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1. Introduction

The studying of simple models of particle systems such as systems of hard
spheres allows us to solve a number of problems of description of dynamics of
many-particle systems. The problems are rigorous justification of kinetic equa-
tions, justification of approximate methods of description of dynamics etc. [1–5].

The system ”Brownian particle in thermostat” is an important case of many-
particle many kind system, and the studying of this system is of selfdependent
interest [6].

In the present paper it is derived the Fokker–Planck equation describing the
dynamics of particle system under consideration, and it is obtained the solution
of the derived equation based on the probability approach used to describe the
system.
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2. Description of Thermostat

We consider a one-dimensional system ”Brownian particle in thermostat”.
All particles of thermostat are identical and have the mass m0 = 1. The velocity
distribution of particles of thermostat is equilibrium, the Maxwellian [7]:

ϕ(v) =
1√
2π

e−
v2

2 . (1)

The coordinates of the particles are uniformly distributed along a straight line
on the admissible configurations. Later we can neglect the particle sizes.

The probability of location of particle in the small segment dl is determined
by the expression

P = ndl, (2)

where n is the concentration of particles.
Indeed, let the length of rod, on which N particles are located, be equal to L.

Taking into account that the coordinate distribution is equilibrium and passing
to the thermodynamic limit we find the probability of location of k particles in
this segment as the Poisson distribution

Pk =
(n dl)k

k!
e−n dl.

By remaining the first order of smallness over dl, we obtain (2).
We denote the concentration by n = 1. It is obvious that the probability

of the particle to be located in the small segment dl and have a velocity in the
interval [v, v + dv) is equal to dlϕ(v) dv.

In the thermostat considered, there is a massive Brownian particle with mass
m À 1. The problem is to describe its behaviour, i.e., to find the distribution
function of coordinate q and velocity u depending on time t.

Probability of the Brownian particle having velocity in the interval [u0, u0 +
du0) to collide with the particle of thermostat having velocity in the interval
[v0, v0 + dv0) during a little period of time dt is determined by the expression

Φ(u0, v0) du0dv0dt = ϕ(v0)|u0 − v0| du0dv0dt. (3)

By the law of conservation of momentum and energy we obtain that the
Brownian particle must collide with the particle having the velocity

v0 =
m + 1

2
u− m− 1

2
u0. (4)

Notice that collisions of particles do not change equilibrium distribution.
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By (1), (3), (4) we can write the expression for Φ(u0, u) du0dudt, that is
a probability of the fact that the Brownian particle having velocity in the interval
[u0, u0+du0), after collision with the particle of thermostat happened at the time
dt, will have velocity in the interval [u, u + du):

Φ(u0, u) du0dudt =
1√
2π

(
m + 1

2

)2

e−
1
2(m+1

2
u−m−1

2
u0)2

|u− u0| du0dudt. (5)

We write the probability P (u0, t) of lacking of collisions of the Brownian
particle moving with velocity u0 at time t. The probability of lacking of collisions
during a little period of time dt is determined by the expression

1− f(u0) dt, (6)

where

f(u0) =

∞∫

−∞
ϕ(v0)|u0 − v0| dv0.

Then we write
P (u0, t + dt) = P (u0, t)(1− f(u0) dt),

hence
P (u0, t) = e−f(u0)t.

3. The Kinetic Equation

We use the velocity part of distribution function since the coordinate of Brow-
nian particle is included only into the initial distribution function determined as
a product of velocity and configuration multipliers. The kinetic equation is de-
rived directly from (5), (6).

We consider a change of distribution function F (u, t) for infinitely little period
of time dt:

• velocity of particle may not change (if there is no collision);

• velocity of particle may change after one collision (probabilities of two, three
collisions should be neglected).

Therefore we have the following equality:

F (u, t+dt) du = F (u, t) du(1−dt

∞∫

−∞
Φ(u, u1) du1)+du

∞∫

−∞
F (u0, t)Φ(u0, u) du0dt,
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hence there follows

∂F (u, t)
∂t

= −F (u, t)

∞∫

−∞
Φ(u, u1) du1 +

∞∫

−∞
F (u0, t)Φ(u0, u) du0. (7)

To pass to the Fokker–Planck equation we act in the following way. Since
m À 1, then the change of velocity of the Brownian particle is small after one
collision, therefore we represent F (u0, t) as the series over powers of difference
(u0 − u) and substitute into (7). As a result, we obtain the equation

∂F (u, t)
∂t

= F (u, t)




∞∫

−∞
Φ(u0, u) du0 −

∞∫

−∞
Φ(u, u1) du1




+
∂F (u, t)

∂u

∞∫

−∞
(u0 − u)Φ(u0, u) du0

+
1
2!

∂2F (u, t)
∂u2

∞∫

−∞
(u0 − u)2Φ(u0, u) du0

+
1
3!

∂3F (u, t)
∂u3

∞∫

−∞
(u0 − u)3Φ(u0, u) du0 + . . . .

(8)

The integrals in (8) have the form

∞∫

−∞
(u0 − u)k 1√

2π

(
m + 1

2

)2

e−
1
2(m+1

2
u−m−1

2
u0)2

|u0 − u| du0

=
1√
2π

(
m + 1
m− 1

)2 (
2

m− 1

)k
∞∫

−∞
zk|z|e− (u−z)2

2 dz,

where the substitution u0 − u = 2
m−1z is performed.

We introduce the following functions:

Gk(u) =

∞∫

−∞
zk|z|e− (u−z)2

2 dz

and consider their conditions.
Differentiating Gk(u), we obtain the recurrent relation

Gk+1(u) = uGk(u) +
dGk(u)

du
,

Journal of Mathematical Physics, Analysis, Geometry, 2010, vol. 6, No. 1 51



H.M. Hubal

which allows us to express Gk(u) by G0(u), besides the explicit expression for
G0(u) has the form

G0(u) = 2e−
u2

2 +
√

2πu erf

(
u√
2

)
,

where erf(x) is the erf integral.
Expanding these functions into series, we obtain the following equalities:

G0(u) = 2 + u2 − 1
12

u4 + · · · ;

G1(u) = 4u +
2
3
u3 + · · · ;

G2(u) = 4 + 6u2 +
2
3
u4 + · · · ;

G3(u) = 16u + 8
2
3
u3 + · · · .

The second integral in (8) has the form
∞∫

−∞
Φ(u, u1) du1 =

(
m + 1

2

)2 1√
2π

∞∫

−∞
e−

1
2(m+1

2
u1−m−1

2
u)2

|u1 − u| du1

=
1√
2π

∞∫

−∞
|z|e− (u−z)2

2 dz =
1√
2π

G0(u),

where the substitution u1 = u− 2
m+1z is performed.

Equation (8) in the terms of the functions Gk(u) has the form

∂F (u, t)
∂t

= a(u)F (u, t) + b(u)
∂F (u, t)

∂u

+ D(u)
∂2F (u, t)

∂u2
+ S(u)

∂3F (u, t)
∂u3

+ . . . ,

(9)

where

a(u) =
4m

(m− 1)2
1√
2π

G0(u);

b(u) =
(

m + 1
m− 1

)2 2
m− 1

1√
2π

G1(u);

D(u) =
1
2

(
m + 1
m− 1

)2 (
2

m− 1

)2 1√
2π

G2(u);

S(u) =
1
6

(
m + 1
m− 1

)2 (
2

m− 1

)3 1√
2π

G3(u).
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From the choice of system of units we have that the root-mean-square velocity
of particles of thermostat is equal to one. By the theorem on equidistribution
of energy we conclude that the velocity of Brownian particle has the order m− 1

2 .
This fact allows us to find the order of smallness of all summands included into
equation (9).

We estimate the order of smallness of all summands in (9):

√
2πa(u)F (u, t) =

8
m

F (u, t) +
(

4
m

u2 +
16
m2

)
F (u, t) + · · · ;

√
2πb(u)

∂F (u, t)
∂u

=
8
m

u
∂F (u, t)

∂u
+

(
4

3m
u3 +

40
m2

u

)
∂F (u, t)

∂u
+ · · · ;

√
2πD(u)

∂2F (u, t)
∂u2

=
8

m2

∂2F (u, t)
∂u2

+
(

12
m2

u2 +
48
m3

)
∂2F (u, t)

∂u2
+ · · · ;

√
2πS(u)

∂3F (u, t)
∂u3

=
64

3m3
u

∂3F (u, t)
∂u3

+ · · · .

(10)

By the formulae of (10) we obtain the equation

√
2π

∂F (u, t)
∂t

=
8
m

F (u, t) +
8
m

u
∂F (u, t)

∂u
+

8
m2

∂2F (u, t)
∂u2

+
4

m2
(mu2 + 4)F (u, t) +

4u

3m2
(mu2 + 30)

∂F (u, t)
∂u

+
12
m3

(mu2 + 4)
∂2F (u, t)

∂u2
+

64
3m3

u
∂3F (u, t)

∂u3
+ · · · .

By remaining only the summands of order of smallness m− 1
2 in this equation,

we obtain the Fokker–Planck equation

m

8

√
2π

∂F (u, t)
∂t

= F (u, t) + u
∂F (u, t)

∂u
+

1
m

∂2F (u, t)
∂u2

. (11)

4. On a Solution of the Fokker-Planck Equation

After substituting ξ =
√

m
2 u and τ = 4t

m
√

2π
equation (11) has the form

∂F (ξ, τ)
∂τ

= 2F (ξ, τ) + 2ξ
∂F (ξ, τ)

∂ξ
+

∂2F (ξ, τ)
∂ξ2

. (12)

The solution of equation (12) satisfies the conditions of boundedness and inte-
grability, and it is represented as the formula

F (ξ, τ) =
∞∑

k=0

Cke
−ξ2

Hk(ξ)e−2kτ , (13)
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where Hk(ξ) are the Hermite polynomials. Taking into account the condition
of orthogonality of polynomials and the initial data F (ξ, τ)|τ=0 = F0(ξ), we
determine the coefficients Ck of the series (13)

Ck =

∞∫
−∞

F0(ξ)Hk(ξ) dξ

2kk!
√

π
.

We denote F0(ξ) = δ(ξ− ξ0). Then the solution (13) of equation (12) has the
form

F (ξ, τ) =
∞∑

k=0

Hk(ξ0)
2kk!

√
π

e−ξ2
Hk(ξ)e−2kτ . (14)

Notice that as τ →∞ the first term of the series (14) remains only, i.e., there
is a limiting distribution

F (ξ) =
1√
π

e−ξ2
,

or in the terms of variables u

F (u) =
√

m

2π
e−

mu2

2

the distribution passes to the Maxwell distribution (there is a relaxation).
Characteristic relaxation time is determined by the formula

Trel. =
m
√

2π

8
.

By (14) we obtain that the mean velocity of Brownian particle changes
according to the law

〈ξ〉 =

∞∫

−∞
ξF (ξ, τ) dξ = ξ0e

−2τ ,

or in initial system of units
〈u〉 = u0e

− 8t
m
√

2π .

The dispersion of velocity of Brownian particle has the form

σ2
ξ = 〈ξ2〉 − 〈ξ〉2 = 〈H2

4
+

H0

2
〉 − (ξ0e

−2τ )2 =

=
(

ξ2
0 −

1
2

)
e−4τ +

1
2
− (ξ0e

−2τ )2 =
1
2
(1− e−4τ ),
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or in the initial system of units

σ2
u =

1
m

(1− e
− 16t

m
√

2π ).

Thus, it is obtained the Fokker–Planck equation for the system ”Brownian
particle in thermostat” and its solution in the form of the series over the Hermite
polynomials.

References

[1] N.N. Bogolyubov, Problems of a Dynamical Theory in Statistical Physics.
Gostekhizdat, Moscow, 1946. (Russian)

[2] M.A. Stashenko and G.N. Gubal’, Existence Theorems for the Initial Value Problem
for the Bogolyubov Chain of Equations in the Space of Sequences of Bounded Func-
tions. — Sib. Mat. Zh. 47 (2006), No. 1, 188–205. (Engl. transl.: Siberian Math. J.
47 (2006), No. 1, 152–168.)

[3] C. Cercignani, V.I. Gerasimenko, and D.Ya. Petrina, Many-Particle Dynamics and
Kinetic Equations. Kluwer Acad. Publ., Dordrecht, 1997.

[4] R. Illner and M. Pulvirenti, A Derivation of the BBGKY Hierarchy for Hard Sphere
Particle Systems. — Transp. Theory and Stat. 16 (1987), No. 7, 997–1012.

[5] M.A. Stashenko and G.N. Gubal’, Boltsman–Gred boundary Path for One-
Measurable System. — Sci. Bull. Volyn State Univ. (2002), No. 1, 5–13. (Ukrainian)
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