Compact Spacelike Surfaces in the 3-Dimensional de Sitter Space

A.A. Borisenko
Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61077, Ukraine
E-mail:borisenk@univer.kharkov.ua

Received September 14, 2005

We establish several sufficient conditions for a compact spacelike surface in the 3 -dimensional de Sitter space to be totally geodesic or spherical.

Key words: de Sitter space, compact spacelike surface, second fundamental form, Gaussian curvature; totally umbilical round sphere.

Mathematics Subject Classification 2000: 53C42 (primary); 53B30, 53C45 (secondary).

Let E_{1}^{4} be a 4-dimensional Lorentz-Minkowski space, that is, the space E_{1}^{4} endowed with the Lorentzian metric tensor \langle,$\rangle given by$

$$
\langle,\rangle=\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}-\left(d x_{0}\right)^{2},
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{0}\right)$ are the canonical coordinates of E_{1}^{4}. The 3 -dimensional unitary de Sitter space is defined as the following hyperquadric of E_{1}^{4} :

$$
S_{1}^{3}=\left\{x \in R^{4}:\langle x, x\rangle=1\right\} .
$$

As it is well known, S_{1}^{3} inherits from E_{1}^{4} a time-orientable Lorentzian metric which makes it the standard model of a Lorentzian space of constant sectional curvature one. A smooth immersion $\psi: F \rightarrow S_{1}^{3} \subset E_{1}^{4}$ of a 2-dimensional connected manifold M is said to be a spacelike surface if the induced metric via ψ is a Riemannian metric on M, which, as usual, is also denoted by \langle,$\rangle . The time-orientation of S_{1}^{3}$ allows us to define a (global) unique timelike unit normal field n on F, tangent to S_{1}^{3}, and hence we may assume that F oriented by n. We will refer to n as the Gauss map of F.

The work supported by research grant DFFD of Ukrainian Ministry of Education and Science, No. 01. 07/ 00132.

We note that Lobachevsky space L^{3} is the set of points

$$
L^{3}=\left\{x \in E_{1}^{4}:\langle x, x\rangle=-1, x_{0}>0\right\}
$$

It is well known that a compact spacelike surface in the 3-dimensional de Sitter space S_{1}^{3} is diffeomorphic to a sphere S^{2}. Thus, it is interesting to look for additional assumptions for such a surface to be totally geodesic or totally umbilical round sphere.

There are two possible kinds of geometric assumptions: extrinsic, that is relative to the second fundamental form, and intrinsic, namely, concerning to the Gaussian curvature of the induced metric. As regards to the extrinsic approach, J. Ramanathan [10] proved that every compact spacelike surface in S_{1}^{3} of constant mean curvature is totally umbilical. This result was generalized to hypersurface of any dimension by S. Montiel [9]. J. Aledo and A. Romero characterize the compact spacelike surfaces in S_{1}^{3} whose second fundamental form defines a Riemannian metric. They studied the case of constant Gaussian curvature $K_{I I}$ of the second fundamental form, proving that the totally umbilical round spheres are the only compact spacelike surfaces in S_{1}^{3} with $K<1$ and constant $K_{I I}$ [2]. With respect to the intrinsic approach $\mathrm{H} . \mathrm{Li}$ [8] obtained that compact spacelike surface of constant Gaussian curvature is totally umbilical. And he proved there is no complete spacelike surface in S_{1}^{3} with constant Gaussian curvature $K>1$. J. Aledo and A. Romero proved the same result without condition that Gaussian curvature is constant [2]. But it is true more general result.

Theorem 1. Let F be a \mathcal{C}^{2}-regular complete spacelike surface in de Sitter space S_{1}^{3}. If Gaussian curvature $K \geqslant 1$ the surface F is totally geodesic great sphere with Gaussian curvature $K=1$.
S.N. Bernshtein proved that an explicitly given saddle surface over a whole plane in the Euclidean space E^{3} with slower than linear growth at infinity must be a cylinder. He proved this theorem for surfaces of class \mathcal{C}^{2} [4], and it was generalized to the nonregular case in [1].

A surface F^{2} of smoothness class C^{1} in S^{3} may be projected univalently into a great sphere S_{0}^{2} if the great spheres tangent to F^{2} do not pass through points Q_{1}, Q_{2} polar to S_{0}^{2}.

The surface F^{2} in S^{3} is called a saddle surface if any closed rectifiable contour \mathcal{L}, that is in the intersection of F^{2} with an arbitrary great sphere S^{2} in S^{3}, lies in an open hemisphere, and is deformable to a point in the surface can be spanned by a two-dimensional simply connected surface Q contained in $F^{2} \cap S^{2}$. In other words, from the surface it is impossible to cut off a crust by a great sphere S^{2}, that is, on F^{2} there do not exist domains with boundary that lie in an open great hemisphere of S^{2} and are wholly in one of the great hemispheres of S^{3}
into which it is divided by the great sphere S^{2}. In this case when F is a regular surface of class \mathcal{C}^{2}, the saddle condition is equivalent to the condition that the Gaussian curvature of F^{2} does not exceed one. We have the following result.

Theorem 2 ([5-7]). Let F be an explicitly given compact saddle surface of smoothness class \mathcal{C}^{1} in the spherical space S^{3}. Then F is a totally geodesic great sphere.

This theorem is a generalization of a theorem of Bernshtein to a spherical space. For regular space we obtain the following corollary.

Theorem 3 ([5, 6]). Let F be an explicitly given compact surface that is regular of class \mathcal{C}^{2} in the spherical space S^{3}. If the Gaussian curvature K of F satisfies $K \leqslant 1$ then F is a totally geodesic great sphere.

This theorem was stated in [6]. Really Theorems 2 and 3 had been proved in [7] but were formulated there for a centrally symmetric surfaces. The final version was in [5].

It seems to us that the following conjecture must hold under a restriction on the Gaussian curvature of the surface. Suppose that F is an embedded compact surface, regular of class \mathcal{C}^{2}, in the spherical space S^{3}. If the Gaussian curvature K of F satisfies $0<K \leqslant 1$, then F is a totally geodesic great sphere.
A.D. Aleksandrov [3] had proved that an analytical surface in Euclidean space E^{3} homeomorphic to a sphere is a standard sphere if principal curvatures satisfy the inequality

$$
\begin{equation*}
\left(k_{1}+c\right)\left(k_{2}+c\right) \leqslant 0 . \tag{1}
\end{equation*}
$$

This result had been generalized for analytic surfaces in spherical space S^{3} and Lobachevsky space $L^{3}[7]$:
a) in S^{3} with additional hypothesis of positive Gaussian curvature;
b) in L^{3} under additional assumptions that principal curvatures k_{1}, k_{2} satisfy

$$
\left|k_{1}\right|,\left|k_{2}\right|>c_{0}>1
$$

But in Lobachevsky space the result is true under weaker analytic restriction.
Theorem 4. Let F be a \mathcal{C}^{3} regular surface homeomorphic to the sphere in the Lobachevsky space L^{3}. If $\left|k_{1}\right|,\left|k_{2}\right|>c_{0}>1$ and principle curvatures k_{1} and k_{2} satisfy (1), then the surface is an umbilical round sphere in L^{3}.

Analogical result it is true for surfaces in the de Sitter space S_{1}^{3}.

Theorem 5. Let F be a \mathcal{C}^{3} regular compact spacelike surface in the de Sitter space S_{1}^{3}. If $\left|k_{1}\right|,\left|k_{2}\right|<1$ and principal curvatures satisfy (1), then the surface is an umbilical round sphere in S_{1}^{3}.

Let S_{1}^{3} be a simply-connected pseudo-Riemannian space of curvature 1 and signature $(+,+,-)$. It can be isometrically embedded in the pseudo-Euclidean space E_{1}^{4} of signature $(+,+,+,-)$ as the hypersurface given by the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{0}^{2}=1$. Together with E_{1}^{4} we consider the superimposed Euclidean space E^{4} with unit sphere S^{3} given by the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{0}^{2}=1$. We specify a mapping of S_{1}^{3} into S^{3}. To the point P of S_{1}^{3} with position vector r we assign the point \tilde{P} with position vector $\tilde{r}=r / \sqrt{1+2 x_{0}^{2}}$. Under the mapping, to a surface $F \subset S_{1}^{3}$ corresponds a surface $\tilde{F} \subset S^{3}$. Let $b_{i j}$ and $\tilde{b}_{i j}$ be the coefficients of the second quadratic forms of F and \tilde{F}, and $n=\left(n_{1}, n_{2}, n_{3}, n_{0}\right)$ be a normal vector field on F.

Lemma 1 ([7]). $\tilde{b}_{i j}=b_{i j} / \sqrt{1+2 x_{0}^{2}} \sqrt{1+2 n_{0}^{2}}$.
Proof of Th eorem 1 . From the condition $K \geqslant 1$ it follows that F is a compact spacelike surface in the de Sitter space S_{1}^{3}. Locally a spacelike surface is explicitly given over totally geodesic great sphere $S_{0}^{2} \subset S_{1}^{3}$ and the orthogonal projection $p: F \rightarrow S_{0}^{2}$ in S_{1}^{3} is covering. Indeed, p is a local diffeomorphism. The compactness of F and the simply connectedness of S_{0}^{2} imply that p is a global diffeomorphism F on S_{0}^{2} and the surface F is globally explicitly given over S_{0}^{2}.

We map from a surface F in S_{1}^{3} to a surface \tilde{F} in S^{3}. If F has a definite metric and Gaussian curvature $K \geqslant 1$, then \tilde{F} has Gaussian curvature not greater than 1. This follows immediately from Lemma 1, Gauss's formula and the fact that $\langle n, n\rangle=-1$ for normals to F. In a pseudo-Euclidean space, the analogous correspondence between surfaces and their curvatures was used by Sokolov [11].

The surface \tilde{F} satisfies the conditions of Theorem 3 . It follows that \tilde{F} is a totally geodesic great sphere. By Lemma 1 the ranks of the second quadratic forms of \tilde{F} and F coincide and we obtain that the surface F is a totally geodesic surface in S_{1}^{3}.

Proof of Theorems 4 and 5 . The normal $n\left(u_{1}, u_{2}\right)$ to F is chosen so that the principal curvature satisfy (1). In a neighborhood of an arbitrary nonumbilical point P we choose coordinate curves consisting of the lines of curvature, and an arbitrary orthogonal net in the case of umbilical point. At P the coefficients of the first quadratic form are $e=g=1, f=0$. Let F_{1} be the surface with radius vector $\rho=(r-c n) / \sqrt{\left|c^{2}-1\right|}$.

In both cases the surface F_{1} lies in S_{1}^{3}. Moreover,

$$
\rho_{u_{1}}=\frac{\left(1+c k_{1}\right)}{\sqrt{\left|c^{2}-1\right|}} r_{u_{1}}, \quad \rho_{u_{2}}=\frac{\left(1+c k_{2}\right)}{\sqrt{\left|c^{2}-1\right|}} r_{u_{2}}
$$

The unit normal $n_{1}=\frac{c r-n}{\sqrt{\left|c^{2}-1\right|}}$. From the conditions on the principal curvatures of F in Theorems 4, 5 it follows that

$$
\left\langle\rho_{u_{1}}, \rho_{u_{1}}\right\rangle>0, \quad\left\langle\rho_{u_{2}}, \rho_{u_{2}}\right\rangle>0
$$

and F_{1} is a spacelike surface in S_{1}^{3}. The coefficients of the second quadratic form of the surface F_{1} are

$$
L_{1}=\frac{\left(1+c k_{1}\right)\left(k_{1}+c\right)}{\sqrt{c^{2}-1}}, \quad N_{1}=\frac{\left(1+c k_{2}\right)\left(k_{2}+c\right)}{\sqrt{c^{2}-1}}
$$

The Gaussian curvature of F_{1} at the point P_{1} is equal to

$$
K=1-\frac{\left(k_{1}+c\right)\left(k_{2}+c\right)\left|c^{2}-1\right|}{\left(1+k_{1} c\right)^{2}\left(1+k_{2} c\right)^{2}} \geqslant 1
$$

The same is true in umbilical points too. The surface F_{1} satisfies the conditions of Theorem 1. It follows that the surface F_{1} is a totally geodesic great sphere in S_{1}^{3} and F is an umbilical surface in L^{3} or S_{1}^{3}.

References

[1] G.M. Adelson-Vel'sky, The generalization of one geometrical theorem of S.N. Bernshtein. - Dokl. Akad. Nauk USSR 49 (1945), 6. (Russian)
[2] J.A. Aledo and A. Romero, Compact spacelike surfaces in the 3-dimensional de Sitter space with nondegenerate second fundamental form. - Diff. Geom. and its Appl. 19 (2003), 97-111.
[3] A.D. Aleksanrdov, On the curvature of surfaces. - Vestnik Leningr. Univ. Ser. Mat. Mech. Astrs. 19 (1966) No. 4, 5-11. (Russian)
[4] S.N. Bernshtein, Amplification of the theorem of surfaces with negative curvature. (Sobr. Soch. V. 3.) Publ. House Akad. Nauk USSR, Moscow, 1960. (Russian)
[5] A.A. Borisenko, On explicitly given saddle surfaces in a spherical space. - Usp. Mat. Nauk 54 (1999), No. 5, 151-152; Engl. transl.: Russian Math. Surveys 54 (1999), No. 5, 1021-1022.
[6] A.A. Borisenko, Complete l-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space. - Mat. Sb. 104 (1977), 559-576; Engl. transl.: Mat. Sb. 33 (1977), 485-499.
[7] A.A. Borisenko, Surfaces of nonpositive extrinsic curvature in spaces of constant curvature. - Mat. Sb. 114 (1981), 336-354; Engl. transl.: Mat. Sb. 42 (1982), 297-310.
[8] H. Li, Global rigidity theorems of hypersurfaces. - Ark. Mat. 35 (1997), 327-351.
[9] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature. - Indiana Univ. Math. J. 37 (1988), 909-917.
[10] J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in de Sitter space. - Indiana Univ. Math. J. 36 (1987), 349-359.
[11] D.D. Sokolov, The structure of the limit cone of a convex surface in pseudo-Euclidean space. - Usp. Mat. Nauk 30 (1975), No. 1(181), 261-262. (Russian)

