β; ϕ)‖2
W 2

2 (R+;H) −
∥∥Au′ (t, β;ϕ)

∥∥2

L2(R+;H)

≥ ‖u (t, β; ϕ)‖2
W 2

2 (R+;H)

(
1− βN−2

T

)
> 0.

Thus, for β ∈ (
0, N−2

T

)
the function

m (β) = inf
‖ϕ‖=1

(R (β) ϕ,ϕ) > 0.

And for β ∈ (
N−2

T , 2
)
, by definition of NT , there can be found a vector

function υ (t, β) ∈ W 2
2 (R+;H;T ) such that

‖υ (t, β)‖2
W 2

2 (R+;H) −
∥∥Aυ′ (t, β)

∥∥2

L2(R+;H)
< 0.
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Consequently, for β ∈ (
N−2

T , 2
)

it follows from equality (13) that

(RT (β)ϕβ, ϕβ) + ‖Φ(d/dt : β : A) v(t, β)‖2
L2(R+;H) < 0

(
ϕβ = A−1/2v(0, β)

)
, i.e., m(β) < 0 for β ∈ (

N−2
T , 2

)
. Thus, the continuous

function m (β), determined for β ∈ (0, 2), changes its sign at the point N−2
T , i.e.,

m
(
N−2

T

)
= 0. Hence, it follows easily that

√
2−N−2

T = −2 inf
‖ϕ‖=1

Re (Cϕ,ϕ)
/[

1 + ‖Cϕ‖2
]
,

i.e.,

NT =
1√
2

(
1− 2

∣∣∣∣ inf
‖ϕ‖=1

Re (Cϕ, ϕ)
1 + ‖Cϕ‖2

∣∣∣∣
2
)−1/2

.

Formula (23) is proved in a similar way. The theorem is proved.
It follows from Theorems 3–5 that N0 = N1 = 1√

2
(C = S = 0).

Now we find the norm N .
There holds the following.

Theorem 6. The norm N = 1, where N is determined by formula (2).
P r o o f. It is obvious that N ≥ 1√

2
. Show that N 6= 1√

2
. In fact, if N = 1√

2
,

then it follows from equality (5) that

‖Φ (d/dt : β : A)u‖2

L2(R+;H)
+

(
R̃ (β) ϕ̃, ϕ̃

)
H2
≥ ‖u‖2

W 2
2 (R+;H)

×
(

1− β sup
u∈W 2

2 (R+;H)

‖Au′‖2 ‖u‖−2
W 2

2 (R+;H)

)
≥ ‖u‖2

W 2
2 (R+;H)

(
1− β 1

2

)
> 0.

(24)
Then for β ∈ (0, 2) the Cauchy problem

Φ (d/dt : β : A) u = 0, u (0) = A−3/2ϕ0, u
′ (0) = A−1/2ϕ1, ∀ϕ0, ϕ1 ∈ H, (25)

has a unique solution from W 2
2 (R+; H), therefore for β ∈ (0, 2) (R̃ (β) ϕ̃, ϕ̃)H2

> 0. By Lemma 2 all eigenvalues of the matrix R (β) are positive. But it is seen
from the form R (β) (see Lem. 1) that for β ∈ (1, 2), R (β) has also the negative
eigenvalue λ1 (R (β)) = 1 − β < 0. Thus, N > 1

2 , i.e., N−2 ∈ (0, 2). Then for
β ∈ (

0, N−2
)

we have

‖Φ(d/dt : β : A) u‖2

L2(R+;H)
+

(
R̃ (β) ϕ̃, ϕ̃

)
≥ ‖u‖2

W 2
2

(
1− βN−2

)
> 0.

Hence it follows that if in this inequality we replace u by the solution of
the Cauchy problem (25) for β ∈

(
0, N

−2

T

)
, then we obtain

(
R̃ (β) ϕ̃, ϕ̃

)
> 0.
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Consequently, all eigenvalues of the matrix R (β) are positive for β ∈ (
0, N−2

)
.

In particular, λ1 (β) > 0 (λ1 (β) is the first eigenvalue of the matrix R (β)).
And for β ∈

(
N
−2

T , 2
)

it follows from the definition of N that there exists such

υ (t, β) ∈ W 2
2 (R+; H) that

‖υ‖2
W 2

2 (R+;H) −
∥∥Aυ′

∥∥2

L2(R+;H)
< 0.

Consequently,
(
R̃ (β) ϕ̃β, ϕ̃β

)
< 0

(
ϕβ,0 = A−3/2υβ (0) , ϕβ,1 = A−1/2υ′β (0)

)
.

We again obtain that λ1 (β) is the first eigenvalue of the matrix R (β), is
negative for β ∈ (

N−2, 2
)
. Consequently, λ1

(
N−2

)
= 0.

I.e., ∣∣∣∣∣∣

√
2−N−2 1

1
√

2−N−2

∣∣∣∣∣∣
= 0.

Hence we find that N−2 = 1, i.e., N = 1. The theorem is proved.
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