The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary

N.M. Tkachenko and F.A. Shamoyan
Bryansk State University
14 Bezhitskaya Str., Bryansk, 241036, Russia
E-mail:tkachenkonm@yandex.ru
shamoyanfa@yandex.ru
Received April 1, 2008

The analogue of known theorem Hardy-Littlewood about L^{p}-estimations of derivative analytical function through norm to the function, also are proved L^{p}-weight estimations the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary for all $0<$ $p<+\infty$.

Key words: operator of conjugate, class BMOA, estimations of derivative analytical function.

Mathematics Subject Classification 2000: 32A10, 45F05 (primary), 47B35, 47B30 (secondary).

Let G be a simply connected domain in the complex plane $C, d(w, \partial G)$ be a distance from the point $w \in G$ to ∂G.

Denote by $L_{\beta}^{p}(G)$ the space of measurable functions f in G such that

$$
\begin{equation*}
\|f\|_{L_{\beta}^{p}(G)}^{p}=\int_{G}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w)<+\infty, 0<p<+\infty, \beta>-1 \tag{1}
\end{equation*}
$$

where $d m_{2}$ is the plane Lebesque measure, and denote by $H(G)$ the set of all analytic functions in G. Also, put $A_{\beta}^{p}(G)=H(G) \bigcap L_{\beta}^{p}(G)$. Denote by $h_{\beta}^{p}(G)$ the subspace of $L_{\beta}^{p}(G)$ consisting of harmonic functions.

In this paper we generalize the Hardy-Littlewood theorem [1]: if $f \in H(S)$, $0<p<+\infty, f(0)=0, \beta>-1$, then there exist positive constants c_{1} and c_{2} such
that

$$
\begin{gather*}
c_{1} \int_{S}|f(z)|^{p}(1-|z|)^{\beta} d m_{2}(z) \\
\leq \int_{S}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p+\beta} d m_{2}(z) \leq c_{2} \int_{S}|f(z)|^{p}(1-|z|)^{\beta} d m_{2}(z) \tag{2}
\end{gather*}
$$

where S is an open unit disk in the complex plane C.
Considerable attention was paid to this result in papers [2, 3]. The estimation (2) was carried out in [2] for simply connected domains with the boundary from the class C^{1}, and in [3] - for the addition of the convex bounded domains, but only at $p=2$.

Notice that Γ is the curve of Lavrentiev class (E) if $l\left(w_{1}, w_{2}\right) \leq c\left|w_{1}-w_{2}\right|$, where for any $w_{1}, w_{2} \in \Gamma$, and $l\left(w_{1}, w_{2}\right)$ is the length of the shortest arc of Γ with endpoints w_{1}, w_{2}.

We prove an analogue of the left estimation of (2) for any open set and of the right estimation of (2) for simply connected domains G with the boundary from class (E).

The received estimations allow us to construct explicitly the bounded linear integral operator from $h_{\beta}^{p}(G)$ onto $A_{\beta}^{p}(G)$ for any $0<p<+\infty$ and from $L_{\beta}^{p}(G)$ onto $A_{\beta}^{p}(G)$ for any $1 \leq p<+\infty$.

We are grateful to Prof. V. Havin, for his attracting our attention to paper [4] and to Prof. H. Hedenmalm, who submitted it to us.

1. Auxiliary Lemmas

In [5], M.M. Dzrbashyan proved that if $f \in A_{\beta}^{p}(S), 1 \leq p<+\infty, \beta>-1$, then the integral representation is valid

$$
\begin{equation*}
f(z)=\frac{\beta+1}{\pi} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\beta} f(\zeta)}{(1-\bar{\zeta} z)^{\beta+2}} d m_{2}(\zeta), z \in S \tag{3}
\end{equation*}
$$

Let us prove (3) for $0<p<1$.
Lemma 1. Suppose $f \in A_{\beta}^{p}(S), 0<p<1, \beta>-1, \eta>\frac{\beta+2}{p}-1$; then $f \in A_{\eta}^{1}(S)$.

Here and in the sequel we denote by $c, c_{1}, \ldots, c_{n}(\alpha, \beta, \ldots)$ some arbitrary positive constants depending on α, β, \ldots whose specific values are immaterial.

Proof. Let $K_{\rho}(z)=\{w:|w-z|<\rho\}$, where $\rho=\frac{1-|z|}{2}$. Then, by the subharmonicity of $|f|^{p}$,

$$
|f(z)|^{p} \leq \frac{1}{\pi \rho^{2}} \int_{K_{\rho}(z)}|f(\zeta)|^{p} d m_{2}(\zeta)
$$

It is easy to see that for all $\zeta \in K_{\rho}(z)$ we have $\frac{1-|z|}{2} \leq 1-|\zeta| \leq \frac{3(1-|z|)}{2}$. Hence, we get

$$
\begin{gathered}
|f(z)|^{p}(1-|z|)^{\beta} \leq \frac{(1-|z|)^{\beta}}{\pi\left(\frac{1-|z|}{2}\right)^{2}} \int_{K_{\rho}(z)}|f(\zeta)|^{p} d m_{2}(\zeta) \\
=\frac{4(1-|z|)^{\beta}}{\pi(1-|z|)^{2}} \int_{K_{\rho}(z)}|f(\zeta)|^{p} d m_{2}(\zeta) \leq \frac{4 \cdot 2^{\beta}}{\pi(1-|z|)^{2}} \int_{K_{\rho}(z)}|f(\zeta)|^{p}(1-|\zeta|)^{\beta} d m_{2}(\zeta) \\
\leq \frac{c}{(1-|z|)^{2}} \int_{S}|f(\zeta)|^{p}(1-|\zeta|)^{\beta} d m_{2}(\zeta)
\end{gathered}
$$

Therefore, we obtain

$$
|f(z)|^{p} \leq \frac{c}{(1-|z|)^{\beta+2}} \int_{S}|f(\zeta)|^{p}(1-|\zeta|)^{\beta} d m_{2}(\zeta) \leq \frac{c_{1}}{(1-|z|)^{\beta+2}}
$$

and $|f(z)| \leq \frac{c_{1}^{\frac{1}{p}}}{(1-|z|)^{\frac{\beta+2}{p}}}$. Thus, if $\eta>\frac{\beta+2}{p}-1$, then
$\int_{S}|f(z)|(1-|z|)^{\eta} d m_{2}(z) \leq c_{2} \int_{S} \frac{d m_{2}(z)}{(1-|z|)^{\frac{\beta+2}{p}-\eta}} \leq c_{3} \int_{0}^{1} \frac{d r}{(1-r)^{\frac{\beta+2}{p}-\eta}}<+\infty$.
The lemma is proved.
If $f \in A_{\beta}^{p}(S), 0<p<1, \beta>-1, \eta>\frac{\beta+2}{p}-1$, using Lemma 1 we have

$$
f(z)=\frac{\eta+1}{\pi} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} f(\zeta)}{(1-\bar{\zeta} z)^{\eta+2}} d m_{2}(\zeta)
$$

Lemma 2. Suppose $f \in H(S), f^{(n)} \in A_{\beta}^{p}(S), 0<p<+\infty, \beta>-1$, $f^{(k)}\left(z_{0}\right)=0, k=0,1, \ldots, n-1, n \in N, z_{0} \in S ; 0<p<+\infty, \eta>n-1+\frac{\beta+2}{p}$. Then

$$
\begin{equation*}
f(z)=c(n, \eta) \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} f^{(n)}(\zeta) P(z, \bar{\zeta})}{(1-\bar{\zeta} z)^{\eta-n+2}} d m_{2}(\zeta) \tag{4}
\end{equation*}
$$

where $P(z, \bar{\zeta})$ is some polynomial in z and $\bar{\zeta}, z \in S$.
Proof. By the condition of the lemma $f(z)=\frac{1}{(n-1)!} \int_{z_{0}}^{z}(z-t)^{n-1} f^{(n)}(t) d t$. Using (3) for $1<p<+\infty$ or (3^{\prime}) for $0<p \leq 1$, we get

$$
f^{(n)}(z)=c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} f^{(n)}(\zeta)}{(1-\bar{\zeta} z)^{\eta+2}} d m_{2}(\zeta)
$$

Integrating this equality n times and taking into account $\int_{z_{0}}^{z} \frac{(z-t)^{n-1}}{(1-\bar{\zeta} t)^{\eta+2}} d t=$ $\frac{P(z, \bar{\zeta})}{(1-\bar{\zeta} z)^{\eta-n+2}}$, where $P(z, \bar{\zeta})$ is some polynomial in z and $\bar{\zeta}, z \in S$, we obtain (4).

Lemma 3 (see [6]). Let $v(z)$ be a nonnegative subharmonic function on S. Suppose $0<p \leq 1, \eta>-1$; then the following is valid:

$$
\left(\int_{S} v(z)(1-|z|)^{\eta} d m_{2}(z)\right)^{p} \leq c \int_{S}(v(z))^{p}(1-|z|)^{\eta p+2 p-2} d m_{2}(z)
$$

Let BMOA be a space of analytic functions of a bounded mean oscillation. This is the class of functions $f(z)$ analytic on the unit disc S for which

$$
\sup _{|a|<1}\left\|f_{a}\right\|_{1}<\infty, f_{a}(z)=f\left(\frac{z+a}{1+\bar{a} z}\right)-f(a)
$$

where $\|\cdot\|_{1}$ denotes the H^{1}-norm.
Lemma 4 (see [7]). Let G be a simply connected domain with boundary $\Gamma \in(E)$. Suppose $\varphi: S \rightarrow G$ conformally, $f(z)=a \ln \varphi^{\prime}(z)$, and a is any positive constant. Then $f \in B M O A$.

Lemma 5 (see [7]). Suppose $f \in B M O A,|t|<1$, and any $a \in C \backslash\{0\}$. Then there exists such $M=M(a)$ that the following inequality is valid:

$$
\frac{1}{2 \pi} \int_{|s|=1}\left|e^{a f(s)}\right|^{2} \frac{\left(1-|t|^{2}\right)}{|1-\bar{t} s|^{2}}|d s| \leq M\left|e^{a f(t)}\right|^{2}
$$

Lemma 6. Let G be a simply connected domain. Suppose $\varphi: S \rightarrow G$ conformally, $f^{(k)} \in A_{\beta}^{p}(G), k=0,1, \ldots, n, n \in N, 0<p<+\infty, \beta>-1$.
Then $f^{(k)}(\varphi) \in A_{\alpha}^{p}(S), k=0,1, \ldots, n, n \in N, 0<p<+\infty, \alpha \geq 2(\beta+1)$.

Proof. By the condition of the lemma, $\int_{G}\left|f^{(k)}(w)\right|^{p} d^{\beta}(w, \partial G) d m_{2}(w)=$ $c \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p} d^{\beta}(\varphi(z), \partial G)\left|\varphi^{\prime}(z)\right|^{2} d m_{2}(z)<+\infty$. Then, using Koebe's inequality (see [8, p. 51])

$$
\begin{equation*}
\frac{1}{4} \frac{d(\varphi(z), \partial G)}{1-|z|} \leq\left|\varphi^{\prime}(z)\right| \leq 4 \frac{d(\varphi(z), \partial G)}{1-|z|} \tag{5}
\end{equation*}
$$

we get
$\int_{G}\left|f^{(k)}(w)\right|^{p} d^{\beta}(w, \partial G) d m_{2}(w) \geq c \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{\beta}\left|\varphi^{\prime}(z)\right|^{\beta+2} d m_{2}(z)$.
The following estimate for the univalent analytic functions is well known (see [8, p. 53]):

$$
\begin{equation*}
\frac{1-|z|}{(1+|z|)^{3}} \leq\left|\varphi^{\prime}(z)\right| \leq \frac{1+|z|}{(1-|z|)^{3}} . \tag{6}
\end{equation*}
$$

Using it, we obtain

$$
\begin{gathered}
\int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{\beta}\left|\varphi^{\prime}(z)\right|^{\beta+2} d m_{2}(z) \\
\geq c_{1} \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{\beta}(1-|z|)^{\beta+2} d m_{2}(z) \\
\geq c_{1} \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{\alpha} d m_{2}(z)
\end{gathered}
$$

where $\alpha \geq 2(\beta+1)$.
Finally, since $\int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{\alpha} d m_{2}(z) \leq c_{2} \int_{G}\left|f^{(k)}(w)\right|^{p} d^{\beta}(w, \partial G) d m_{2}(w)$ $<+\infty$, then $f^{(k)}(\varphi) \in A_{\alpha}^{p}(S), k=0,1, \ldots, n, n \in N, 0<p<+\infty, \alpha \geq 2(\beta+1)$. The lemma is proved.

Lemma 7. Suppose $1<p<+\infty, z \in S, \eta>0,0<\frac{\gamma}{p}<\eta$.
Then

$$
\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1}(1-|\zeta|)^{\frac{\gamma}{p}+1}} d m_{2}(\zeta) \leq c(1-|z|)^{-\frac{\gamma}{p}} .
$$

Proof. Suppose $z=r e^{i \sigma}, \zeta=\rho e^{i \theta}$; then $\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1}(1-|\zeta|)^{\frac{\gamma}{p}+1}} d m_{2}(\zeta)$

Since $\int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r \rho e^{i(\sigma-\theta)}\right|^{\eta+1}} \leq \frac{c_{1}}{(1-r \rho)^{\eta}}$, then
$\int_{0}^{1} \frac{\left(1-\rho^{2}\right)^{\eta}}{(1-\rho)^{\frac{\gamma}{p}+1}} \int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r \rho e^{i(\sigma-\theta)}\right|^{\eta+1}} d \rho \leq c_{2} \int_{0}^{1} \frac{\left(1-\rho^{2}\right)^{\eta}}{(1-r \rho)^{\eta}(1-\rho)^{\frac{\gamma}{p}+1}} d \rho$.
However, if $\eta>0,0<\frac{\gamma}{p}<\eta$, then

$$
\begin{gathered}
\int_{0}^{1} \frac{\left(1-\rho^{2}\right)^{\eta}}{(1-r \rho)^{\eta}(1-\rho)^{\frac{\gamma}{p}+1}} d \rho \\
\leq c_{3} \int_{0}^{r} \frac{\left(1-\rho^{2}\right)^{\eta}}{(1-\rho)^{\eta}(1-\rho)^{\frac{\gamma}{p}+1}} d \rho+c_{4} \int_{r}^{1} \frac{\left(1-\rho^{2}\right)^{\eta}}{(1-r)^{\eta}(1-\rho)^{\frac{\gamma}{p}+1}} d \rho \leq \frac{c}{(1-r)^{\frac{\gamma}{p}}} .
\end{gathered}
$$

This completes the proof.
Lemma 8. Let G be a simply connected domain with boundary $\Gamma \in(E)$. Suppose $\varphi: S \rightarrow G$ conformally, $\zeta \in S, \tau>-1, k \in Z_{+}$.
If $1<p, q<+\infty, \chi_{\gamma}(\zeta)=(1-|\zeta|)^{-\left(\frac{\gamma}{p q}\right)}, 0<\frac{\gamma}{q}<k p+\tau+1, \eta>k p+\tau+2+\frac{\gamma}{q}$, then

$$
\begin{align*}
& \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau} \chi_{\gamma}^{p}(z)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z) \\
& \quad \leq \frac{c_{1}\left|\varphi^{\prime}(\zeta)\right|^{k p+\tau+2}(1-|\zeta|)^{k p+\tau} \chi_{\gamma}^{p}(\zeta)}{(1-|\zeta|)^{\eta-1}} . \tag{7}
\end{align*}
$$

If $0<p \leq 1, \eta>k-1+\frac{\tau+3}{p}$, then

$$
\begin{align*}
& \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau}}{|1-\bar{\zeta} z|^{p(\eta+1)}} d m_{2}(z) \\
& \quad \leq \frac{c_{2}\left|\varphi^{\prime}(\zeta)\right|^{k p+\tau+2}(1-|\zeta|)^{k p+\tau}}{(1-|\zeta|)^{p(\eta+1)-2}}
\end{align*}
$$

Proof. Let $f(z)=\frac{k p+\tau+2}{2} \ln \varphi^{\prime}(z), z \in S, z=r e^{i \sigma}$. Using Lemmas 4 and 5 , we get

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(e^{i \sigma}\right)\right|^{k p+\tau+2} \frac{\left(1-|t|^{2}\right)}{\left|1-\bar{t} e^{i \sigma}\right|^{2}} d \sigma \leq M\left|\varphi^{\prime}(t)\right|^{k p+\tau+2}, \tag{8}
\end{equation*}
$$

where $0<|t|<1$.
Suppose

$$
I=\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau} \chi_{\gamma}^{p}(z)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z)
$$

Since $\zeta=\rho e^{i \theta}$, we obtain

$$
\begin{aligned}
& I=\int_{0}^{1}(1-r)^{k p+\tau-\frac{\gamma}{q}} \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i \sigma}\right)\right|^{k p+\tau+2} \frac{1}{\left|1-r \rho e^{i \sigma} e^{-i \theta}\right|^{\eta+1}} d \sigma d r \\
& \leq c_{0} \int_{0}^{1} \frac{(1-r)^{k p+\tau-\frac{\gamma}{q}}}{(1-r \rho)^{\eta-1}} \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i \sigma}\right)\right|^{k p+\tau+2} \frac{1}{\left|1-r \rho e^{i \sigma} e^{-i \theta}\right|^{2}} d \sigma d r
\end{aligned}
$$

By the construction, $\varphi^{\prime}(z) \neq 0, z \in S$, and $\left(\varphi^{\prime}(z)\right)^{k p+\tau+2}$ is an analytic function in the unit disk S. The function $\Psi_{\zeta}(z)=\frac{1}{(1-\bar{\zeta} z)^{2}}$ is also analytic in S for the fixed $\zeta \in S$. Then $\Psi_{\zeta}(z)\left(\varphi^{\prime}(z)\right)^{k p+\tau+2}$ is an analytic function in S.

It follows that if

$$
I_{1}(r)=\int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i \sigma}\right)\right|^{k p+\tau+2} \frac{1}{\left|1-r \rho e^{i \sigma} e^{-i \theta}\right|^{2}} d \sigma=\int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(r e^{i \sigma}\right)\right|^{k p+\tau+2}\left|\Psi_{\zeta}\left(r e^{i \sigma}\right)\right| d \sigma
$$

then $I_{1}(r)$ monotonically grows on $[0,1)$. Hence we obtain

$$
\begin{gathered}
I_{1}(r) \leq \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(e^{i \sigma}\right)\right|^{k p+\tau+2} \frac{\left(1-\rho^{2}\right)}{\left|1-\rho e^{i \sigma} e^{-i \theta}\right|^{2}} \frac{1}{\left(1-\rho^{2}\right)} d \sigma \\
\quad=\frac{1}{\left(1-\rho^{2}\right)} \int_{-\pi}^{\pi}\left|\varphi^{\prime}\left(e^{i \sigma}\right)\right|^{k p+\tau+2} \frac{\left(1-\rho^{2}\right)}{\left|1-\rho e^{i \sigma} e^{-i \theta}\right|^{2}} d \sigma
\end{gathered}
$$

With $t=\zeta$ and (8) being taken into account, we get

$$
I_{1}(r) \leq \frac{c_{1}\left|\varphi^{\prime}\left(\rho e^{i \theta}\right)\right|^{k p+\tau+2}}{\left(1-\rho^{2}\right)}
$$

Using the above, we have

$$
I \leq \frac{c_{2}\left|\varphi^{\prime}\left(\rho e^{i \theta}\right)\right|^{k p+\tau+2}}{\left(1-\rho^{2}\right)} \int_{0}^{1} \frac{(1-r)^{k p+\tau-\frac{\gamma}{q}}}{(1-r \rho)^{\eta-1}} d r
$$

But, if $0<\frac{\gamma}{q}<k p+\tau+1, \eta>k p+\tau+2+\frac{\gamma}{q}$, then

$$
\begin{aligned}
\int_{0}^{1} \frac{(1-r)^{k p+\tau-\frac{\gamma}{q}}}{(1-r \rho)^{\eta-1}} d r & \leq c_{3} \int_{0}^{\rho} \frac{(1-r)^{k p+\tau-\frac{\gamma}{q}}}{(1-r)^{\eta-1}} d r+c_{4} \int_{\rho}^{1} \frac{(1-r)^{k p+\tau-\frac{\gamma}{q}}}{(1-\rho)^{\eta-1}} d r \\
& \leq \frac{c_{5}(1-\rho)^{k p+\tau-\frac{\gamma}{q}}}{(1-\rho)^{\eta-2}}
\end{aligned}
$$

However, we see that $I \leq c_{6}\left|\varphi^{\prime}\left(\rho e^{i \theta}\right)\right|^{k p+\tau+2} \frac{(1-\rho)^{k p+\tau-\frac{\gamma}{q}}}{(1-\rho)^{\eta-1}}$. Finally, we obtain

$$
\begin{aligned}
& \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau} \chi_{\gamma}^{p}(z)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z) \\
& \quad \leq \frac{c\left|\varphi^{\prime}(\zeta)\right|^{k p+\tau+2}(1-|\zeta|)^{k p+\tau} \chi_{\gamma}^{p}(\zeta)}{(1-|\zeta|)^{\eta-1}}
\end{aligned}
$$

The analogous estimate $\left(7^{\prime}\right)$ follows easily. The proof is finished.

2. The Formulation and the Proof of Basic Theorems

Theorem 1. Let G be any connected open set in the complex plane C. Suppose $f \in A_{\beta}^{p}(G), 0<p<+\infty, \beta>-1$. Then for any $n \in N$ we have

$$
\int_{G}\left|f^{(n)}(w)\right|^{p} d^{n p+\beta}(w, \partial G) d m_{2}(w) \leq c(n, \beta) \int_{G}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w)
$$

Proof. Let $G=\bigcup_{k} Q_{k}$ be the Whitney decomposition sets G, where Q_{k} defined is a square such that $c_{1} \operatorname{diam}\left(Q_{k}\right) \leq \operatorname{dist}\left(Q_{k}{ }^{c}{ }^{c} G\right) \leq c_{2} \operatorname{diam}\left(Q_{k}\right)$, the constants c_{1}, c_{2} do not depend on G (see [9, p. 199]). It is possible to take $c_{1}=1, c_{2}=4$. Then

$$
\begin{aligned}
& \int_{G}\left|f^{(n)}(w)\right|^{p} d^{n p+\beta}(w, \partial G) d m_{2}(w)=\sum_{k} \int_{Q_{k}}\left|f^{(n)}(w)\right|^{p} d^{n p+\beta}(w, \partial G) d m_{2}(w) \\
& \leq c \sum_{k} \max _{w \in Q_{k}}\left|f^{(n)}(w)\right|^{p} d^{n p+\beta+2}(w, \partial G) \leq c \sum_{k}\left|f^{(n)}\left(w_{k}\right)\right|^{p} d^{n p+\beta+2}\left(w_{k}, \partial G\right),
\end{aligned}
$$

where $w_{k} \in \partial Q_{k}$. Next, by Q_{k}^{*} denote the square with the same center as Q_{k} but stretched in $(1+\varepsilon)$ times, $0<\varepsilon<\frac{1}{4}$. Then $Q_{k} \subset Q_{k}^{*}$.

Let $0<\rho=\frac{1}{4} \operatorname{dist}\left(Q_{k}, \partial Q_{k}^{*}\right), C_{\rho}\left(w_{k}\right)=\left\{w:\left|w-w_{k}\right|<\rho\right\}$.
Since $f^{(n)}\left(w_{k}\right)=\frac{n!}{2 \pi i} \int_{\partial C_{\rho}} \frac{f(w)}{\left(w-w_{k}\right)^{n+1}} d w$, it follows that

$$
\left|f^{(n)}\left(w_{k}\right)\right| \leq n!\frac{1}{\rho^{n}} \max _{w \in \partial C_{\rho}}|f(w)| \leq \frac{c}{d^{n}\left(\tilde{w}_{k}, \partial G\right)}\left|f\left(\tilde{w}_{k}\right)\right|,
$$

where $\tilde{w}_{k} \in \partial C_{\rho}$.
Hence we get $\left|f^{(n)}\left(w_{k}\right)\right|^{p} \leq \frac{c_{1}\left|f\left(\tilde{w}_{k}\right)\right|^{p}}{d^{n p}\left(\tilde{w}_{k}, \partial G\right)}$. Using the facts that $d\left(w_{k}, \partial G\right) \leq$ $d\left(\tilde{w}_{k}, \partial G\right)$, we have

$$
\sum_{k}\left|f^{(n)}\left(w_{k}\right)\right|^{p} d^{n p+\beta+2}\left(w_{k}, \partial G\right) \leq c_{1} \sum_{k}\left|f\left(\tilde{w}_{k}\right)\right|^{p} d^{\beta+2}\left(\tilde{w}_{k}, \partial G\right) .
$$

Next, let $0<\rho^{\prime}=\frac{1}{8} \operatorname{dist}\left(Q_{k}, \partial Q_{k}^{*}\right)$ and $K_{\rho^{\prime}}\left(\tilde{w}_{k}\right)=\left\{w:\left|w-\tilde{w}_{k}\right|<\rho^{\prime}\right\}$. It is clear that $K_{\rho^{\prime}}\left(\tilde{w}_{k}\right) \subset Q_{k}^{*}$. Therefore, we see that

$$
\left|f\left(\tilde{w}_{k}\right)\right|^{p} \leq \frac{1}{\pi \rho^{2}} \int_{K_{\rho^{\prime}}\left(\tilde{w}_{k}\right)}|f(w)|^{p} d m_{2}(w) \leq \frac{c_{2}}{d^{2}\left(\tilde{w}_{k}, \partial G\right)} \int_{Q_{k}^{*}}|f(w)|^{p} d m_{2}(w) .
$$

Thus we get $\left|f\left(\tilde{w}_{k}\right)\right|^{p} d^{\beta+2}\left(\tilde{w}_{k}, \partial G\right) \leq c_{3} \int_{Q_{k}^{*}}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w)$.
Finally, we have

$$
\begin{gathered}
\int_{G}\left|f^{(n)}(w)\right|^{p} d^{n p+\beta}(w, \partial \Omega) d m_{2}(w) \\
\leq \sum_{k} \int_{Q_{k}^{*}}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w) \leq c_{4} \int_{G}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w) .
\end{gathered}
$$

The theorem is proved.
Similarly, the following theorem holds.
Theorem 2 (see [10]). Let G be any connected open set in the complex plane C. Suppose $u \in h_{\beta}^{p}(G), 0<p<+\infty, \beta>-1$. Then

$$
\int_{G}|\operatorname{grad} u(w)|^{p} d^{p+\beta}(w, \partial G) d m_{2}(w) \leq c(\beta) \int_{G}|u(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w) .
$$

Theorem 3. Let G be a simply connected domain with boundary $\Gamma \in(E)$. Suppose $f \in H(G), f^{(k)}\left(w_{0}\right)=0, k=0,1, \ldots, n-1, n \in N, w_{0} \in G ; \tau>-1$,
$0<p<+\infty$. Then the following is valid:

$$
\begin{gather*}
c_{1}(n, \tau) \int_{G}\left|f^{(n)}(w)\right|^{p} d^{n p+\tau}(w, \partial G) d m_{2}(w) \\
\leq \int_{G}|f(w)|^{p} d^{\tau}(w, \partial G) d m_{2}(w) \\
\leq c_{2}(n, \tau) \int_{G}\left|f^{(n)}(w)\right|^{p} d^{n p+\tau}(w, \partial G) d m_{2}(w) \tag{10}
\end{gather*}
$$

Proof. Using Theorem 1, we see that

$$
\begin{gathered}
c_{1}(n, \tau) \int_{G}\left|f^{(n)}(w)\right|^{p} d^{n p+\tau}(w, \partial G) d m_{2}(w) \\
\quad \leq \int_{G}|f(w)|^{p} d^{\tau}(w, \partial G) d m_{2}(w) .
\end{gathered}
$$

In the proof of the right estimation the induction method is used.
For $\mathrm{n}=1$, let us prove that

$$
\begin{equation*}
I=\int_{G}|f(w)|^{p} d^{\tau}(w, \partial G) d m_{2}(w) \leq c \int_{G}\left|f^{\prime}(w)\right|^{p} d^{p+\tau}(w, \partial G) d m_{2}(w) \tag{11}
\end{equation*}
$$

Without loss of generality, assume that the integral on the right is convergent. Suppose $\varphi: S \rightarrow G$ conformally, $\varphi(0)=w_{0}, \varphi^{\prime}(0)>0, w=\varphi(z)$; then

$$
\begin{aligned}
& \int_{S}|f(\varphi(z))|^{p} d^{\tau}(\varphi(z), \partial G)\left|\varphi^{\prime}(z)\right|^{2} d m_{2}(z) \\
\leq & c \int_{S}\left|f^{\prime}(\varphi(z))\right|^{p} d^{p+\tau}(\varphi(z), \partial G)\left|\varphi^{\prime}(z)\right|^{2} d m_{2}(z)
\end{aligned}
$$

Thus, using (5), we can see that

$$
\begin{gather*}
\int_{S}|f(\varphi(z))|^{p}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} d m_{2}(z) \\
\leq c \int_{S}\left|f^{\prime}(\varphi(z))\right|^{p}(1-|z|)^{p+\tau}\left|\varphi^{\prime}(z)\right|^{p+\tau+2} d m_{2}(z) . \tag{12}
\end{gather*}
$$

Let $F(z)=f(\varphi(z))$, then $\int_{S}\left|F^{\prime}(z)\right|^{p}(1-|z|)^{p+\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} d m_{2}(z)<+\infty$.
Using (6), we get $\left|\varphi^{\prime}(z)\right| \geq c(1-|z|)$. Hence, we see that

$$
\int_{S}\left|F^{\prime}(z)\right|^{p}(1-|z|)^{p+2(\tau+1)} d m_{2}(z)<+\infty .
$$

Taking into account (2), we obtain

$$
\int_{S}\left|F^{\prime}(z)\right|^{p}(1-|z|)^{2(\tau+1)} d m_{2}(z)<c \int_{S}|F(z)|^{p}(1-|z|)^{p+2(\tau+1)} d m_{2}(z)<+\infty,
$$

that is $f(\varphi) \in A_{\alpha}^{p}(S), 0<p<+\infty, \alpha \geq 2(\tau+1)$.
Let us consider the two cases of the proof (12).
Case 1: $0<p \leq 1$. Using $f(\varphi) \in A_{\alpha}^{p}(S), 0<p<+\infty, \alpha \geq 2(\tau+1)$, and Lemma 2 for $\eta>-1$, we have

$$
f(\varphi(z))=\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}(f(\varphi(\zeta)))^{\prime} P(z, \bar{\zeta})}{(1-\bar{\zeta} z)^{\eta+1}} d m_{2}(\zeta)
$$

However, we see that $|f(\varphi(z))| \leq c \int_{S} \frac{\left(1-|\zeta|^{2} \eta^{\eta}\right.}{|1-\bar{\zeta} z|^{\eta+1}}\left|f^{\prime}(\varphi(\zeta))\right|\left|\varphi^{\prime}(\zeta)\right| d m_{2}(\zeta)$.
Applying Lemma 3, we obtain

$$
|f(\varphi(z))|^{p} \leq c_{1} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta p+2 p-2}}{|1-\bar{\zeta} z|^{p(\eta+1)}}\left|f^{\prime}(\varphi(\zeta))\right|^{p}\left|\varphi^{\prime}(\zeta)\right|^{p} d m_{2}(\zeta) .
$$

Now we get

$$
\begin{gathered}
|f(\varphi(z))|^{p}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} \\
\leq c_{1}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta p+2 p-2}}{|1-\bar{\zeta} z|^{p(\eta+1)}}\left|f^{\prime}(\varphi(\zeta))\right|^{p}\left|\varphi^{\prime}(\zeta)\right|^{p} d m_{2}(\zeta) .
\end{gathered}
$$

Integrating with respect to z and changing the order of integration, we have

$$
\begin{gathered}
\int_{S}|f(\varphi(z))|^{p}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} d m_{2}(z) \\
\leq c_{2} \int_{S}\left|f^{\prime}(\varphi(\zeta))\right|^{p}\left(1-|\zeta|^{2}\right)^{\eta p+2 p-2}\left|\varphi^{\prime}(\zeta)\right|^{p} \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{\tau+2}(1-|z|)^{\tau}}{|1-\bar{\zeta} z|^{p(\eta+1)}} d m_{2}(z) d m_{2}(\zeta) .
\end{gathered}
$$

Using Lemma 8 for $k=0, \eta>\frac{\tau+3}{p}-1$, we obtain

$$
\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{\tau+2}(1-|z|)^{\tau}}{|1-\bar{\zeta} z|^{p(\eta+1)}} d m_{2}(z) \leq \frac{c_{3}\left|\varphi^{\prime}(\zeta)\right|^{\tau+2}(1-|\zeta|)^{\tau}}{(1-|\zeta|)^{p(\eta+1)-2}}
$$

Combing this with the last inequality, we get (12) and, consequently, (10) for $n=1,0<p \leq 1$.
Case 2: $1<p<+\infty$. As above, we have

$$
|f(\varphi(z))| \leq c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1}}\left|f^{\prime}(\varphi(\zeta))\right|\left|\varphi^{\prime}(\zeta)\right| d m_{2}(\zeta)
$$

Multiplying and dividing the right-hand side of the above inequality by the function $\chi_{\gamma}(\zeta)=(1-|\zeta|)^{-\left(\frac{\gamma}{p q}+\frac{1}{q}\right)}, 0<\frac{\gamma}{q}<\tau+1$, and then using Holder's inequality with the exponent p, we get

$$
\begin{aligned}
|f(\varphi(z))|^{p} & \leq c_{1} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1} \chi_{\gamma}^{p}(\zeta)}\left|f^{\prime}(\varphi(\zeta))\right|^{p}\left|\varphi^{\prime}(\zeta)\right|^{p} d m_{2}(\zeta) \\
& \times\left(\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} \chi_{\gamma}^{q}(\zeta)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(\zeta)\right)^{\frac{p}{q}}
\end{aligned}
$$

Using Lemma 7 , we obtain $\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} \chi_{\gamma}^{q}(\zeta)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(\zeta) \leq \frac{c_{2}}{(1-\mid z)^{\frac{\gamma}{p}}}$.
Likewise as in the above, we have

$$
\begin{gathered}
\int_{S}|f(\varphi(z))|^{p}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} d m_{2}(z) \leq c_{3} \int_{S}\left|f^{\prime}(\varphi(\zeta))\right|^{p}\left(1-|\zeta|^{2}\right)^{\eta}\left|\varphi^{\prime}(\zeta)\right|^{p} \\
\frac{1}{\chi_{\gamma}^{p}(\zeta)} \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{\tau+2}(1-|z|)^{\tau}(1-|z|)^{-\frac{\gamma}{q}}}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z) d m_{2}(\zeta)
\end{gathered}
$$

Applying Lemma 8 for $k=0,0<\frac{\gamma}{q}<1+\tau, \eta>\tau+2+\frac{\gamma}{q}$, we get
$\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{\tau+2}(1-|z|)^{\tau}(1-|z|)^{-\frac{\gamma}{q}}}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z) \leq \frac{c_{4}\left|\varphi^{\prime}(\zeta)\right|^{\tau+2}(1-|\zeta|)^{\tau}(1-|\zeta|)^{-\frac{\gamma}{q}}}{(1-|\zeta|)^{\eta-1}}$.
Combing this with the last inequality, we get (12) and, consequently, (10) for $n=1,1<p<+\infty$. Now, by the induction hypothesis, the inequality

$$
\int_{G}|f(w)|^{p} d^{\tau}(w, \partial G) d m_{2}(w) \leq c \int_{G}\left|f^{(k)}(w)\right|^{p} d^{k p+\tau}(w, \partial G) d m_{2}(w)
$$

holds and it is equivalent to

$$
\begin{aligned}
& \int_{S}|f(\varphi(z))|^{p} d^{\tau}(\varphi(z), \partial G)\left|\varphi^{\prime}(z)\right|^{2} d m_{2}(z) \\
\leq & c_{1} \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p} d^{k p+\tau}(\varphi(z), \partial G)\left|\varphi^{\prime}(z)\right|^{2} d m_{2}(z)
\end{aligned}
$$

Using (5), we obtain

$$
\begin{gather*}
\int_{S}|f(\varphi(z))|^{p}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} d m_{2}(z) \\
\leq c_{2} \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} d m_{2}(z) \tag{13}
\end{gather*}
$$

Prove that

$$
\begin{gather*}
\int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} d m_{2}(z) \\
\leq c_{5} \int_{S}\left|f^{(k+1)}(\varphi(z))\right|^{p}(1-|z|)^{(k+1) p+\tau}\left|\varphi^{\prime}(z)\right|^{(k+1) p+\tau+2} d m_{2}(z) . \tag{14}
\end{gather*}
$$

Without loss of generality, similarly as in the above we may again assume that

$$
\int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} d m_{2}(z)<+\infty
$$

Then

$$
\int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{2(k p+\tau+1)} d m_{2}(z)<+\infty
$$

Hence, we obtain $f^{(k)}(\varphi) \in A_{\alpha}^{p}(S), 0<p<+\infty, \alpha>2(k p+\tau+1)$. By Lemma 2, for $\eta>-1$ we have

$$
f^{(k)}(\varphi(z))=\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}\left(f^{(k)}(\varphi(\zeta))\right)^{\prime} P(z, \bar{\zeta})}{(1-\bar{\zeta} z)^{\eta+1}} d m_{2}(\zeta)
$$

Therefore, we get $\left|f^{(k)}(\varphi(z))\right| \leq c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1}}\left|f^{(k+1)}(\varphi(\zeta))\right|\left|\varphi^{\prime}(\zeta)\right| d m_{2}(\zeta)$.

Let us consider the two cases of the proof (14).
Case 1: $0<p \leq 1$. Applying Lemma 3, we see that

$$
\left|f^{(k)}(\varphi(z))\right|^{p} \leq c_{1} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta p+2 p-2}}{|1-\bar{\zeta} z|^{p(\eta+1)}}\left|f^{(k+1)}(\varphi(\zeta))\right|^{p}\left|\varphi^{\prime}(\zeta)\right|^{p} d m_{2}(\zeta)
$$

On the other hand,

$$
\begin{aligned}
& \left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} \leq c_{2}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} \\
& \quad \times \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta p+2 p-2}}{|1-\bar{\zeta} z|^{p(\eta+1)}}\left|f^{(k+1)}(\varphi(\zeta))\right|^{p}\left|\varphi^{\prime}(\zeta)\right|^{p} d m_{2}(\zeta)
\end{aligned}
$$

Integrating with respect to z and changing the order of integration, we have

$$
\begin{aligned}
& \int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} d m_{2}(z) \\
& \leq c_{3} \int_{S}\left|f^{(k+1)}(\varphi(\zeta))\right|^{p}\left(1-|\zeta|^{2}\right)^{\eta p+2 p-2}\left|\varphi^{\prime}(\zeta)\right|^{p} \\
& \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau}}{|1-\bar{\zeta} z|^{p(\eta+1)}} d m_{2}(z) d m_{2}(\zeta)
\end{aligned}
$$

Applying Lemma 8 for $\eta>k-1+\frac{\tau+3}{p}$, we see that

$$
\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau}}{|1-\bar{\zeta} z|^{p(\eta+1)}} d m_{2}(z) \leq \frac{c_{4}\left|\varphi^{\prime}(\zeta)\right|^{k p+\tau+2}(1-|\zeta|)^{k p+\tau}}{(1-|\zeta|)^{p(\eta+1)-2}}
$$

Combing this with the last inequality, we get (14) for $0<p \leq 1$.
Case 2: $1<p<+\infty$. As above, we obtain

$$
\left|f^{(k)}(\varphi(z))\right| \leq c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1}}\left|f^{(k+1)}(\varphi(\zeta))\right|\left|\varphi^{\prime}(\zeta)\right| d m_{2}(\zeta)
$$

Let $\chi_{\gamma}(\zeta)=(1-|\zeta|)^{-\left(\frac{\gamma}{p q}+\frac{1}{q}\right)}, 0 \leq \frac{\gamma}{q}<k p+\tau+1$.
Applying Holder's inequality, we conclude that

$$
\left|f^{(k)}(\varphi(z))\right|^{p} \leq c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta}}{|1-\bar{\zeta} z|^{\eta+1} \chi_{\gamma}^{p}(\zeta)}\left|f^{(k+1)}(\zeta)\right|^{p}\left|\varphi^{\prime}(z)\right|^{p} d m_{2}(\zeta) \times
$$

$$
\left(\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} \chi_{\gamma}^{q}(\zeta)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(\zeta)\right)^{\frac{p}{q}}
$$

However, by Lemma 7, we obtain $\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\eta} \chi_{\gamma}^{q}(\zeta)}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(\zeta) \leq \frac{c_{2}}{(1-|z|)^{\frac{\gamma}{p}}}$.
Thus, we have

$$
\begin{gathered}
\int_{S}\left|f^{(k)}(\varphi(z))\right|^{p}(1-|z|)^{k p+\tau}\left|\varphi^{\prime}(z)\right|^{k p+\tau+2} d m_{2}(z) \\
\leq c_{3} \int_{S}\left|f^{(k+1)}(\varphi(\zeta))\right|^{p}\left(1-|\zeta|^{2}\right)^{\eta}\left|\varphi^{\prime}(\zeta)\right|^{p} \frac{1}{\chi_{\gamma}^{p}(\zeta)} \\
\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau}(1-|z|)^{-\frac{\gamma}{q}}}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z) d m_{2}(\zeta) .
\end{gathered}
$$

Applying Lemma 8 for $0<\frac{\gamma}{q}<k p+\tau+1, \eta>k p+\tau+2+\frac{\gamma}{q}$, we see that

$$
\begin{aligned}
& \int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{k p+\tau+2}(1-|z|)^{k p+\tau}(1-|z|)^{-\frac{\gamma}{q}}}{|1-\bar{\zeta} z|^{\eta+1}} d m_{2}(z) \\
& \quad \leq \frac{c_{4}\left|\varphi^{\prime}(\zeta)\right|^{k p+\tau+2}(1-|\zeta|)^{k p+\tau}(1-|\zeta|)^{-\frac{\gamma}{q}}}{(1-|\zeta|)^{\eta-1}} .
\end{aligned}
$$

Combing this with the last inequality, we get (14) for $1<p<+\infty$.
Also, we claim that

$$
\begin{equation*}
\int_{G}|f(w)|^{p} d^{\tau}(w, \partial G) d m_{2}(w) \leq c_{3} \int_{G}\left|f^{(k+1)}(w)\right|^{p} d^{(k+1) p+\tau}(w, \partial G) d m_{2}(w) \tag{15}
\end{equation*}
$$

or

$$
\begin{gathered}
\int_{S}|f(\varphi(z))|^{p}(1-|z|)^{\tau}\left|\varphi^{\prime}(z)\right|^{\tau+2} d m_{2}(z) \\
\leq c_{4} \int_{S}\left|f^{(k+1)}(\varphi(z))\right|^{p}(1-|z|)^{(k+1) p+\tau}\left|\varphi^{\prime}(z)\right|^{(k+1) p+\tau+2} d m_{2}(z),
\end{gathered}
$$

where $0<p<+\infty$. Indeed, using (13) and (14) for $0<p<+\infty$, we obtain (15). Finally, we have proved that

$$
\int_{G}|f(w)|^{p} d^{\tau}(w, \partial G) d m_{2}(w) \leq c \int_{G}\left|f^{(n)}(z)\right|^{p} d^{n p+\tau}(w, \partial G) d m_{2}(w)
$$

for every $n \in N, 0<p<+\infty$.

Theorem 4. Let G be a simply connected domain with boundary $\Gamma \in(E)$. Suppose $f \in H(G), f\left(w_{0}\right)=0, w_{0} \in G ; \varphi: S \rightarrow G$ conformally, $\varphi(0)=w_{0}$, $\varphi^{\prime}(0)>0, \psi$ is the converse function. If $f=u+i v, u \in h_{\beta}^{p}(G), 0<p<+\infty$, $\beta>-1$, then $f \in A_{\beta}^{p}(G), 0<p<+\infty, \beta>-1$, and the operator

$$
\begin{equation*}
P_{\alpha}(u)(w)=\frac{\alpha+1}{\pi} \int_{G} \frac{\left(1-|\psi(\mu)|^{2}\right)^{\alpha}}{(1-\overline{\psi(\mu)} \psi(w))^{\alpha+2}} u(\mu)\left|\psi^{\prime}(\mu)\right|^{2} d m_{2}(\mu) \tag{16}
\end{equation*}
$$

determines a bounded linear operator $h_{\beta}^{p}(G) \rightarrow A_{\beta}^{p}(G)$ for $\alpha \geq 2(\beta+1)$.
In particular, the operator of harmonic conjugate $v=\Gamma(u)$ determines a bounded linear operator $h_{\beta}^{p}(G) \rightarrow h_{\beta}^{p}(G)$ for all $0<p<+\infty, \beta>-1$.

Proof. We claim that if $u \in h_{\beta}^{p}(G)$, then $f \in A_{\beta}^{p}(G), 0<p<+\infty, \beta>-1$. Indeed, using Theorem 3, we get

$$
\begin{equation*}
\int_{G}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w) \leq c \int_{G}\left|f^{\prime}(w)\right|^{p} d^{p+\beta}(w, \partial G) d m_{2}(w) \tag{17}
\end{equation*}
$$

Since $\left|f^{\prime}(w)\right|=|\operatorname{gradu}(w)|$, it follows that

$$
\int_{G}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w) \leq c \int_{G}|\operatorname{gradu}(w)|^{p} d^{p+\beta}(w, \partial G) d m_{2}(w)
$$

Using Theorem 2, we obtain

$$
\int_{G}|\operatorname{gradu}(w)|^{p} d^{p+\beta}(w, \partial G) d m_{2}(w) \leq c_{1} \int_{G}|u(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w)
$$

Hence we have

$$
\begin{equation*}
\int_{G}|f(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w) \leq c_{1} \int_{G}|u(w)|^{p} d^{\beta}(w, \partial G) d m_{2}(w)<+\infty \tag{18}
\end{equation*}
$$

However, we see that $f \in A_{\beta}^{p}(G), 0<p<+\infty, \beta>-1$. By Lemma 6 , for $f \in A_{\beta}^{p}(G), 0<p<+\infty, \beta>-1$ we get $f(\varphi) \in A_{\alpha}^{p}(S), \alpha \geq 2(\beta+1)$. By (3) for $f(\varphi(0))=f\left(w_{0}\right)=0$, so that

$$
f(\varphi(z))=\frac{\alpha+1}{\pi} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\alpha} u(\varphi(\zeta))}{(1-\bar{\zeta} z)^{\alpha+2}} d m_{2}(\zeta)
$$

Substituting z for $\psi(w), \zeta$ for $\psi(\mu)$, we get

$$
f(w)=\frac{\alpha+1}{\pi} \int_{G} \frac{\left(1-|\psi(\mu)|^{2}\right)^{\alpha} u(\mu)}{(1-\overline{\psi(\mu)} \psi(w))^{\alpha+2}}\left|\psi^{\prime}(\mu)\right|^{2} d m_{2}(\mu)
$$

Combing this with (18), we get the statement of the theorem.
Remark1. For the case of the domains with smooth boundary a similar statement was carried out by the second author in [11] for $0<p<+\infty$.

Theorem 5. Let G be a simply connected domain with boundary $\Gamma \in(E)$. Suppose $f \in H(G), f\left(w_{0}\right)=0, w_{0} \in G ; \varphi: S \rightarrow G$ conformally, ψ is the converse function. Then the operator

$$
F(w)=P_{\alpha}(f)(w)=\frac{\alpha+1}{\pi} \int_{G} \frac{\left(1-|\psi(\mu)|^{2}\right)^{\alpha}}{(1-\overline{\psi(\mu)} \psi(w))^{\alpha+2}} f(\mu)\left|\psi^{\prime}(\mu)\right|^{2} d m_{2}(\mu)
$$

is a bounded projection from $L_{\beta}^{p}(G)$ to $A_{\beta}^{p}(G)$ for $1 \leq p<+\infty, \alpha \geq \beta$, moreover,

$$
\begin{equation*}
\|F\|_{A_{\beta}^{p}(G)} \leq c(\beta, p)\|f\|_{L_{\beta}^{p}(G)} \tag{19}
\end{equation*}
$$

Proof. If $f \in A_{\beta}^{p}(G)$, then $F(w)=f(w), w \in G, \alpha \geq \beta$. We claim that if $f \in L_{\beta}^{p}(G)$, then $F \in A_{\beta}^{p}(G)$ and

$$
\begin{align*}
& \int_{S}|F(\varphi(z))|^{p}(1-|z|)^{\beta}\left|\varphi^{\prime}(z)\right|^{\beta+2} d m_{2}(z) \\
\leq & \int_{S}|f(\varphi(z))|^{p}(1-|z|)^{\beta}\left|\varphi^{\prime}(z)\right|^{\beta+2} d m_{2}(z) \tag{20}
\end{align*}
$$

Indeed, we get $F(\varphi(z))=c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\alpha} f(\varphi(\zeta))}{(1-\bar{\zeta} z)^{\alpha+2}} d m_{2}(\zeta)$. And hence, we have

$$
|F(\varphi(z))| \leq c \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\alpha}}{|1-\bar{\zeta} z|^{\alpha+2}}|f(\varphi(\zeta))| d m_{2}(\zeta) .
$$

Multiplying and dividing the right-hand side of the above inequality by the function $\chi_{\gamma}(\zeta)=(1-|\zeta|)^{-\left(\frac{\gamma}{p q}\right)}, 0<\frac{\gamma}{q}<\beta+1$, and applying Holder's inequality with the exponent p , we get

$$
|F(\varphi(z))|^{p}
$$

$$
\leq c_{1} \int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\alpha}}{|1-\bar{\zeta} z|^{\alpha+2} \chi_{\gamma}^{p}(\zeta)}|f(\varphi(\zeta))|^{p} d m_{2}(\zeta) \times\left(\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\alpha} \chi_{\gamma}^{q}(\zeta)}{|1-\bar{\zeta} z|^{\alpha+2}} d m_{2}(\zeta)\right)^{\frac{p}{q}}
$$

It is easy to prove that $\int_{S} \frac{\left(1-|\zeta|^{2}\right)^{\alpha} \chi_{\gamma}^{q}(\zeta)}{|1-\bar{\zeta} z|^{\alpha+2}} d m_{2}(\zeta) \leq \frac{c_{2}}{(1-|z|)^{\frac{\gamma}{p}}}$.
Hence we get

$$
\begin{gather*}
\int_{S}|F(\varphi(z))|^{p}(1-|z|)^{\beta}\left|\varphi^{\prime}(z)\right|^{\beta+2} d m_{2}(z) \leq c_{3} \int_{S}|f(\varphi(\zeta))|^{p}\left(1-|\zeta|^{2}\right)^{\alpha} \frac{1}{\chi_{\gamma}^{p}(\zeta)} \\
\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{\beta+2}(1-|z|)^{\beta}(1-|z|)^{-\frac{\gamma}{q}}}{|1-\bar{\zeta} z|^{\alpha+2}} d m_{2}(z) d m_{2}(\zeta) \tag{21}
\end{gather*}
$$

Using Lemma 8 for $k=0, \tau=\beta, 0<\frac{\gamma}{q}<1+\beta, \alpha>\beta+1+\frac{\gamma}{q}$, we obtain

$$
\int_{S} \frac{\left|\varphi^{\prime}(z)\right|^{\beta+2}(1-|z|)^{\beta}(1-|z|)^{-\frac{\gamma}{q}}}{|1-\bar{\zeta} z|^{\alpha+2}} d m_{2}(z) \leq \frac{c_{4}\left|\varphi^{\prime}(\zeta)\right|^{\beta+2}(1-|\zeta|)^{\beta}(1-|\zeta|)^{-\frac{\gamma}{q}}}{(1-|\zeta|)^{\alpha}}
$$

Combing this with (21), we get the statement of the theorem for the case $1<p<$ $+\infty$. Using Lemma 8 for $\alpha>\beta+2$, we obtain the statement of the theorem for the case $p=1$.

Remark2. An analogue of Theorem 5 for integral operators with Bergman kernel is proved by a different method in [12] for domains with piecewise smooth boundary, and in [13] for domains having the angle $\frac{\pi}{\vartheta}$. However, it is shown in [12, 13] that for $p \notin\left(\frac{2}{1+\vartheta} ; \frac{2}{1-\vartheta}\right), \frac{1}{2} \leq \vartheta<1$, the operator is not bounded as the operator from $L_{0}^{p}(\Omega)$ to $A_{0}^{p}(\Omega)$. According to [4], the operator acting from $L_{0}^{p}(\Omega)$ to $A_{0}^{p}(\Omega)$ is bounded in the case of simply connected domains for $p_{0}<p<\frac{p_{0}}{p_{0}-1}$, $p_{0} \in\left[\frac{4}{3} ; 2\right)$.

References

[1] P. Duren, Theory of H^{p} Spaces. Acad. Press, New York, 1970.
[2] J. Detraz, Classes de Bergman de Functions Harmoniques. - Bull. Soc. Math. France 109 (1981), 259-268.
[3] K.P. Isaev and R.S. Yulmukhametov, Laplace Transformations of Functionals on Bergman's Spaces. - Izv. RAN. Ser. Math. 68 (2004), 5-42. (Russian)
[4] H. Hedenmalm, The Dual of Bergman Space on Simply Connected Domains. - J. d'Analyse Mathematique 88 (2002), 311-335.
[5] M.M. Dzhrbashyan, On the Representation Problem of Analytic Functions. - Soob. Inst. Mat. i Mekh. AN ArmSSR 2 (1948), 3-30. (Russian)
[6] F.A. Shamoyan, The Diagonal Mapping and Problems of Representation of Functions Holomorphic in a Polydisk in Anisotropic Spaces. - Sib. Math. J. 31 (1990), No. 2, 197-215. (Russian)
[7] Ch. Pommerenke, Schlichte Functionen und Analytische Functionen von Beschrankter Mittlerer Oszillation. - Comment. Math. Helvetici 52 (1977), 591-602.
[8] G.M. Golusin, The Geometrical Theory of Functions Complex Variable. Nauka, Moscow, 1966. (Russian)
[9] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970.
[10] N.M. Tkachenko, The Bounded Projections in Weight Spaces of Harmonic Functions in Angular Domains. - Vestnik Bryansk. Gos. Univ. 4 (2007), 116-122. (Russian)
[11] F.A. Shamoyan, On Applications of Dzhrbashyan Integral Representation in Some Problems in Analysis. - Dokl. Akad. Nauk SSSR 261 (1981), 557-561. (Russian)
[12] A.A. Solov'ev, About a Continuity in L^{p} the Integral Operator with Bergman's Kernel. - Vestnik Len. Gos. Univ. (1978), No. 19, 77-80. (Russian)
[13] A.M. Shikhvatov, About Spaces of Analytical Functions in the Domain of with an Angular Point. - Mat. Zametki 18 (1975), No. 3, 411-420. (Russian)

