On the Sine-Gordon Equation with a Self-Consistent Source of the Integral Type

A.B. Khasanov, G.U. Urazboev
Urgench State University
14 H. Olimjan Str., Urgench, 740000, Uzbekistan
E-mail:ahasanov2002@mail.ru

Received May 27, 2004

Abstract

It is shown that the solutions of the Sine-Gordon equation with a source of the integral type can be found by the method of the inverse scattering problem for the Dirac type operator on the real line.

Key words: Sine-Gordon equation, inverse scattering method, Jost solutions, scattering data.

Mathematics Subject Classification 2000: 37K40, 37K15, 35Q53, 35Q55.

1. Introduction

In this paper we consider the problem of integration of the following system of equations

$$
\left\{\begin{array}{l}
u_{x t}=\sin u+\int_{-\infty}^{\infty}\left(\phi_{1}^{2}-\phi_{2}^{2}\right) d \eta \\
L \phi=\eta \phi, \tag{2}\\
u(x, 0)=u_{0}(x), \quad x \in R
\end{array}\right.
$$

where $L(t)=i\left(\begin{array}{ll}\frac{d}{d x} & \frac{u_{x}}{2} \\ \frac{u_{x}}{2} & -\frac{d}{d x}\end{array}\right), \quad u_{x}=\frac{\partial u(x, t)}{\partial x}, \quad u_{x t}=\frac{\partial^{2} u(x, t)}{\partial x \partial t}, \quad$ and $\quad u_{0}(x)$ $(-\infty<x<\infty)$ is a function satisfying the conditions:
1)

$$
\begin{align*}
& u_{0}(x) \equiv 0(\bmod 2 \pi) \text { as }|x| \rightarrow \infty \\
& \int_{-\infty}^{\infty}\left((1+|x|)\left|u_{0}^{\prime}(x)\right|+\left|u_{0}^{\prime \prime}(x)\right|\right) d x<\infty \tag{3}
\end{align*}
$$

2) the operator $L(0)$ does not have the points of spectral singularity (see [6]) and has only simple eigenvalues $\xi_{1}(0), \xi_{2}(0), \ldots, \xi_{N}(0)$.

We assume that the vector function $\phi=\left(\phi_{1}(x, \eta, t), \phi_{2}(x, \eta, t)\right)^{T}$ is a solution of the equation $L \phi=\eta \phi$ satisfying the condition

$$
\begin{equation*}
\phi \rightarrow A(\eta, t)\binom{\exp (-i \eta x)}{\exp (i \eta x)} \quad \text { as } x \rightarrow \infty \tag{4}
\end{equation*}
$$

where $A(\eta, t)$ is a continuous function satisfying the condition

$$
\begin{equation*}
A(-\eta, t)=A(\eta, t), \quad \int_{-\infty}^{\infty}|A(\eta, t)|^{2} d \eta<\infty \tag{5}
\end{equation*}
$$

for all nonnegative values of t.
We assume that the solution $u(x, t)$ of the problem (1)-(5) exists, possesses the required smoothness, and tends to its limits sufficiently rapidly as $x \rightarrow \pm \infty$, i.e., for all $t \geq 0$ it satisfies the condition

$$
\begin{align*}
& u(x, t) \equiv 0(\bmod 2 \pi) \quad \text { as } \quad|x| \rightarrow \infty \\
& \int_{-\infty}^{\infty}\left((1+|x|)\left|u_{x}(x, t)\right|+\left|u_{x x}(x, t)\right|\right) d x<\infty . \tag{6}
\end{align*}
$$

The main objective of this paper is to derive representations for the solutions $u(x, t), \phi(x, \eta, t)$ within the framework of the inverse scattering method for $L(t)$ operator.

The full description of the solutions of the Sine-Gordon equation without sources was given in [1-2].

The scattering problem for $L(t)$ operator was studied in the papers by V.E. Zakharov, A.B. Shabat [3], L.P. Nizhnik, Fam Loy Woo [4], I.S. Frolov [5], A.B. Khasanov [6] and in many others.

Note that the similar problem for the KdV equation was considered in the paper [7]. In the V.K. Mel'nikov's paper [8] there was obtained evolution of the scattering dates for the selfadjoint Dirac type operator with the potential which is a solution of the NLS equation with the integral type source. Notice however that in our case operator $L(t)$ is not self-adjoint. As it is well known, under the condition (6) the not self-adjoint operator $L(t)$ has a finite number of complex eigenvalues (in general multiple). Moreover, operator $L(t)$ may have a finite number of real points of spectral singularity. The continuous spectrum of the operator $L(t)$ fills up the real line, i.e., $\sigma_{\text {ess }}(L(t))=(-\infty, \infty)$. For simplicity we suppose that operator $L(t)$ has a finite number of simple complex eigenvalues, and does not have points of singular spectrum.

2. Scattering Problem for Zakharov-Shabat Eigenvalue Problem

In this section we present some facts from the theory of the direct and inverse scattering problems for the operator $L(t)$ (for example, see [9]). For a while in this section we omit the dependence of functions on t.

We consider the eigenvalue problem

$$
\left\{\begin{array}{l}
v_{1 x}+i \xi v_{1}=u^{\prime}(x) v_{2} \tag{7}\\
v_{2 x}-i \xi v_{2}=-u^{\prime}(x) v_{1},
\end{array}\right.
$$

on the interval $-\infty<x<\infty$. The potential $u^{\prime}(x)$ is assumed to satisfy the condition

$$
\begin{equation*}
u(x) \equiv 0(\bmod 2 \pi) \text { as }|x| \rightarrow \infty, \int_{-\infty}^{\infty}\left((1+|x|)\left|u^{\prime}(x)\right|\right) d x<\infty . \tag{8}
\end{equation*}
$$

We define the Jost solution of the problem (7)-(8) with the following asymptotic values

$$
\left.\left.\begin{array}{rl}
\varphi & \sim\binom{1}{0} e^{-i \xi x} \\
\bar{\varphi} & \sim\binom{0}{-1} e^{i \xi x}
\end{array}\right\} \begin{array}{ll}
\psi & \sim\binom{0}{1} e^{i \xi x} \\
& \bar{\psi} x \rightarrow-\infty,\binom{1}{0} e^{-i \xi x}
\end{array}\right\} \text { as } x \rightarrow \infty
$$

For real ξ the pairs of functions $\{\varphi, \bar{\varphi}\}$ and $\{\psi, \bar{\psi}\}$ are the pairs of linearly independent solutions of (7), and therefore

$$
\begin{equation*}
\varphi=a(\xi) \bar{\psi}+b(\xi) \psi, \quad \bar{\varphi}=-\bar{a}(\xi) \psi+\bar{b}(\xi) \bar{\psi}, \tag{9}
\end{equation*}
$$

where $a(\xi)=W\{\varphi, \psi\} \equiv \varphi_{1} \psi_{2}-\varphi_{2} \psi_{1}, b(\xi)=W\{\bar{\psi}, \varphi\}, a(\xi) a(-\xi)+$ $b(\xi) b(-\xi)=1$.

For real ξ the coefficient $b(\xi)$ has the following asymptotic $b(\xi)=O\left(\frac{1}{|\xi|}\right)$ as $|\xi| \rightarrow \infty, \operatorname{Im} \xi=0$. The coefficient $a(\xi)(\bar{a}(\xi))$ can be analytically extended into the upper (lower) half-plane $\operatorname{Im} \xi>0(\operatorname{Im} \xi<0)$. The function $a(\xi)$ has the asymptotic $a(\xi)=1+O\left(\frac{1}{|\xi|}\right)$ as $|\xi| \rightarrow \infty, \operatorname{Im} \xi \geq 0$. Besides, in the half-plane $\operatorname{Im} \xi>0(\operatorname{Im} \xi<0)$ the function $a(\xi)(\bar{a}(\xi))$ has a finite number of zeros at the points $\xi_{k}\left(\bar{\xi}_{k}\right)$, and these points are the eigenvalues of the operator

$$
L=i\left(\begin{array}{ll}
\frac{d}{d x} & \frac{u^{\prime}(x)}{2} \\
\frac{u^{\prime}(x)}{2} & -\frac{d}{d x}
\end{array}\right),
$$

so that $\varphi\left(x, \xi_{k}\right)=C_{k} \psi\left(x, \xi_{k}\right)\left(\bar{\varphi}\left(x, \xi_{k}\right)=\bar{C}_{k} \bar{\psi}\left(x, \xi_{k}\right)\right), k=1,2, \ldots, N$. It is clear that the function $\varphi_{k} \equiv \varphi\left(x, \xi_{k}\right)$ is an eigenfunction of the operator L corresponding to the eigenvalue ξ_{k}.

We assume that the operator L does not have multiple eigenvalues. The requirement of absence of the points of spectral singularity of the operator $L(t)$ means the absence of real zeros of function $a(\xi)$. The class of the potentials satisfying $a(\xi) \neq 0$ as $\xi \in R^{1}$ is not empty. For example, this class contains "unreflected" potentials, i.e., potential for which $b(\xi)=0$. In this case the equation $a(\xi) a(-\xi)=1, \xi \in R^{1}$ is valid.

We have the following integral representation for the function φ [9]

$$
\begin{equation*}
\psi=\binom{0}{1} e^{i \xi x}+\int_{x}^{\infty} K(x, s) e^{i \xi s} d s \tag{10}
\end{equation*}
$$

where the kernel $K(x, s)=\binom{K_{1}(x, s)}{K_{2}(x, s)}$ does not depend on ξ and is related to the potential $u(x)$ by the formulae

$$
\begin{equation*}
u^{\prime}(x)=4 K_{1}(x, x), \quad\left(u^{\prime}(x)\right)^{2}=8 \frac{d K_{2}(x, x)}{d x} \tag{11}
\end{equation*}
$$

Components $K_{1}(x, y), K_{2}(x, y)$ of the kernel $K(x, y)$ in the representation (10), for $y>x$ are solutions of the integral Gelfand-Levitan-Marchenko equations

$$
\begin{aligned}
& K_{1}(x, y)-F(x+y)+\int_{x}^{\infty} \int_{x}^{\infty} K_{1}(x, z) F(z+s) F(s+y) d s d z=0 \\
& K_{2}(x, y)+\int_{x}^{\infty} F(x+s) F(s+y) d s+\int_{x}^{\infty} \int_{x}^{\infty} K_{2}(x, z) F(z+s) F(s+y) d s d z=0
\end{aligned}
$$

where $F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{b(\xi)}{a(\xi)} e^{i \xi x} d \xi-i \sum_{j=1}^{N} C_{j} e^{i \xi_{j} x}$.
Now the potential can be expressed via $K_{1}(x, y)$ by the formula (11).
The set of the quantities $\left\{r^{+}(\xi)=\frac{b(\xi)}{a(\xi)}, \zeta_{k}, C_{k}, k=1,2, \ldots, N\right\}$ is called the scattering data for equations (7).

It is worthy to remark that the vector functions

$$
\begin{equation*}
h_{n}(x)=\frac{\left.\frac{d}{d \xi}\left(\varphi-C_{n} \psi\right) \right\rvert\, \xi=\xi_{n}}{\dot{a}\left(\xi_{n}\right)}, \quad n=1,2, \ldots, N, \tag{12}
\end{equation*}
$$

are solutions of the equations $L h_{n}=\xi_{n} h_{n}$ and have the following asymptotics

$$
\begin{align*}
& h_{n} \sim-C_{n}\binom{0}{1} e^{i \xi_{n} x} \quad \text { as } x \rightarrow-\infty, \\
& h_{n} \sim\binom{1}{0} e^{-i \xi_{n} x} \quad \text { as } x \rightarrow \infty . \tag{13}
\end{align*}
$$

According to (13) we obtain

$$
\begin{equation*}
W\left\{\varphi_{n}, h_{n}\right\} \equiv \varphi_{n 1} h_{n 2}-\varphi_{n 2} h_{n 1}=-C_{n}, \quad n=1,2, \ldots, N . \tag{14}
\end{equation*}
$$

It is easy to see that the following statement is true.

Lemma 1. If $Y(x, \zeta)$ and $Z(x, \eta)$ are solutions of the equations $L Y=$ ζY and $L Z=\eta Z$, then

$$
\begin{aligned}
\frac{d}{d x}\left(y_{1} z_{2}-y_{2} z_{1}\right) & =-i(\zeta-\eta)\left(y_{1} z_{2}+y_{2} z_{1}\right), \\
\frac{d}{d x}\left(y_{1} z_{1}+y_{2} z_{2}\right) & =-i(\zeta+\eta)\left(y_{1} z_{1}-y_{2} z_{2}\right) .
\end{aligned}
$$

3. Evolution of the Scattering Data

Let the potential $u(x, t)$ of the problem (7) be a solution of the system of equations

$$
\left\{\begin{array}{l}
u_{x t}=\sin u+\int_{-\infty}^{\infty}\left(\phi_{1}^{2}-\phi_{2}^{2}\right) d \eta \tag{15}\\
L \phi=\eta \phi
\end{array}\right.
$$

We put $G(x, t)=\int_{-\infty}^{\infty}\left(\phi_{1}^{2}-\phi_{2}^{2}\right) d \eta$. According to (4)

$$
\phi(x, \eta, t)=A(\eta, t)(\bar{\psi}(x, \eta, t)+\psi(x, \eta, t)),
$$

and therefore, by using (9), as well as the asymptotic for the Jost solution and $a(\xi), b(\xi)$ and Riemann-Lebesgue lemma in each nonnegative t, we have $G(x, t)=o(1)$ as $x \rightarrow \pm \infty$. The first equation of (15) can be rewritten in the form

$$
\begin{equation*}
u_{x t}=\sin u+G . \tag{16}
\end{equation*}
$$

Lemma 2. If potential $u(x, t)$ of the problem (7) is a solution of equation (16), then the scattering data depend on t as

$$
\begin{gathered}
\frac{d r^{+}}{d t}=-\frac{i}{2 \xi} r^{+}+\frac{1}{2 a^{2}} \int_{-\infty}^{\infty}\left(G \varphi_{2}^{2}+G \varphi_{1}^{2}\right) d x, \quad(\operatorname{Im} \xi=0), \\
\frac{d C_{n}}{d t}=\left(-\frac{i}{2 \xi_{n}}+\int_{-\infty}^{\infty} \frac{G}{2}\left(h_{n 2} \psi_{n 2}+h_{n 1} \psi_{n 1}\right) d x\right) C_{n} \\
\frac{d \xi_{n}}{d t}=\frac{i \int_{-\infty}^{\infty}\left(G \varphi_{n 2}^{2}+G \varphi_{n 1}^{2}\right) d x}{4 \int_{-\infty}^{\infty} \varphi_{n 1} \varphi_{n 2} d x}, \quad n=1,2, \ldots, N .
\end{gathered}
$$

Proof. Here we use the method of [10] (see also [11]).
We set

$$
A=\left(\begin{array}{ll}
\frac{i \cos u}{4 \xi} & \frac{i \sin u}{4 \xi} \\
\frac{i \sin u}{4 \xi} & -\frac{i \cos u}{4 \xi}
\end{array}\right)
$$

It is easy to see that

$$
[L, A] \equiv L A-A L=-i\left(\begin{array}{ll}
0 & \frac{\sin u}{2} \tag{17}\\
\frac{\sin u}{2} & 0^{2}
\end{array}\right) .
$$

The operator $L(t)$ depends on time t as a parameter and therefore

$$
\frac{\partial L}{\partial t}=i\left(\begin{array}{cc}
0 & \frac{u_{x t}}{2} \tag{18}\\
\frac{u_{x t}}{2} & 0
\end{array}\right) .
$$

Comparing formulas (17) and (18) with the equation (16), we can see that the equation (16) is identical to the operator relation

$$
\begin{equation*}
\frac{\partial L}{\partial t}+[L, A]=i R \tag{19}
\end{equation*}
$$

where $R=\left(\begin{array}{cc}0 & \frac{G}{2} \\ \frac{G}{2} & 0\end{array}\right)$.
Let $\varphi(x, \xi, t)$ be the Jost solution of the equation

$$
L \varphi=\xi \varphi .
$$

We differentiate this relation with respect to time

$$
\begin{equation*}
L_{t} \varphi+L \varphi_{t}=\xi \varphi_{t} \tag{20}
\end{equation*}
$$

and substitute L_{t} from (19) into (20). This results to

$$
\begin{equation*}
(L-\xi)\left(\varphi_{t}-A \varphi\right)=-i R \varphi . \tag{21}
\end{equation*}
$$

We seek the solutions of (21) in the form

$$
\begin{equation*}
\varphi_{t}-A \varphi=\alpha(x) \psi+\beta(x) \varphi . \tag{22}
\end{equation*}
$$

To find $\alpha(x)$ and $\beta(x)$ we use the equation

$$
\begin{equation*}
M \alpha_{x} \psi+M \beta_{x} \varphi=-R \varphi, \tag{23}
\end{equation*}
$$

where

$$
M=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

According to (9)

$$
\hat{\psi}^{T} M \varphi=-\hat{\varphi}^{T} M \psi=a, \quad \hat{\psi}^{T} M \psi=\hat{\varphi}^{T} M \varphi=0,
$$

where $\hat{\varphi}=\binom{\varphi_{2}}{\varphi_{1}}$.
Multiplying (23) by $\hat{\varphi}^{T}$ and $\hat{\psi}^{T}$ we yield

$$
\begin{equation*}
\alpha_{x}=\frac{\hat{\varphi}^{T} R \varphi}{a}, \quad \beta_{x}=-\frac{\hat{\psi}^{T} R \varphi}{a} . \tag{24}
\end{equation*}
$$

On the basis of (6) and the asymptotic of the Jost solution we have

$$
\varphi_{t}-A \varphi \rightarrow-\frac{i}{4 \xi}\binom{1}{0} e^{-i \xi x} \quad \text { as } x \rightarrow-\infty .
$$

Therefore from (22) one gets

$$
\beta(x) \rightarrow-\frac{i}{4 \xi}, \quad \alpha(x) \rightarrow 0 \quad \text { as } x \rightarrow-\infty .
$$

By solving (24) we obtain

$$
\alpha(x)=\frac{1}{a} \int_{-\infty}^{x} \hat{\varphi}^{T} R \varphi d x, \quad \beta(x)=-\frac{1}{a} \int_{-\infty}^{x} \hat{\psi}^{T} R \varphi d x-\frac{i}{4 \xi} .
$$

Therefore the relation (22) can be rewritten in the form

$$
\begin{equation*}
\varphi_{t}-A \varphi=\frac{1}{a} \int_{-\infty}^{x} \hat{\varphi}^{T} R \varphi d x \cdot \psi+\left(-\frac{1}{a} \int_{-\infty}^{x} \hat{\psi}^{T} R \varphi d x-\frac{i}{4 \xi}\right) \varphi . \tag{25}
\end{equation*}
$$

Using (9) we take the limit in (25) as $x \rightarrow \infty$ and obtain

$$
\begin{gathered}
a_{t}=-\int_{-\infty}^{\infty} \hat{\psi}^{T} R \varphi d x \\
b_{t}=-\frac{i}{2 \xi} b+\frac{1}{a} \int_{-\infty}^{\infty} \hat{\varphi}^{T} R \varphi d x-\frac{b}{a} \int_{-\infty}^{\infty} \hat{\psi}^{T} R \varphi d x .
\end{gathered}
$$

Consequently, for $\operatorname{Im} \xi=0$ we get

$$
\frac{d r^{+}}{d t}=-\frac{i}{2 \xi} r^{+}+\frac{1}{2 a^{2}} \int_{-\infty}^{\infty}\left(G \varphi_{2}^{2}+G \varphi_{1}^{2}\right) d x
$$

We differentiate the relation $\varphi_{n}=C_{n} \psi_{n}$ with respect to t

$$
\begin{gather*}
\left.\frac{\partial \varphi}{\partial t}\right|_{\xi=\xi_{n}}+\left.\frac{\partial \varphi}{\partial \xi}\right|_{\xi=\xi_{n}} ^{\frac{d \xi_{n}}{d t}} \\
=\frac{d C_{n}}{d t} \psi_{n}+\left.C_{n} \frac{\partial \psi}{\partial t}\right|_{\xi=\xi_{n}}+\left.C_{n} \frac{\partial \psi}{\partial \xi}\right|_{\xi=\xi_{n}} \frac{d \xi_{n}}{d t}, \tag{26}
\end{gather*}
$$

and substitute $\left.\frac{d}{d \xi}\left(\varphi-C_{n} \psi\right)\right|_{\xi=\xi_{n}}$ from (12) into (26). This results in the following formula:

$$
\begin{equation*}
\frac{\partial \varphi_{n}}{\partial t}=\frac{d C_{n}}{d t} \psi_{n}+C_{n} \frac{\partial \psi_{n}}{\partial t}-\dot{a}\left(\xi_{n}\right) h_{n} \frac{d \xi_{n}}{d t}, \tag{27}
\end{equation*}
$$

where $\left.\frac{\partial \varphi_{n}}{\partial t} \equiv \frac{\partial \varphi}{\partial t}\right|_{\xi=\xi_{n}}$.
Similarly to the continuous spectrum case, by using (14) for the discrete spectrum, we have

$$
\frac{\partial \varphi_{n}}{\partial t}-A \varphi_{n}=\left(-\frac{1}{C_{n}} \int_{-\infty}^{x} \hat{\varphi}_{n}^{T} R \varphi_{n} d x\right) h_{n}+\left(\frac{1}{C_{n}} \int_{-\infty}^{x} \hat{h}_{n}^{T} R \varphi_{n} d x-\frac{i}{4 \xi_{n}}\right) \varphi_{n} .
$$

Hence, according to (27), we have

$$
\begin{align*}
& \frac{d C_{n}}{d t} \psi_{n}+C_{n} \frac{\partial \psi_{n}}{\partial t}-\dot{a}\left(\xi_{n}\right) \frac{d \xi_{n}}{d t} h_{n}-C_{n} A \psi_{n} \\
& =\left(-\frac{1}{C_{n}} \int_{-\infty}^{x} \hat{\varphi}_{n}^{T} R \varphi_{n} d x\right) h_{n}+\left(\frac{1}{C_{n}} \int_{-\infty}^{x} \hat{h}_{n}^{T} R \varphi_{n} d x-\frac{i}{4 \xi_{n}}\right) C_{n} \psi_{n} . \tag{28}
\end{align*}
$$

Using (13) we pass to the limit in (28), as $x \rightarrow \infty$, and obtain

$$
\begin{gathered}
\frac{d C_{n}}{d t}=\left(-\frac{i}{2 \xi_{n}}+\int_{-\infty}^{\infty} \hat{h}_{n}^{T} R \psi_{n} d x\right) C_{n} \\
\frac{d \xi_{n}}{d t}=\frac{\int_{-\infty}^{\infty} \hat{\varphi}_{n}^{T} R \varphi_{n} d x}{C_{n} \dot{a}\left(\xi_{n}\right)} .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\frac{d C_{n}}{d t}=\left(-\frac{i}{2 \xi_{n}}+\int_{-\infty}^{\infty} \frac{G}{2}\left(h_{n 2} \psi_{n 2}+h_{n 1} \psi_{n 1}\right) d x\right) C_{n} \\
\frac{d \xi_{n}}{d t}=\frac{\int_{-\infty}^{\infty}\left(G \varphi_{n 2}^{2}+G \varphi_{n 1}^{2}\right) d x}{2 C_{n} \dot{a}\left(\xi_{n}\right)} .
\end{gathered}
$$

Hence, according to the relation

$$
\dot{a}\left(\xi_{n}\right)=-\frac{2 i}{C_{n}} \int_{-\infty}^{\infty} \varphi_{n 1} \varphi_{n 2} d x
$$

we have

$$
\frac{d \xi_{n}}{d t}=\frac{i \int_{-\infty}^{\infty}\left(G \varphi_{n 2}^{2}+G \varphi_{n 1}^{2}\right) d x}{4 \int_{-\infty}^{\infty} \varphi_{n 1} \varphi_{n 2} d x}
$$

Lemma 2 is proved.
Let in Lemma 2

$$
G=\int_{-\infty}^{\infty}\left(\phi_{1}^{2}-\phi_{2}^{2}\right) d \eta .
$$

According to Lemma 1

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(\phi_{1}^{2}(x, \eta)-\phi_{2}^{2}(x, \eta)\right)\left(\varphi_{1}^{2}(x, \xi)+\varphi_{2}^{2}(x, \xi)\right) d x \\
=\left.\frac{i}{2} \lim _{R \rightarrow \infty}\left(\frac{\left(\phi_{1}(x, \eta) \varphi_{1}(x, \xi)+\phi_{2}(x, \eta) \varphi_{2}(x, \xi)\right)^{2}}{\eta+\xi}+\frac{\left(\phi_{1}(x, \eta) \varphi_{2}(x, \xi)-\phi_{2}(x, \eta) \varphi_{1}(x, \xi)\right)^{2}}{\eta-\xi}\right)\right|_{-R} ^{R} .
\end{gathered}
$$

By using (4), (5), (9) and the Riemann-Lebesgue lemma, we obtain

$$
\int_{-\infty}^{\infty}\left(G \varphi_{2}^{2}+G \varphi_{1}^{2}\right) d x=2 a b\left(\pi A^{2}(\xi, t)+i V \cdot p \cdot \int_{-\infty}^{\infty} \frac{A^{2}(\eta, t)}{\xi+\eta} d \eta\right)
$$

Similarly,

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(G \varphi_{n 2}^{2}+G \varphi_{n 1}^{2}\right) d x=0 \\
\int_{-\infty}^{\infty}\left(G h_{n 2} \psi_{n 2}+G h_{n 1} \psi_{n 1}\right) d x=2 i \int_{-\infty}^{\infty} \frac{A^{2}(\eta, t) \bar{a}(\eta, t) a(\eta, t)}{\eta+\xi_{n}} d \eta
\end{gathered}
$$

By using Lemma 2 and the relation $\bar{a}(\xi) a(\xi)=\frac{1}{1+r^{+}(\xi) r^{+}(-\xi)}$, we have the following theorem

Theorem. If the functions $u(x, t), \phi_{1}(\eta, x, t), \phi_{2}(\eta, x, t$ are solutions of the problem (1)-(6), then the scattering data of the operator $L(t)$ depend on t as

$$
\begin{gathered}
\frac{d r^{+}}{d t}=\left(-\frac{i}{2 \xi}+\pi A^{2}(\xi, t)+i V \cdot p \cdot \int_{-\infty}^{\infty} \frac{A^{2}(\eta, t)}{\xi+\eta} d \eta\right) r^{+}, \quad(\operatorname{Im} \xi=0) \\
\frac{d C_{n}}{d t}=\left(-\frac{i}{2 \xi_{n}}+i \int_{-\infty}^{\infty} \frac{A^{2}(\eta, t)}{\left(1+r^{+}(\eta, t) r^{+}(-\eta, t)\right)\left(\eta+\xi_{n}\right)}\right) C_{n} \\
\frac{d \xi_{n}}{d t}=0, \quad n=1,2, \ldots, N
\end{gathered}
$$

The above relations determine completely the evolution of the scattering data for the operator $L(t)$, which allows us to find the solutions of problem for (1)-(6) by using the inverse scattering problem method.

In conclusion we consider the following example. Let

$$
\left.u\right|_{t=0}=4 \operatorname{arctg}\left(e^{2 x}\right), \quad A(\eta, t)=\left(1+\eta^{2}\right)^{-\frac{1}{2}}
$$

In this case $r^{+}(\xi, 0)=0, \xi_{1}(0)=i, C_{1}(0)=-2 i$.
Therefore, by using the theorem

$$
r^{+}(\xi, t)=0, \quad \xi_{1}(t)=i, \quad C_{1}(t)=-2 i \exp \left(\frac{\pi-1}{2} t\right) .
$$

According to the inverse scattering problem method

$$
\begin{gathered}
u(x, t)=4 \operatorname{arctg}\left(\exp \left(2 x-\frac{\pi-1}{2} t\right)\right), \\
\phi_{1}(x, \eta)=\frac{1}{\sqrt{\eta^{2}+1}}\left(\cos \eta x+\frac{\left(1-e^{-2 x+g}\right)(\cos \eta x-\eta \sin \eta x}{\left(1+\eta^{2}\right) \operatorname{ch}(2 x-g)}\right) \\
+\frac{i}{\sqrt{\eta^{2}+1}}\left(-\sin \eta x+\frac{\left(1+e^{-2 x+g}\right)(\sin \eta x+\eta \cos \eta x}{\left(1+\eta^{2}\right) c h(2 x-g)}\right), \\
\phi_{2}(x, \eta)=\frac{1}{\sqrt{\eta^{2}+1}}\left(\cos \eta x-\frac{\left(1+e^{-2 x+g}\right)(\cos \eta x-\eta \sin \eta x}{\left(1+\eta^{2}\right) \operatorname{ch}(2 x-g)}\right) \\
+\frac{i}{\sqrt{\eta^{2}+1}}\left(\sin \eta x+\frac{\left(1-e^{-2 x+g}\right)(\sin \eta x+\eta \cos \eta x}{\left(1+\eta^{2}\right) \operatorname{ch}(2 x-g)}\right),
\end{gathered}
$$

where $g(t)=\frac{(\pi-1) t}{2}$.

References

[1] V.E. Zakharov, L.A. Takhtajan L, and L.D. Faddeev, A Complete Description of the Solutions of the Sine-Gordon Equation. - Dokl. Akad. Nauk USSR 219 (1974), No. 6, 1334-1337. (Russian)
[2] M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Method for Solving the Sine-Gordon Equation. - Phys. Rev. Lett. 30 (1973), No. 25, 1262-1264.
[3] V.E. Zakharov and A.B. Shabat, Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media. - JETP 61 (1971), No. 1, 44-47. (Russian)
[4] L.P.Nizhnik and Fam Loy Woo, An Inverse Scattering Problem on the Semi-Axis with a Nonselfadjoint Potential Matrix. - Ukr. Mat. Zh. 26 (1974), No. 4, 469-486. (Russian)
[5] I.S. Frolov, An Inverse Scattering Problem for a Dirac System on the Whole Axis. - Dokl. Akad. Nauk USSR 207 (1972), No. 1, 44-47. (Russian)
[6] A.B. Khasanov, The Inverse Problem of Scattering Theory for a System of Two Nonselfadjoint First-Order Equations. - Dokl. Akad. Nauk USSR 277 (1984), No. 3, 559-562. (Russian)
[7] V.K. Mel'nikov, Integration of the Korteweg-de Vries Equation with a Source. Inverse Probl. 6 (1990), 233-246.
[8] V.K. Mel'nikov, Integration of the Nonlinear Schrodinger Equation with a Source. - Inverse Probl. 8 (1992), 133-147.
[9] Mark J. Ablowitz and Harley Segur, Solitons and the Inverse Scattering Transform. - SIAM, Philadelphia, 1981.
[10] V.I. Karpman and E.M. Maslov, The Structure of Tails, Appearing under Soliton Perturbations. - JETP 73 (1977), 2 (8), 537-559. (Russian)
[11] G.L. Lamb, Jr., Elements of Solution Theory. A Wiley Intersci. Publ. John Wiley \& Sons, New York, NY, 1980.

