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1. Problem Statement and Main Result

Let 
 be a bounded domain in R3 with a su�ciently smooth boundary.

Consider the following boundary-value problem:(
"�2

u" ��u" = F in 
;

u" = 0; @u"

@�
= 0 on @
:

(1.1)

Here � is the outer normal to @
 at the point x, F 2 Lp (
)
�
p >

6
5

�
, and " > 0

is a small parameter. As known, there exists a unique solution of this problem u" 2
W

4
p (
) (see, e.g., [1]). We are interested in the asymptotic behavior of solution
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of this problem when " ! 0. Similar questions for more general equations were

studied by M. Vishik and L. Lyusternik in [2], where the asymptotic expansion

with respect to the powers of " was constructed. The method proposed in the

paper was widely used at that time. However, all the known results appeared

to be not su�cient to our work. We use our result to construct the regularized

solutions of Navier�Stokes�Vlasov�Poisson boundary value problem [3].

To formulate the main result we consider the following boundary-value prob-

lem: (
�u = F in 
;

u = 0 on @
;
(1.2)

where F is the same function as in (1.1). There exists a unique solution to this

problem u 2W
2
p (
) (see, e.g., [1]).

The main result of the paper is the following

Theorem 1. Let u" and u be the solutions of problems (1.1), (1.2), respec-

tively. Then

lim
"!0

Z



jru" (x)�ru (x)j dx = 0

uniformly with respect to all functions F such that kFk
Lp(
)

� C.

This theorem is proved in Sections 2 and 3.

2. Estimates of the Green Functions

Let G" (x; y) and G0 (x; y) be the Green functions of problems (1.1) and (1.2),

respectively.

Lemma 1. The following estimates for normal derivatives of the Green func-

tion G0 (x; y) hold: ����@G0

@�
(x; y)

���� � C1

jx� yj2
; y 2 
; x 2 @
;

����Dk

�

@G0

@�
(x; y)

���� � C2

(d (y))2+jkj+�
; y 2 
; x 2 @
;

where k = (k1; k2) is a multiindex, ki 2 Z, k1 + k2 � 1, jkj = k1 + k2, D
k
� is

a derivative at the point x 2 @
 in tangent directions to @
, d (y) is a distance

from the point y 2 
 to @
, 0 < � < 1, C1 and C2 are constants that depend on

the minimal radius of curvature of @
, k, and � only.
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P r o o f. As is well known, the Green function G0 (x; y) has the form

G0 (x; y) =
1

4� jx� yj
� g0 (x; y) ; (2.1)

where the regular function g0 (x; y) is a solution of the following boundary-value

problem with respect to the variable x 2 
 (y 2 
 is a parameter):(
�g0 = 0 in 
;

g0 =
1

4�jx�yj
on @
:

(2.2)

Let us represent g0 (x; y) as a simple layer potential

g0 (x; y) =
1

4�

Z
@


� (�; y)

jx� �j
dS�: (2.3)

The simple layer potential satis�es the Laplace equation in R3n
, tends to

zero when jxj ! 1, and it is a continuous function in x in R3 . Therefore, by

(2.2), it equals to the function 1
4�jx�yj

in R3n�
. Then its normal derivative in

R
3n
 is given by

�
@g0

@�

�
e

= @

@�

1
4�jx�yj

.

Hence, taking into account the properties of the simple layer potential, we

obtain the integral equation for the density � (x; y)

1

2
� (x; y)�

1

4�

Z
@


cos � (x; �)

jx� �j2
� (�; y) dS� = �

1

4�

@

@�

1

jx� yj
; (2.4)

where � (x; �) is the angle between the outer normal to @
 at the point x 2 @


and the vector x� �.

This equation corresponds to the representation of the solution to the exter-

nal Neumann boundary-value problem in the form of simple layer potential and,

therefore, it has a unique solution in the class C (@
) (see, e.g., [4]). Applying

the iteration method, we obtain the estimate

j� (x; y)j �
C

jx� yj2
: (2.5)

On the other hand, from (2.1) it is clear that�
@G0

@�

�
i

=
1

4�

@

@�x

1

jx� yj
�
�
@g0

@�

�
i

and according to the properties of the simple layer potential
�
@g0

@�

�
i

�
�
@g0

@�

�
e

=

� (x; y). Consequently, @G0

@�
= �� (x; y). So, the �rst estimate of Lemma 1 is

proved.
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To establish the second estimate we use the Schauder estimates (see, e.g., [5])

jg0jk+�;
 � C

�
j�g0j+ jg0jk+�;@


�
;

where jgj
k+�;@
 is the norm of g in C

k+� (@
), k � 2, 0 < � < 1. The constant C

depends on k, �, and @
. The second estimate follows easily from (2.2). Lemma 1

is proved.

Lemma 2. The following estimate holds:

Z



jrG" (x; y)�rG0 (x; y)j dx � C

0@ 4
p
"

d (y)1+�
+

e
�

d(y)p
"

p
"d (y)

1A ; (2.6)

where d(y) is the distance from the point y to @
, 0 < � < 1, and the constant C

depends on 
 and � only.

P r o o f. It is easy to verify that the function

�" (x; y) =
1

4� jx� yj

�
1� e

�
jx�yjp

"

�
; " > 0 ; (2.7)

is a fundamental solution of the equation (1.1) in R3 .

As is well known, the Green function G" (x; y) can be represented in the form

G" (x; y) = �" (x; y) � g" (x; y) ; where g" (x; y) is a regular function, which is

a solution of the following boundary-value problem:(
"�2

g" ��g" = 0 in 
;

g" = �";
@g"

@�
= �" on @
:

(2.8)

According to (2.2) and (2.8),

G" (x; y)�G0 (x; y) = �
e
�
jx�yjp

"

4� jx� yj
� v" (x; y) ; (2.9)

where the function v" (x; y) = g" (x; y)� g0 (x; y) is a solution of8>>>>><>>>>>:

"�2
v" ��v" = 0 in 
;

v" = � e
�jx�yjp

"

4�jx�yj
jx=x(s;�) = �

0
" (s; �) on @
;

@v"

@�
=

 
@G0

@�
� @

@�

 
e
�jx�yjp

"

4�jx�yj

!!
jx=x(s;�) = �

1
" (s; �) on @
:

(2.10)
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Here we use a local coordinate system such that (s; �; t) are coordinates in

a neighborhood of x = x (s; �; 0) 2 @
, where t is the distance from the point x

to @
, and (s; �) are coordinates on @
.

Let us introduce a class of functions

fW =

�
w 2W

2
2 (
) : wj@
 = �

0
" ;

@w

@�
j@
 = �

1
"

�
:

By [6], v" (x; y) minimizes the functional

J" (w) =

Z



n
" (�w)2 + jrwj2

o
dx:

Then

J" (v") � J" (w") 8w" 2 fW: (2.11)

To estimate J" (v") let us construct a representative of the class fW in the form

w" (x) =
�
�
0
" (s; �) + t�

1
" (s; �)

�
'

�
t
p
"

�
; (2.12)

where ' (t) is a smooth function such that ' (t) = 1 for t � 1=2, ' (t) = 0 for

t � 1, ' (t) 2 C
2 (0;1).

Suppose that y 2 
Æ � 
, with 
Æ being a subdomain of 
,


Æ = fx 2 
 : dist (x; @
) > Æg ; (2.13)

where Æ satis�es the condition Æ > r@
 �
p
" > 0, and r@
 is the minimal radius

of curvature of the surface @
.

Then, using (2.12), the explicit expressions for the functions �0" ; �
1
" (see (2.10)),

and Lemma 1, we obtain the estimate

J" (w") � C

 
e
�

2dp
"

"d2
+

p
"

d2+�

!
;

where d = d(y) is the distance from y to @
, and the constant C depends on @


and �, 0 < � < 1. Therefore, it follows from (2.11) that

Z



jrv"j2 dx � J" (v") � C

 
e
�

2dp
"

"d2
+

p
"

d2+2�

!
:

Using this estimate and taking into account (2.9), we obtain (2.6). Lemma 2 is

proved.
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3. Proof of Theorem 1

We begin with the following lemma.

Lemma 3. Let 
 be a bounded domain in R
3 with a boundary of the class

C
2+�, and '" be a solution to the following boundary-value problem:(

"�2
'" ��'" = F in 
;

'" = 0; "@'"
@�

= 0 on @
;
(3.1)

where " � 0, F 2 Lp (
)
�
p >

6
5

�
with a support SF � 
. ThenZ




jr'"j dx � C kFk
Lp(
)

(mesSF )
5
6
�

1
p ;

where C is a constant that does not depend on ".

P r o o f. The solution of the problem (3.1) minimizes the functional

F̂"('") =

Z



n
" (�'")

2 + jr'"j2 � 2F�F'"

o
dx

in the class of functions '" of
Æ

W
1
2 (
) for " > 0 and of W 1

2 (
) for " = 0. Here by

�F = �F (x) we denote the characteristic function of the set SF .

Since F̂" (0) = 0, then we have F̂" ('") � 0.

This leads to the inequalityZ



n
" (�'")

2 + jr'"j2
o
dx � 2

Z



jF (x)j j�F (x)j j'" (x)j dx:

Applying the H�older inequality with p; q = 6p
5p�6

, and r = 6
�
1
p
+ 1

q
+ 1

r
= 1
�
to

the right-hand side of this bound, we getZ



n
" (�'")

2 + jr'"j2
o
dx � 2 kFk

Lp(
)
kmes�F kLq(x) k'"kL6(
)

� C kFk
Lp(
)

(mesSF )
5
6
�

1
p kr'"kL2(
)

: (3.2)

Here the norm of '" 2
Æ

W
1
2 is estimated according to the embedding of

Æ

W
1
2 (
) in

L6 (
).
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From (3.2) we conclude that

kr'"kL2(
)
� C kFk

Lp(
)
(mesSF )

5
6
�

1
p :

Now this bound and the Cauchy�Schwarz inequality

Z



jr'"j dx �

0@Z



jr'"j2 dx

1A1=2

j
j1=2

yield the statement of Lemma 3.

We are now in position to complete the proof of Theorem 1.

Denote by 
Æ a subdomain of 
 de�ned in (2.13).

Let us represent the function F (x) as a sum of three components F (x) =

F1 (x) + F2 (x) + F3 (x), where

F1 (x) 2 C1 (
), suppF1 (x) � 
Æ, kF1kLp(
) � kFkLp(
);
F2 (x) : kF2kLp(
) < Æ kFk

Lp(
)
;

F3 (x) = F (x)�Æ (x), where �Æ (x) is a characteristic function of the set 
n
Æ.

The solutions of problems (1.1) and (1.2) can be represented as u" = u1" +

u2" + u3"; u = u1 + u2 + u3, respectively. Then we haveZ



jru" �ruj dx �
Z



jru1" �ru1j dx+

Z



jru2"j dx

+

Z



jru2j dx+

Z



jru3"j dx+

Z



jru3j dx: (3.3)

Using Lemma 2, we estimate the �rst integral as follows:Z



jru1" �ru1j dx �
Z



jrG" (x; y)�rG0 (x; y)j jF1 (x)j dx

� C

 
4
p
"

Æ1+�
+
e
�

Æp
"

p
"Æ

!
kF1kLp(
) : (3.4)

To estimate the remaining integrals we use Lemma 3. Thus, we have:Z



jru2"j dx � C kF2kLp(
) j
Æj
5
6
�

1
p � CÆ kFk

Lp(
)
j
Æj

5
6
�

1
p ; (3.5)

Z



jru3"j dx � C kF3kLp(
) j
n
Æj
5
6
�

1
p � C kFk

Lp(
)
Æ
5
6
�

1
p : (3.6)
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We set Æ = Æ (") = "
6p

4(11p�6+6�p) . Then, according to (3.3)�(3.6), we obtainZ



jru" �ruj dx � C"
 kFk

Lp(
)
;

where  = 5p�6
4(11p�6+6�p)

.

Since kFk
Lp(
)

� C and p >
6
5
, thenZ




jru" �ruj dx! 0

as "! 0.

Theorem 1 is proved.
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