
Journal of Mathematical Physics, Analysis, Geometry

2008, vol. 4, No. 2, pp. 278�293

Submanifolds with the Harmonic Gauss Map

in Lie Groups

Ye.V. Petrov

Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University

4 Svobody Sq., Kharkiv, 61077, Ukraine

E-mail:petrov@univer.kharkov.ua

Received March 7, 2007

In this paper we �nd a criterion for the Gauss map of an immersed smooth

submanifold in some Lie group with left invariant metric to be harmonic.

Using the obtained expression we prove some necessary and su�cient condi-

tions for the harmonicity of this map in the case of totally geodesic submani-

folds in Lie groups admitting biinvariant metrics. We show that, depending

on the structure of the tangent space of a submanifold, the Gauss map can

be harmonic in all biinvariant metrics or nonharmonic in some metric.

For 2-step nilpotent groups we prove that the Gauss map of a geodesic is

harmonic if and only if it is constant.
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1. Introduction

It is proved in [9] that the Gauss map of a submanifold in the Euclidean

space is harmonic if and only if the mean curvature �eld of this submanifold is

parallel. There is a natural generalization of the Gauss map to the submanifolds

in Lie groups: for each point of a submanifold the tangent space at this point

is translated to the identity element of the group (for the precise statement see

Sect. 2). Let the Lie group be endowed with some left invariant metric. As it is

proved in [4], when this metric is biinvariant and the submanifold is hypersurface,

the Gauss map is harmonic if and only if the mean curvature is constant. Our

aim is to consider more general case of a submanifold in some Lie group with

arbitrary codimension.
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The paper is organized as follows. In Section 2 we obtain the harmonicity

criterion for the Gauss map of a submanifold in some Lie group with a left invari-

ant metric. This criterion is given in the terms of the second fundamental form

of the immersion and the left invariant Riemannian connection on the Lie group

(Th. 1).

In Section 3 we consider submanifolds in Lie groups with biinvariant metric.

Let us introduce some notation. Let N be a Lie group with biinvariant metric,

N be the Lie algebra of N ,M be a smooth immersed totally geodesic submanifold

in N . Taking if necessary the left translation ofM assume that e 2M (see Sect. 3

for details). The tangent space TeM is a Lie triple system in N . Denote by N the

Lie subalgebra TeM + [TeM;TeM ] of N . By W denote the orthogonal projection

of TeM to the semisimple Lie subalgebra N
0
= [N ;N ].

The subspace W = W \ [W;W] is an ideal (here and further by ideals we

mean the ideals in N ). Denote by V the orthogonal complement in N
0
to W. Let

V =
L

16l6m

Sl be some direct orthogonal decomposition of V into simple ideals.

Using Theorem 1 we prove

Theorem 3. Let M be a smooth immersed totally geodesic submanifold in

a Lie group N with biinvariant metric. Then:

(i) if the restriction of the metric to V is a negative multiple of the Killing form

(in particular, if V is simple), then the Gauss map of M in this metric is

harmonic;

(ii) if W \ V =
L

16l6m

Wl, where Wl � Sl is a proper Lie triple system in Sl,

i.e., Wl 6= 0 and Wl 6= Sl for each 1 6 l 6 m (in particular, if V = 0), then

the Gauss map of M is harmonic in any biinvariant metric on N ;

(iii) if the condition of (ii) is not satis�ed, then there is a biinvariant metric on

N such that the Gauss map of M is not harmonic.

In the paper [8] we considered hypersurfaces in 2-step nilpotent Lie groups

and found conditions for the Gauss maps of these hypersurfaces to be harmonic.

In particular, we showed that, unlike in the case of groups with biinvariant met-

ric, this harmonicity is not equivalent to the constancy of the mean curvature.

As it was shown in [2], totally geodesic submanifolds in such groups either have

the Gauss map of maximal rank or they are open subsets of subgroups (and

consequently have the constant Gauss map). In the latter case the structure of

subalgebras corresponding to such subgroups can be explicitly described (this de-

scription implies, in particular, that there are not totally geodesic hypersurfaces

in 2-step nilpotent Lie groups, see [2]). Using our criterion, in Section 4 we prove
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that the Gauss map of a geodesic in a 2-step nilpotent Lie group is harmonic if

and only if it is constant (Prop. 4).

The author would thank Prof. A.A. Borisenko and prof. L.A. Masal'tsev for

their attention paid to this work. Also, the author is grateful to the reviewer for

the essential improvement of the results and presentation of the paper.

2. The Harmonicity Criterion

Suppose M is a smooth manifold, dimM = n, M ! N is an immersion of

M in some Lie group N with a left invariant metric, dimN = n + q. For some

point p of M let Y1; : : : ; Yn and Yn+1; : : : ; Yn+q be orthonormal frames of tangent

space TpM � TpN and of normal space NpM � TpN , respectively. Also by Ya,

1 6 a 6 n+ q, denote the corresponding left invariant �elds on N .

Denote the left invariant metric on N (and also the corresponding inner pro-

duct on its Lie algebra) by h�; �i, the Riemannian connection of this metric by

r, its curvature tensor by R(�; �)�, and the normal connection of the immersion

M ! N by r?.
Let E1; : : : ; En+q be the vector �elds de�ned on some neighborhood U of p such

that Ei(p) = Yi, E1; : : : ; En and En+1; : : : ; En+q are orthonormal frames of the

tangent and the normal bundles of M on U , respectively, and (rEi
Ej)

T
(p) = 0,

for all 1 6 i; j 6 n. Then the mean curvature �eld H of the immersion is de�ned

on U by

H = 1
n

P
16i6n

(rEi
Ei)

? : (1)

Here (�)T and (�)? are the projections to the tangent bundle TM and the normal

bundle NM , respectively.

For 1 6 i; j 6 n, n+1 6 � 6 n+q by b�
ij
= hrEi

Ej; E�i denote the coe�cients

of the second fundamental form of the immersion on U with respect to the frame

E1; : : : ; En+q. Suppose that on U for 1 6 a 6 n+ q

Ea =
P

16b6n+q

Ab

aYb: (2)

Here fAb

ag16a;b6n+q are functions on U . Obviously, Ab

a(p) = Æab, where Æab is the

Kronecker symbol.

Let � be the Laplacian �M of the induced metric onM . The de�nition of the

Laplacian and the conditions (rEi
Ej)

T
(p) = 0 imply that for functions f and g

de�ned on U
�f(p) =

P
16i6n

EiEi(f); (3)

�(fg)(p) = g(p)�f(p) + 2
P

16i6n

Ei(f)Ei(g) + f(p)�g(p): (4)
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Let � be the Gauss map of M :

�: M ! G(n; q); �(p) = dLp�1(TpM): (5)

Here G(n; q) is the Grassmannian of n-dimensional subspaces in the n+ q-dimen-

sional vector space, a point p is identi�ed with its image under the immersion, Lg
is the left translation by g 2M , dF is the di�erential of a map F .

Recall that if (M1; g1) and (M2; g2) are smooth Riemannian manifolds, then

for any � 2 C1(M1;M2) the energy of � is

E(�) = 1
2

R
M1

P
16i6m

g2(d�(Ei); d�(Ei))dVM ;

where m = dimM1, E1; : : : ; Em is the orthonormal frame on M1, dVM is the

volume form of g1. The critical points of the functional � 7! E(�) are called

harmonic maps from M1 to M2. We say that a map is harmonic at some point if

the corresponding Euler�Lagrange equations are satis�ed at this point (i.e., the

so-called tension �eld vanishes, see, for example, [10]).

Theorem 1. The map � is harmonic at p if and only ifP
16i6n

hR(Yj ; Yi)Yi; Y�i �
P

16i6n

hr(rYi
Yi)
Yj ; Y�i+ h[nH; Yj ]; Y�i

+2
P

16i;k6n

b�
ik
hrYi

Yk; Yji+ 2
P

16i6n;n+166n+q

b


ij
hrYi

Y ; Y�i

�
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i+
P

16i6n

h(rYi
Yj)

? ; (rYi
Y�)

?i = 0

(6)

for all 1 6 j 6 n, n+ 1 6 � 6 n+ q.

P r o o f. The Grassmannian has the structure of the symmetric space

G(n; q) = O(n + q)= (O(n)�O(q)). There is an embedding of this space in the

space of symmetric matrices of order n+ q considered with the obvious Euclidean

metric ([5]). This embedding is induced by the map A 7! AEAt, where A 2
O(n+ q), At is A transposed, and

E =

 
� q

n+q
In 0

0 n

n+q
Iq

!
:

Here In and Iq are the identity matrices of order n and q, respectively. The image

of � on U corresponds to the matrix A = (Ab

a
)16a;b6n+q, where A

b

a
are the func-

tions from (2). The composition of � and the embedding give the map de�ned

on U by0BBBB@
� q

n+q
In +

 P
n+166n+q

A
j

A
k


!  P
n+166n+q

A
j

A
�



!
 P
n+166n+q

A�
A

k


!
n

n+q
Iq �

 P
16l6n

A�

l
A
�

l

!
1CCCCA ; (7)
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where 1 6 j; k 6 n, n+ 1 6 �; � 6 n+ q. Di�erentiate Ea with respect to Ei on

U for 1 6 a 6 n+ q, 1 6 i 6 n:

rEi
Ea =

P
16b6n+q

Ei(A
b

a
)Yb +

P
16b6n+q

Ab

a
rEi

Yb: (8)

In particular, at p

rYi
Ea =

P
16b6n+q

Ei(A
b
a
)Yb +rYi

Ya: (9)

Note that Ei(A
b
a
) = �Ei(A

a

b
) (this can be derived from (9) or simply from the

fact that so(n+ q) is the algebra of skew-symmetric matrices).

According to Th. (2.22) in Ch. 4 of [10], the criterion of the harmonicity of �

is the set of equations

��a

b
�

 P
16i6n

B(d�(Ei); d�(Ei))

!
a

b

= 0: (10)

Here 1 6 a 6 b 6 n + q, �a

b
are the coordinate functions of the embed-

ding, and B is the second fundamental form of the embedding�. The �elds

f @

@A
j
�

g16j6n;n+16�6n+q form the frame of TG(n; q) on the image of U (note that

@

@A
�
j
= � @

@A
j
�

). Denote by Ca

b
for 1 6 a 6 b 6 n+q the matrix with entry 1 at the

intersection of the a�th row and b�th column and with other entries equal to 0.

The di�erential of the embedding at p maps the �eld @

@A
j
�

to the vector C
j

�. It fol-

lows that we can take as a frame of the normal space of the Grassmannian at the

image of this point the vectors Ci

j
, 1 6 i 6 j 6 n and C�

�
, n+1 6 � 6 � 6 n+ q.

The expressions (7) imply on U for 1 6 l 6 m 6 n, n+ 1 6  6 � 6 n+ q�
@

@A
j
�

�
l

m

= ÆljA
m
� + ÆmjA

l
�;
�

@

@A
j
�

�


�

= Æ�A
�

j
+ Æ��A



j
:

Di�erentiate these equations:

B

�
@

@A
j
�

; @

@A
k
�

�
=

P
16l6m6n

@

@A
k
�

�
@

@A
j
�

�l
m

C l

m

+
P

n+166�6n+q

@

@Ak
�

�
@

@A
j
�

�


�

C


� = Æ��(1 + Æjk)C
j

k
� Æjk(1 + Æ��)C

�

�
:

for 1 6 j 6 k 6 n, n+ 1 6 � 6 � 6 n+ q. Also note that

d�(Ei) =
P

16j6n;n+16�6n+q

Ei(A
j

�)
@

@A
j
�

:

�Actually, the sign of B in [10] is di�erent because the Laplacian in this book is de�ned with

the opposite sign.

282 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Submanifolds with the Harmonic Gauss Map in Lie Groups

This implies that at p for 1 6 j 6 k 6 n the expressions in (10) take the form

�

 
� q

n+q
Æjk +

P
n+166n+q

A
j

A
k



!
�

 P
16i6n

B(d�(Ei); d�(Ei))

!
j

k

= 2
P

16i6n;n+166n+q

Ei(A
j

)Ei(A
k


)� 2

P
16i6n;n+166n+q

Ei(A
j

)Ei(A
k


) = 0:

Here the equation (4) was used. Similarly, for n+ 1 6 � 6 � 6 n+ q obtain

�

 
n

n+q
Æ�� �

P
16l6n

A�

l
A
�

l

!
�

 P
16i6n

B(d�(Ei); d�(Ei))

!
�

�

= �2
P

16i;l6n

Ei(A
�

l
)Ei(A

�

l
) + 2

P
16i;l6n

Ei(A
�

l
)Ei(A

�

l
) = 0:

It follows that the conditions (10) at p become

�

 P
n+166n+q

A
j

A
�



!
= 0

for 1 6 j 6 n; n+ 1 6 � 6 n+ q. The di�erentiation gives

�A
j

� + 2
P

16i6n;n+166n+q

Ei(A
j

)Ei(A
�

 ) = 0;

1 6 j 6 n; n+ 1 6 � 6 n+ q:
(11)

Di�erentiate (8) with respect to Ei on U for n+ 1 6 a = � 6 n+ q:

rEi
rEi

E� =
P

16j6n

EiEi(A
j

�)Yj +
P

n+16�6n+q

EiEi(A
�

�)Y�

+2
P

16j6n

Ei(A
j

�)rEi
Yj + 2

P
n+16�6n+q

Ei(A
�

�)rEi
Y�

+
P

16j6n

A
j

�rEi
rEi

Yj +
P

n+16�6n+q

A
�

�rEi
rEi

Y�:

(12)

Take the inner product of (12) with Yj at p:

EiEi(A
j

�) = hrEi
rEi

E�; Yji � 2
P

16k6n

Ei(A
k

�
)hrEi

Yk; Yji

�2
P

n+166n+q

Ei(A


�)hrEi
Y ; Yji � hrEi

rEi
Y�; Yji:

Therefore (11) takes the formP
16i6n

hrEi
rEi

E�; Yji � 2
P

16i;k6n

Ei(A
k

�
)hrEi

Yk; Yji

�2
P

16i6n;n+166n+q

Ei(A


�)hrEi
Y ; Yji �

P
16i6n

hrEi
rEi

Y�; Yji

+2
P

16i6n;n+166n+q

Ei(A
j

)Ei(A
�


) = 0:

(13)
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Here (3) was used. The de�nition (1) of the mean curvature �eld implies for

1 6 j 6 n, n+ 1 6 � 6 n+ q at p

hrYj
(nH); Y�i =

P
16i6n

hrEj

�
(rEi

Ei)
?
�
; E�i =

P
16i6n

hrEj
rEi

Ei; E�i

�
P

16i6n

hrEj

�
(rEi

Ei)
T

�
; E�i =

P
16i6n

hR(Ej ; Ei)Ei +rEi
rEj

Ei

+r[Ej;Ei]Ei; E�i �
P

16i6n

Ejh(rEi
Ei)

T ; E�i+
P

16i6n

h(rEi
Ei)

T ;rEj
E�i

=
P

16i6n

hR(Yj ; Yi)Yi; Y�i+
P

16i6n

hrEi
rEj

Ei; E�i =
P

16i6n

hR(Yj ; Yi)Yi; Y�i

+
P

16i6n

hrEi
[Ej ; Ei]; E�i+

P
16i6n

hrEi
rEi

Ej; E�i =
P

16i6n

hR(Yj ; Yi)Yi; Y�i

+
P

16i6n

Eih[Ej ; Ei]; E�i �
P

16i6n

h[Ej ; Ei];rEi
E�i+

P
16i6n

hrEi
rEi

Ej; E�i

=
P

16i6n

hR(Yj ; Yi)Yi; Y�i+
P

16i6n

hrEi
rEi

Ej ; E�i:

In the third equality the de�nition of the curvature tensor was used. The fourth

equality follows from the Frobenius theorem, the condition (rEi
Ej)

T
(p) = 0, and

its consequence

[Ek; Ei](p) = ([Ek; Ei])
T
(p) = (rEk

Ei �rEi
Ek)

T
(p) = 0:

Di�erentiate two times the expression hEj ; E�i = 0 with respect to Ei:

hrEi
rEi

Ej ; E�i+ 2hrEi
Ej ;rEi

E�i+ hEj ;rEi
rEi

E�i = 0:

This equation and (9) imply

hrYj
(nH); Y�i =

P
16i6n

hR(Yj ; Yi)Yi; Y�i � 2
P

16i6n

hrEi
Ej;rEi

E�i

�
P

16i6n

hEj ;rEi
rEi

E�i =
P

16i6n

hR(Yj; Yi)Yi; Y�i

�2
P

16i6n;n+166n+q

b


ij
(Ei(A



�) + hrYi
Y�; Yi)�

P
16i6n

hEj ;rEi
rEi

E�i:

From (9) and the condition (rEi
Ej)

T
(p) = 0 obtain

b


ij
= Ei(A



j
) + hrYi

Yj; Yi; (14)

0 = Ei(A
k

j
) + hrYi

Yj ; Yki: (15)

Hence at p

hrYj
(nH); Y�i =

P
16i6n

hR(Yj; Yi)Yi; Y�i

+2
P

16i6n;n+166n+q

b


ij
hrYi

Y ; Y�i

�2
P

16i6n;n+166n+q

hrYi
Yj; YiEi(A



�)

�
P

16i6n

hEj ;rEi
rEi

E�i � 2
P

16i6n;n+166n+q

Ei(A


j
)Ei(A



�):

(16)
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The equation (14) impliesP
16i;k6n

Ei(A
k

�
)hrEi

Yk; Yji = �
P

16i;k6n

Ei(A
�

k
)hrEi

Yk; Yji

= �
P

16i;k6n

b�
ik
hrYi

Yk; Yji+
P

16i;k6n

hrYi
Yk; Y�ihrYi

Yk; Yji:

Note that for each pair of left invariant �elds X and Y the product hX;Y i is
constant, hence,

hrZX;Y i = Z (hX;Y i)� hX;rZY i = �hX;rZY i (17)

for every vector Z. This and the fact that the frame is orthonormal implyP
16i;k6n

hrYi
Yk; Y�ihrYi

Yk; Yji =
P

16i;k6n

hrYi
Yj; YkihrYi

Y�; Yki

=
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i:

Thus, P
16i;k6n

Ei(A
k
�)hrEi

Yk; Yji = �
P

16i;k6n

b�
ik
hrYi

Yk; Yji

+
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i:
(18)

Substituting (16) in (13) and taking into account (18) derive the conditionsP
16i6n

hR(Yj ; Yi)Yi; Y�i � hrYj
(nH); Y�i+ 2

P
16i;k6n

b�
ik
hrYi

Yk; Yji

+2
P

16i6n;n+166n+q

b


ij
hrYi

Y ; Y�i �
P

16i6n

hrEi
rEi

Y�; Yji

�2
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i = 0:

(19)

At p for 1 6 i; j 6 n, n+ 1 6 � 6 n+ q obtain

hrEi
rEi

Y�; Yji = hrEi

 P
16a6n+q

Aa

i
rYaY�

!
; Yji =

P
16k6n

Ei(A
k

i
)hrYk

Y�; Yji

+
P

n+166n+q

Ei(A


i
)hrYY�; Yji+ hrYi

rYi
Y�; Yji:

Substitute into this (14) and (15) and use the de�nition of the mean curvature

hnH;Ei =
P

16i6n

b


ii
. Then use (17):

P
16i6n

hrEi
rEi

Y�; Yji = �
P

16i6n;16a6n+q

hrYi
Yi; YaihrYaY�; Yji

+
P

n+166n+q

hnH; YihrYY�; Yji+
P

16i6n

hrYi
rYi

Y�; Yji

=
P

16i6n;16a6n+q

hrYi
Yi; YaihrYaYj ; Y�i

�
P

n+166n+q

hnH; YihrYYj; Y�i �
P

16i6n

hrYi
Yj;rYi

Y�i:
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The frame is orthonormal, henceP
16i6n

hrEi
rEi

Y�; Yji =
P

16i6n

hr(rYi
Yi)
Yj ; Y�i

�hr(nH)Yj; Y�i �
P

16i6n

hrYi
Yj;rYi

Y�i:
(20)

Substitute (20) in (19) and obtain (6).

Note that the Gauss map of a Lie subgroup is constant, therefore harmonic.

If N is the Euclidean space En+q, then the curvature tensor vanishes. For any

vector �eld X and for the left invariant (i.e., constant) Y the derivatives rXY also

vanish. This yields that the conditions (6) take the form hrYj
(nH); Y�i = 0 for

1 6 j 6 n, n+1 6 � 6 n+ q, i.e., r?H = 0, and we obtain the above-mentioned

classical result of [9].

The de�nition of the second fundamental form and the fact that the frame is

orthonormal allow us to rewrite (6) in the formP
16i6n

hR(Yj ; Yi)Yi; Y�i �
P

16i6n

hr(rYi
Yi)
Yj ; Y�i+ h[nH; Yj ]; Y�i

�2
P

16i6n

hr
(rYi

Yj)
TEi; Y

�i � 2
P

16i6n;

h(rYi
Ej)

? ; (rYi
Y�)

?i

�
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i+
P

16i6n

h(rYi
Yj)

? ; (rYi
Y�)

?i = 0:

(21)

Note that these expressions do not depend on the particular choice of E1; : : : ; En.

The summands in (6) that do not include the coe�cients of the second fun-

damental form and the mean curvature �eld can be rewritten:P
16i6n

hR(Yj ; Yi)Yi; Y�i �
P

16i6n

hr(rYi
Yi)
Yj ; Y�i

�
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i+
P

16i6n

h(rYi
Yj)

? ; (rYi
Y�)

?i

=
P

16i6n

hrYj
rYi

Yi �r(rYi
Yi)

Yj �rYi
rYj

Yi �r[Yj;Yi]Yi

+rYi

�
rYj

Yi + [Yi; Yj]
�
T
�rYi

�
rYj

Yi + [Yi; Yj ]
�?

; Y�i

=
P

16i6n

h[Yj ;rYi
Yi]�rYi

rYj
Yi �r[Yj ;Yi]Yi +rYi

[Yj ; Yi]

+rYi

�
rYj

Yi + 2[Yi; Yj ]
�T

�rYi

�
rYj

Yi
�?

; Y�i

=
P

16i6n

h[Yj;rYi
Yi] + [Yi; [Yj; Yi]] + 2rYi

�
([Yi; Yj ])

T �
�
rYj

Yi
�?�

; Y�i:

In particular, a totally geodesic submanifold M has the harmonic Gauss map at

p if and only ifP
16i6n

�
[Yj;rYi

Yi] + [Yi; [Yj ; Yi]] + 2rYi

�
([Yi; Yj ])

T �
�
rYj

Yi
�?��?

= 0 (22)

for all 1 6 j 6 n.
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3. Lie Groups with Biinvariant Metric

In this section we consider a Lie group N with some biinvariant metric.

The conditions from Th. 1 in this particular case are relatively simple:

Proposition 2. The Gauss map of a smooth submanifold M in the Lie group

N with biinvariant metric h�; �i is harmonic at a point p 2M if and only if in the

above notation

h[nH; Yj ]; Y�i+
P

16i6n;n+166n+q

b


ij
h[Yi; Y ]; Y�i

+1
2

P
16i6n

h[Yi; Yj ]?; [Yi; Y�]?i = 0
(23)

for 1 6 j 6 n, n+ 1 6 � 6 n+ q.

P r o o f. Recall that the left invariant metric h�; �i is biinvariant if and only if

h[X;Y ]; Zi = hX; [Y;Z]i for all left invariant X, Y , and Z. Also, rXY = 1
2
[X;Y ].

In particular, rXY = �rYX and rXX = 0. This, together with the symmetry

of the second fundamental form, implies
P

16i;k6n

b�
ik
hrYi

Yk; Yji = 0. The curvature

tensor is de�ned by the equation R(X;Y )Z = �1
4
[[X;Y ]; Z]. Thus,

�
P

16i6n

h(rYi
Yj)

T ; (rYi
Y�)

T i+
P

16i6n

h(rYi
Yj)

? ; (rYi
Y�)

?i

= �1
4

P
16i6n

h[Yi; Yj ]T ; [Yi; Y�]T i+
1
4

P
16i6n

h[Yi; Yj ]?; [Yi; Y�]?i

= �1
4

P
16i6n

h[Yi; Yj ]; [Yi; Y�]i+
1
2

P
16i6n

h[Yi; Yj ]?; [Yi; Y�]?i

=
P

16i6n

hR(Yi; Yj); Yi); Y�i+
1
2

P
16i6n

h[Yi; Yj ]?; [Yi; Y�]?i:

Substitute this in (6) and obtain (23).

If q = 1 (i.e., M is a hypersurface), then h[Yi; Yn+1]; Yn+1i = hYi; [Yn+1; Yn+1]i
vanishes for all 1 6 i 6 n, i.e., [Yi; Yn+1]

? = 0. It follows that (23) gives the

conditions Yj(nH) = 0, where H is the mean curvature function. This implies

the result from [4] cited in the introduction.

Denote by N the Lie algebra of N . It is well known (see, for example, [7,

Lem. 7.5]), that N is compact, i.e., N = Z � N 0, where the direct sum is or-

thogonal, Z is abelian, and N 0 = [N ;N ] is semisimple with the negative de�nite

Killing form.

Let M be totally geodesic submanifold of N , 	: M ! N the corresponding

immersion, and p an arbitrary point ofM . Consider the immersion 	0 = L	(p)�1 Æ
	: M ! N . The image 	0(p) coincides with the identity element e of the group.
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The Gauss map of this immersion maps each point r 2M to the subspace �0(r) =
dL	0(p)�1 Æ d	0(TrM) = dL	(p)�1 Æ d	(TrM) = �(r), i.e., the Gauss maps of two

immersions are the same. Left translations are isometries of N , hence 	0 is also
totally geodesic. Thus we can assume without loss of generality that 	(p) = e.

Then the tangent space TeM is a Lie triple system in N (see, for example, [6,

Th. 4.3 of Ch. XI]). The subspace N = TeM + [TeM;TeM ] is a compact Lie

subalgebra, therefore it has an orthogonal direct decomposition N = Z�N
0
with

abelian Z and semisimple N
0
= [N ;N ]. Take the decomposition Ya = Xa + Za

for 1 6 a 6 n + q, where Xa 2 N
0
, Za 2 Z. Then for 1 6 a; b 6 n + q the Lie

bracket [Ya; Yb] = [Xa;Xb]. Denote by W the subspace spanned by X1; : : : ;Xn

(i.e., the orthogonal projection of TeM to N
0
). It is a Lie triple system in N

0
, and

N
0
=W + [W;W]. The intersection W =W \ [W;W] is an ideal (from here by

ideals we mean the ideals in N ). The Lie algebra N
0
is semisimple, consequently

the orthogonal complement V toW is an ideal and it equals the orthogonal direct

sum
L

16l6m

Sl of simple ideals Sl.

Theorem 3. Let M be a smooth immersed totally geodesic submanifold in

a Lie group N with biinvariant metric. Then:

(i) if the restriction of the metric to V is a negative multiple of the Killing form

(in particular, if V is simple), then the Gauss map of M in this metric is

harmonic;

(ii) if W \ V =
L

16l6m

Wl, where Wl � Sl is a proper Lie triple system in Sl,

i.e., Wl 6= 0 and Wl 6= Sl for each 1 6 l 6 m (in particular, if V = 0), then

the Gauss map of M is harmonic in any biinvariant metric on N ;

(iii) if the condition of (ii) is not satis�ed, then there is a biinvariant metric on

N such that the Gauss map of M is not harmonic.

P r o o f. The conditions (23) for 1 6 j 6 n, n+1 6 � 6 n+ q take the formP
16i6n

h[Yi; Yj ]?; [Yi; Y�]?i = 0: (24)

Also note that P
16i6n

h[Yi; Yj ]T ; [Yi; Y�]T i+
P

16i6n

h[Yi; Yj ]?; [Yi; Y�]?i

=
P

16i6n

h[Yi; Yj ]; [Yi; Y�]i =
P

16i6n

h[[Yi; Yj]; Yi]; Y�i = 0

since the tangent space TeM is a Lie triple system. Hence the conditions (24) are

equivalent to P
16i6n

h[Yi; Yj ]T ; [Yi; Y�]T i = 0: (25)
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Note that (24) and (25) can also be obtained directly from (22) using the fact

that TeM is a Lie triple system and the expression for the invariant Riemannian

connection.

The ideal W is semisimple, hence W = [W ;W] and

W = [W;W ] = [W ; [W ;W ]] � [W; [W;W]] = [TeM; [TeM;TeM ]] � TeM:

This implies that we can choose a frame of TeM such that Yi = Xi 2 W for

1 6 i 6 n1, where 0 6 n1 6 n, and Yi = Xi + Zi with Xi 2 fW = W \ V and

Z 2 Z for n1 + 1 6 i 6 n. For 1 6 j 6 n1 the equations in (24) becomeP
16i6n

h[Yi; Yj ]?; [Yi; Y�]?i =
P

16i6n1

h[Yi; Yj]?; [Yi; Y�]?i = 0

because [Yi; Yj ] 2 TeM for 1 6 i 6 n1. This yields that for to show a harmonicity

or non-harmonicity of the Gauss map at the point it su�ces to check (24) or (25)

for n1 + 1 6 j 6 n.

The subspace fW is a Lie triple system in a semisimple Lie algebra V, and
V = fW+[fW;fW ]. Moreover, fW\ [fW;fW ] = 0 because V is a direct complement to

W\ [W;W]. For each 1 6 l 6 m the restriction of the inner product to Sl is equal
to the Killing form multiplied by a negative constant: hX;Y i = �l Tr(adX Æad Y )
for X;Y 2 Sl, �l < 0 (See [7, Lem. 7.6]). Here by adX we mean the restriction of

the adjoint representation operator to the corresponding simple ideal. Denote by

Pl the orthogonal projection to Sl, then hX;Y i =
P

16l6m

�l Tr(adPl(X)Æad Pl(Y ))

for X;Y 2 V.
For each 1 6 l 6 m the operator Pl is a Lie algebra homomorphism, therefore

Pl([fW ;fW ]) = [Pl(fW); Pl(fW)] and

Sl = Pl(V) = Pl(fW + [fW ;fW]) = Pl(fW) + [Pl(fW); Pl(fW)]:

The intersection Pl(fW) \ [Pl(fW); Pl(fW)] is an ideal in simple Sl. Hence either

Pl(fW)\[Pl(fW); Pl(fW)] = 0 or Sl = Pl(fW) = [Pl(fW); Pl(fW)]. In the �rst case the

operators adX for X 2 Pl(fW) map Pl(fW) to [Pl(fW); Pl(fW)] and [Pl(fW); Pl(fW)]

to Pl(fW). The operators ad Y for Y 2 [Pl(fW); Pl(fW)] map the subspaces Pl(fW)

and [Pl(fW); Pl(fW)] to themselves. It follows that hPl(fW); [Pl(fW); Pl(fW)]i = 0.

If the restriction of the metric to V is a negative multiple of the Killing form

(the case of (i)), then the same argument shows that hfW ; [fW;fW ]i = 0.

Consider the case Pl(fW) \ [Pl(fW); Pl(fW)] = 0 for all 1 6 l 6 m. We proved

that hPl(fW); [Pl(fW); Pl(fW)]i = 0 for all l, thus hfW ; [fW ;fW ]i = 0. For each

1 6 l 6 m denote Pl(fW) by Wl. Then hWl; [fW ;fW ]i = hWl; [Wl;Wl]i = 0,

hence Wl is contained in the orthogonal complement of [fW;fW ], i.e., in fW; and
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fW =
L

16l6m

Wl. Subspaces Wl are Lie triple systems, Wl 6= 0 because in the

opposite case [Wl;Wl] = 0 and Sl = 0. It contradicts the fact that Sl is simple.

If Wl = Sl, then Wl = [Wl;Wl] because Sl is simple, that is a contradiction.

It follows that Wl 6= Sl. This is the case of (ii). It is easy to see also that the

condition in (ii) implies Pl(fW) \ [Pl(fW); Pl(fW)] = 0 for all 1 6 l 6 m. In fact,

if fW =
L

16l6m

Wl with Wl � Sl, then Pl(fW) = Wl, [Pl(fW); Pl(fW)] = [Wl;Wl],

therefore the case Sl = Pl(fW) = [Pl(fW); Pl(fW)] is excluded by the condition

Wl 6= Sl.
Assume that hfW ; [fW ;fW]i = 0. Take any n1 + 1 6 j 6 n. For 1 6 i 6 n1

[Yi; Yj] = 0 and for n1 + 1 6 i 6 n

[Yi; Yj ]
T =

P
16k6n

h[Yi; Yj ]; YkiYk =
P

n1+16k6n

h[Xi;Xj ];XkiYk = 0

because Xi 2 fW for n1 + 1 6 i 6 n. This yields that (25) is satis�ed. We proved

(i) and (ii).

Finally, in the case (iii) there is 1 6 l0 6 m such that Sl0 = Pl0(
fW) =

[Pl0(
fW); Pl0(

fW)]. Consider the new metric h�; �i0 such that it is equal to h�; �i on
the orthogonal complement to V and

hX;Y i0 =
P

16l6m

(�Tr(adPl(X) Æ adPl(Y )))� �2 Tr(adPl0(X) Æ adPl0(Y ))

for X;Y 2 V, where � 6= 0. It is a biinvariant metric. Denote �Tr(adPl0(X) Æ
adPl0(Y )) by hX;Y i

00.
The ideal Sl0 is not contained in fW because in the opposite case it is contained

also in fW\ [fW ;fW] = 0, that is a contradiction. It follows that there is a vector Y

orthogonal to fW such that Pl0(Y ) 6= 0. Then Sl0 = Pl0(
fW) implies that there is

a vector X 2 fW such that Pl0(X) = Pl0(Y ). Note that Y is orthogonal to TeM .

We can consider that the norm of Y equals 1. Choose the orthonormal frames of

TeM and NeM such that Yj0 = X + Zj0 for some n1 + 1 6 j0 6 n and Y�0 = Y

for some n + 1 6 �0 6 n + q. Then the discussion above implies that for any

n1 + 1 6 i 6 n in the new metric

[Yi; Yj0 ]
T =

X
16k6n

h[Yi; Yj0 ]; Yki
0Yk =

X
n1+16k6n

h[Xi;X];Xki
0Yk

= �2
X

n1+16k6n

h[Pl0(Xi); Pl0(X)]; Pl0 (Xk)i
00Yk

= ��2
X

n1+16k6n

h[Pl0(Xi); Pl0(Xk)]; Pl0(X)i00Yk:
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There is some n1 + 1 6 i 6 n such that this expression does not vanish because

Sl0 = [Pl0(
fW); Pl0(

fW)]. Similarly,

[Yi; Y�0 ]
T = ��2

P
n1+16k6n

h[Pl0(Xi); Pl0(Xk)]; Pl0(Y )i00Yk:

The expression in (25) for j = j0 and � = �0 thus becomes

�4
P

n1+16i;k6n

(h[Pl0(Xi); Pl0(Xk)]; Pl0(X)i00)2 6= 0:

Therefore the Gauss map is not harmonic.

A Lie triple system U is reducible if U = U1�U2, where U1 and U2 are nonzero
Lie triple systems such that [U1;U2] = 0, and is irreducible otherwise (see, for

example, App. 1 of [3]). Theorem 3 then implies that if fW is irreducible and V is

not simple, then there is a biinvariant metric on N such that the Gauss map of

M is not harmonic.

Consider an example. Let N be so(3)� so(3) with the orthogonal basis con-

sisting of the vectors e1; e2; e3; f1; f2; f3 with the nonzero brackets

[e1; e2] = �[e2; e1] = e3; [e2; e3] = �[e3; e2] = e1; [e3; e1] = �[e1; e3] = e2;

[f1; f2] = �[f2; f1] = f3; [f2; f3] = �[f3; f2] = f1; [f3; f1] = �[f1; f3] = f2:

Let W be the subspace spanned by e1 + f1, e2 � f2, and e3 + f3. Let M be

exp(W), hence TeM = W. The bracket [W;W] is spanned by e1 � f1, e2 + f2,

and e3 � f3. It is easy to see that W is a Lie triple system. In our notation,

N = N = N
0
= V = W + [W;W]. The intersection W = W \ [W;W] vanishes,

therefore fW = W. Choose a metric such that hei; eji = Æij and hfi; fji = Æija
2,

where 0 < a 6= 1, then W and [W;W] are not orthogonal. The orthonormal

frames of the tangent and the normal spaces of M can be chosen in the following

way:

Y1 =
1p
1+a2

(e1 + f1); Y2 =
1p
1+a2

(e2 � f2); Y3 =
1p

1+a2
(e3 + f3);

Y4 =
p
1+a2

a

�
e1 �

1
a2
f1
�
; Y5 =

p
1+a2

a

�
e2 +

1
a2
f2
�
; Y6 =

p
1+a2

a

�
e3 �

1
a2
f3
�
:

Compute (25), e.g., for j = 1 and � = 4:P
16i63

h[Yi; Y1]T ; [Yi; Y4]T i

= 1
a(1+a2)

h(�e3 + f3)
T ;
�
�e3 �

1
a2
f3
�T
i+ 1

a(1+a2)
h(e2 + f2)

T ;
�
e2 �

1
a2
f2
�T
i

=
�2(�1+a2)
a(1+a2)2

+
2(1�a2)
a(1+a2)2

6= 0:

It follows that the Gauss map is not harmonic.
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4. 2-Step Nilpotent Groups and Geodesics

Recall that a Lie group N is 2-step nilpotent if and only if its Lie algebra

N is 2-step nilpotent, i.e., [N ;N ] 6= 0, [[N ;N ];N ] = 0. In other words,

0 6= [N ;N ] � Z, where Z is the center of N . Consider a 2-step nilpotent Lie

group N with left invariant metric induced by an inner product h�; �i on N as

above. Denote by V the orthogonal complement to Z in N . For each Z 2 Z
de�ne a linear operator J(Z) : V ! V by hJ(Z)X;Y i = h[X;Y ]; Zi for all X, Y

from V. All J(Z) are skew-symmetric. The group N and the Lie algebra N are

called nonsingular if for each Z 6= 0 the operator J(Z) is nondegenerate.

The left invariant Riemannian connection is de�ned by (see [1])

rXY = 1
2
[X;Y ]; X; Y 2 V;

rXZ = rZX = �1
2
J(Z)X; X 2 V; Z 2 Z;

rZZ
� = 0; Z; Z� 2 Z:

(26)

Let us study whether the Gauss map of a totally geodesic submanifold M

in N is harmonic. It was proved in [2, Th. (4.2)] that if N is simply connected

and nonsingular, then a totally geodesic submanifold either have the Gauss map

of maximal rank at any point or it is a left translation of some open subset

in a totally geodesic subgroup. The latter case takes place for many classes of

submanifolds, for example, for all totally geodesic M such that dimM > dimZ
in 2-step nilpotent groups N with dimN > 3 (see [2, Cor. (5.6)]). The structure

of the corresponding subgroups (or their Lie algebras) is also described in [2] (and

allows to prove, for example, that there are no totally geodesic hypersurfaces in

nonsingular 2-step nilpotent Lie groups, see [2, Cor. (5.8)]). Anyway, in this case

the Gauss map is constant, thus harmonic. Therefore it su�ces to consider the

case of the Gauss map with maximal rank. For n = dimM = 1, i.e., for geodesics,

the answer can be found in the next statement:

Proposition 4. A smooth geodesic in a 2-step nilpotent group has the har-

monic Gauss map if and only if it is a left translation of some one-parameter

subgroup.

P r o o f. The "if" part is clear, let us prove the "only if" one. Taking if

necessary a left translation we can think that our geodesic contains the identity e

of N (similarly to the discussion in the previous section). Decompose its tangent

vector at e as X + Z, where X 2 V and Z 2 Z. The condition (22) with n = 1,

j = 1, and Y1 = X + Z becomes

0 =

�
[X + Z;�J(Z)X] + 2rX+Z (J(Z)X)

?
�?

=
�
[J(Z)X;X] + [X;J(Z)X] � J(Z)2X

�?
= �

�
J(Z)2X

�?
:
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Here we used the de�nition of the 2-step nilpotent Lie algebra, the equations

(26), and the fact that hJ(Z)X;X + Zi = hJ(Z)X;Xi = 0 because J(Z) is

skew-symmetric, therefore (J(Z)X)
?
= J(Z)X. The conditions mean J(Z)2X =

�(X + Z), where � 2 R. Thus �Z = 0, hence Z = 0 or � = 0, in any case

J(Z)2X = 0. This yields 0 = hJ(Z)2X;Xi = �jJ(Z)Xj2, therefore J(Z)X

vanishes. Then Proposition (3.5) of [1] implies that the geodesic is de�ned by the

formula exp(t(X + Z)). This gives us the desired result.

Actually, the proof implies that the geodesic is a left translation of one-

parameter subgroup if the Gauss map is harmonic only at some point. Anyway,

it follows that for n = 1 the Gauss maps of maximal rank are not harmonic. It is

interesting to check whether the similar statement is true for other values of n.
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