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1. Introduction

The fundamental paper by B. Simon and T. Spencer (see [9]) has played

an essential role in our understanding of localization phenomena. For the lattice

Schr�odinger operator, the main result of this paper is quite transparent and can

be formulated in the following form:

Theorem 1.1. Let h = � + V (x), x � 0 be the lattice Schr�odinger operator

on l2(Z+) with the boundary condition  (0) = 0. If

lim sup
x!1

jV (x)j =1;

then
P

ac
(h) = ;.
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R e m a r k. Due to general results (see [5]) concerning compact perturbations

of h,
P

ac
(h) = ; for any boundary condition of the form  (�1) cos � �  (0)

sin � = 0 with � 2 [0; �):

The result cannot be improved. There are many examples of operators h with

bounded potentials V (x) whose spectra are either purely absolutely continuous,

or contain a rich absolutely continuous component. For instance, for periodic

V the spectrum
P

(h) of h is purely absolutely continuous. This statement is

physically nontrivial for energies in the range of the potential V .

For the continuous Hamiltonian, the corresponding result is not so strong,

and the result depends on the existence of very high �peaks" in the potential

function V .

Theorem 1.2. Let H+ = � 00 + V  be a 1-D Schr�odinger operator on

L2(R+) with the Dirichlet boundary condition  (0) = 0 and V (x) � 0. If there

exist sequences fxngn�0, fhngn�0 and fÆngn�0 of positive numbers with

xn, hn ! 1 for which V (x) � hn on [xn; xn + Æn] and Æn
p
hn ! 1, thenP

ac
(H+) = ;.

Theorem 1.2 does not cover the physically signi�cant class of �Æ-like" poten-

tials. We can expect that for potential functions of the type

V (x) =
X
n�1

hnÆ(x� xn) or V (x) =
X
n�1

hn
In(x)

Æn

(here In represents the indicator function of the interval [xn; xn + Æn]) for which

xn � xn�1 ! 1, hn ! 1 and Æn ! 0, the corresponding Hamiltonian H+ will

have no absolutely continuous component. However, Th. 1.2 cannot be used at all

to prove this for the Æ-potential shown above, and requires a strong assumption

in the second case, namely
p
hnÆn !1: Our goal is to prove the following result

generalizing Th. 1.2 in several directions:

Theorem 1.3. Let H be a one-dimensional Schr�odinger operator on L2(R)

de�ned by

H = � d2

dx2
+ V (x): (1)

Assume that V (x) � 0 and that

lim sup
jxj!1

x+1Z
x

V (z) dz =1: (2)

Then
P

ac
(H) = ;.
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A similar statement is true for the half axis case.

Theorem 1.4. Let H� be a 1-D continuous Schr�odinger operator on L2(R+)

with the boundary condition  (0) cos � �  0(0) sin � = 0, � 2 [0; �). Assume that

V (x) � 0 and that

lim sup
x!1

x+1Z
x

V (z) dz =1: (3)

Then
P

ac
(H�) = ;.

R e m a r k 1. Of course, (3) implies that lim sup
x!1

R
x+!

x
V (z) dz =1 for

any ! > 0:

R e m a r k 2. All �nal or �nearly �nal" results in spectral theory contain

local L1 norms of the potential. We remind the reader of the following results

(see [2]) of M. Birman and A. Molchanov. M. Birman proved that the spectrum

of H is bounded from below if and only if

lim sup
x!1

x+1Z
x

V�(s) ds <1; (4)

where V�(x) = max(0;�V (x)). Moreover, if

lim
x!1

x+1Z
x

V�(s) ds = 0; (5)

then the negative spectrum is purely discrete (possibly with an accumulation

point at 0). Additionally, if V � 0, then condition (5) is also necessary.

Another result was given by A. Molchanov: if V � 0, then the spectrum of H
is purely discrete if and only if for any ! > 0

lim
jxj!1

x+!Z
x

V (s) ds =1:

In the second part of the paper, we will present an example showing that the

condition

lim sup
x!1

x+1Z
x

V (z) dz =1;

together with self-adjointness ofH, cannot guarantee the absence of the absolutely

continuous spectrum. In fact, in this example the absolutely continuous spectrum
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will coincide with [0;1): The key feature of this example will be the presence of

very deep wells which tend to destroy the repulsive e�ects caused by high positive

peaks.

Finally, we will consider the Hamiltonian H with the potential

V (x) =
X
n�1

hnÆ(x� xn) (6)

and prove the following theorem:

Theorem 1.5. Let Æ > 0 and H� be the operator on L2(R+) de�ned by

H� (x) = � 00(x) + V (x) (x) with the boundary condition  (0) cos � �  0(0)
sin � = 0, where V (x) is de�ned by (6) with hn = n.

(a) If xn� xn�1 > (n!)2+Æ, then the spectrum of H� is purely singular contin-

uous for any boundary phase � 2 [0; �):

(b) If xn � xn�1 < (n!)2�Æ, then the spectrum of H� is pure point for a.e.

� 2 [0; �):

2. A Few Lemmas and the Proof of Theorem 1.3

Following the strategy of Simon and Spencer ([9]), we �rst want to study the

following problem: let

H � H+ I = � d2

dx2
+ V (x) + 1; (7)

where V (x) � 0 for all x 2 R. Suppose that

LZ
�L

V (s) ds = A >> 1: (8)

We want to estimate (for the energy parameter � = 0) the trace norm jjH�1 �
H�1
x0
jj1 of the di�erence of the resolvents of the operators H and Hx0

. Here, Hx0

is the operator given by the di�erential expression �d2=dx2 + V (x) + 1 with the

Dirichlet boundary condition  (x0) = 0 at some point x0 2 [�L;L]:
Lemma 2.1. The kernel H�1

�
(x; y) of the resolvent operator (H ��)�1 at the

point � = 0 has the following representation:

H�1
0 (x; y) � R(x; y)

= Ex

8<
:

1Z
0

exp

0
@�

tZ
0

(1 + V (bs)) ds

1
A Æy(bt) dt

9=
; :

Here, bt is the Brownian motion with the generator L = d2=dx2.
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This is one of the well-known forms of the Feynman�Kac formula (see [6])

connecting the Schr�odinger operator (outside its spectrum) with the Brownian

motion. The expression Æy(bt) dt takes the form Æy(bt) dt = d�y(t), where �y(t)

is the local time of bs at the point y.

Lemma 2.2. If x; y < x0 or x; y > x0, then

Rx0(x; y) = Ex

8<
:

�0Z
0

exp

0
@�

tZ
0

(1 + V (bs)) ds

1
A Æy(bt) dt

9=
; ; (9)

where �0 is the time of the �rst arrival of the Brownian motion bt at the point x0,

that is, �0 = minft : bt = 0g.

R e m a r k. Of course, �0 <1 with probability one.

A similar result is true in a more general situation.

Lemma 2.20. Let Rx0;X be the resolvent (again for � = 0) of the operator H

de�ned by the expression (7) and Dirichlet boundary conditions at x0 and at each

point of a discrete set X � R (x0 =2 X). Then

Rx0;X(x; y) = Ex

8<
:

�0^�XZ
0

exp

0
@�

tZ
0

(1 + V (bs)) ds

1
A Æy(bt) dt

9=
; : (10)

Here, both x and y belong to one of the intervals �i, where f�i : i = 1; 2; : : :g is
the partition of R by the point x0 and the points of X. The random moment �X
is de�ned by

�X = minft : bt 2 Xg:
R e m a r k. Since �0 � �0^�X , from (9) and (10) it follows that Rx0;X(x; x) �

Rx0(x; x) on each interval�i. This monotonicity property will be used in the proof

of Th. 1.3.

Lemma 2.3. If x; y < x0 or x; y > x0, then

R(x; y)�Rx0(x; y) = Ex

8<
:exp

0
@�

�0Z
0

(1 + V (bs)) ds

1
A
9=
;

� Ex0

8<
:

1Z
0

exp

�
�
Z
t

0

(1 + V (bs)) ds

�
Æy(bs) ds

9=
;

=  �(x)R(x0; y); (11)
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where  +(x) is used in (11) for x; y < x0 and  �(x) for x; y > x0. Here,  +(x)

is the solution of H = 0 on (�1; x0], such that  +(x0) = 1 and  +(x) ! 0

as x ! �1. Similarly,  �(x) is the solution of H = 0 on [x0;1) satisfying

 �(x0) = 1 and  �(x) ! 0 as x ! 1. Such solutions exist and are unique.

Furthermore, these solutions are positive, monotone and convex over the intervals

(�1; x0] and [x0;1), respectively.

R e m a r k. It is easy to see that  +(x) � e�jx�x0j for x � x0 and

 �(x) � e�jx�x0j for x � x0:

P r o o f. We have

R(x; y)�Rx0(x; y) = Ex

8<
:

1Z
0

exp

0
@�

tZ
0

(1 + V (bs)) ds

1
A Æy(bt) dt

9=
;

� Ex

8<
:

�0Z
0

exp

0
@�

tZ
0

(1 + V (bs)) ds

1
A Æy(bt) dt

9=
;

= Ex

8<
:

1Z
�0

exp

0
@�

�0Z
0

(1 + V (bs)) ds

1
A

� exp

0
@�

tZ
�0

(1 + V (bs)) ds

1
A Æy(bt) dt

9=
; : (12)

Using the strong Markov property for the stopping time �0, we then have

R(x; y)�Rx0;X(x; y) = Ex

8<
:exp

0
@�

�0Z
0

(1 + V (bs)) ds

1
A
9=
;

� E b�0

8<
:

1Z
0

exp

0
@�

uZ
0

(1 + V (bs)) ds

1
A Æy(bu) du

9=
;

= R(x0; y)Ex

8<
:exp

0
@�

�0Z
0

(1 + V (bs)) ds

1
A
9=
; :

(13)

We have used the obvious relation b�0 = x0: The elliptic form of the Feynman�Kac

formula gives for

u(x) = Ex

8<
:exp

0
@�

�0Z
0

(1 + V (bs)) ds

1
A
9=
;
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the equation (for x < x0 or x > x0)

u00 � (1 + V )u = 0; u(x0) = 1;

i.e., u(x) is equal to  +(x) for x � x0, or  �(x) for x � x0.

As with Lem. 2.2, Lem. 2.3 can be generalized.

Lemma 2.30. The di�erence R(x; y)�Rx0;X(x; y) is given by the expression

R(x; y)�Rx0;X(x; y)

= R(x0; y)Ex

8<
:exp

0
@�

�0^�XZ
0

(1 + V (bs))Æy(bs) ds

1
A
9=
; ;

where x; y belong to the same interval �i:

R e m a r k. Lemmas 2.3 and 2.30 contain fundamental information about

R(x; y) �Rx0;X(x; y) and R(x; y)�Rx0(x; y). Both of these di�erences are non-

negative and increase if we replace the potential V by a smaller function, say

by the truncated potential V (x)I�(x), where I� is the indicator function of an

arbitrary interval �, or remove extra Dirichlet boundary conditions imposed at

points of the set X. In particular,

R(x; y)�Rx0(x; y) � R(x; y)�Rx0;X(x; y)

(compare with the remark following Lem. 2.20).

In the following paragraph and in Lem. 2.4, we denote by V�(x) the truncated

potential V�(x) = V (x)I�(x), where � is the interval [�L;L]. Let H� be the

operator

H� = �d2=dx2 + 1 + V�(x)

and R� = H�1
� :

Using the functions  �(x) given by Lem. 2.3, in which V (x) is replaced by

V�(x); we can construct the resolvent kernel R�(x0; x), i.e., the L
2 solution of

the problem H�R� = �Æx0 , namely

R�(x0; x) =

�
c +(x) if x < x0
c �(x) if x > x0

; (14)

where the constant c is such that

c( 0+(x0)�  0�(x0)) = 1: (15)

It also follows that

c =
~ 0+(x0)
~ +(x0)

�
~ 0�(x0)
~ �(x0)

;
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where ~ �(x) are arbitrary solutions of H� = 0, exponentially decaying at �1,

respectively. For example, we can de�ne ~ +(x) = ex for x < �L and ~ �(x) = e�x

for x > L: From (14) it then follows (see [9]) that

jjH�1
� �H�1

�;x0
jj1 = Tr

�
H�1

� �H�1
�;x0

�

=

1Z
�1

(R�(x; x)�R�;x0(x; x)) dx

= c

0
@ x0Z
�1

 +(x)
2 dx+

1Z
x0

 �(x)
2 dx

1
A :

Let us note that 0 �  +(x) � 1 and that  +(x) � ex for x < �L, so that

x0Z
�1

 +(x)
2 dx �

�LZ
�1

e2x dx+

x0Z
�L

1 dx � 1

2
+ 2L: (16)

Similarly,
1Z
x0

 �(x)
2 dx � 1

2
+ 2L: (17)

Now, we are ready to prove the central technical result.

Lemma 2.4. For an appropriate x0 2 [�L;L]

jjH�1
� �H�1

�;x0
jj1 = Tr(R� �R�;x0) �

c(L)p
A
; (18)

where A =
R
L

�L V (s)ds � 1 and c(L) is some constant depending only on L:

P r o o f. Let us introduce the phase function

z(x) = ~ 0(x)= ~ (x);

where ~ (x) is the solution of H = 0 satisfying the boundary conditions  (�L) =
 0(�L) = 1: Then z(x) = 1 for x 2 (�1;�L], since ~ (x) = ex on this interval.

The function z(x) satis�es the usual Riccati equation

z0(x) = (1 + V (x)I�(x))� z(x)2; z(�L) = 1; (19)

where I� is the indicator of the interval � = [�L;L]. After integration, (19)

becomes

z(x) = 1 +

xZ
�L

(1 + V (s)I�(s)) ds�
xZ

�L

z(s)2 ds: (20)
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Put M = maxx2� z(x). Since z(x) is continuous, there is a minimal point x0 2
[�L;L] for whichM = z(x0): Then, (20) impliesM � z(L) � 1+2L+A�2LM2,

which in turn gives M + 2LM2 � A. It follows that

M � b(L)
p
A

if A � 1, where b(L) > 0 depends only on L. Now, since  0�(x) < 0 and

 �(x) > 0, by (15) it follows that 1 = c( 0+(x0) �  0�(x0)) � c 0+(x0), and

therefore putting c(L) = 1=b(L),

c � 1

 0+(x0)
=

~ +(x0)

~ 0+(x0)
=

1

z(x0)
=

1

M
� c(L)p

A
:

Now we are ready to prove Th. 1.3.

P r o o f o f T h e o r e m 1.3. For �xed L > 0, let �n = [yn � L; yn + L],

n 2 Z, be a sequence of disjoint intervals for which yn ! �1 as n! �1, and

X
n2Z

1p
An

<1; (21)

where An =
R
�n

V (s) ds: Using Lem. 2.4, one can �nd a point x0;n 2 �n for

which

jjH�1
�n
�H�1

�n;x0;n
jj1 �

c(L)p
An

: (22)

Here, H�n = �d2=dx2 + 1 + V (x)I�n(x) and H�n;x0;n
is the same operator,

but with Dirichlet boundary condition added at x0;n 2 �n: Now, let us return

to the operator H de�ned by (1), and consider the resolvents (H + 1)�1 and

(HX + 1)�1, where HX is the operator H with Dirichlet boundary conditions

at the countable system of points X = fx0;ng. Using the fact that both H and

Hx0;X
are nonnegative, it follows from the monotonicity argument (see the remark

following Lem. 2.30) that

jj(H+ 1)�1 � (HX + 1)�1jj1 �
X
n

c(L)p
An

<1:

By the Kato�Birman theorem (applicable since � = �1 is outside the spectrum

of both operators, H and HX , see ([8])), it follows that
P

ac
(H) =

P
ac
(Hx0;X

).

But the operator HX is the orthogonal sum of the operators Hn, where Hn =

�d2=dx2 + V (x) on the interval [x0;n; x0;n+1] with Dirichlet boundary conditions

at the endpoints. Since each Hn has purely discrete spectrum, the spectrum of

HX is pure point. Therefore
P

ac
(H) = ;:
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3. A Few Examples

The �rst example will show that the presence of a strong positive part of the

potential cannot guarantee the absence of the absolutely continuous spectrum of

H, even when H is essentially selfadjoint.

Example 3.1. Let xn; hn !1, Æn ! 0, xn+1�xn !1 and H = �d2=dx2+
V (x); where

V (x) =

1X
n=1

hn(I[xn�Æn;xn] � I[xn;xn+Æn]): (23)

Note that, from the conditions of Ex. 3.1,

xnZ
xn�1

V (x) ds = Ænhn !1

and that H is essentially selfadjoint. This follows by results due to P. Hartman

and M. Eastham (see [4, 1]) giving the essential self-adjointness of H, without any

assumption on V other than that V (x) � 0 on some in�nite disjoint sequence of

intervals of �xed length.

Theorem 3.2. If in Ex. 3.1
P

n
h2
n
Æ3
n
<1, then

P
ac
(H) = [0;1).

It will be helpful to consider the monodromy matrix M� in the generalized

Pr�ufer representation, that is, M�(a; b) is the matrix satisfying"
 (b)
 

0(b)p
�

#
=M�(a; b)

"
 (a)
 

0(a)p
�

#
:

Lemma 3.3. Let VÆ;h = h(I[�Æ;0] � I[0;Æ]) and M�(�Æ; Æ) be the monodromy

matrix in the generalized Pr�ufer representation for the problem H = �d2=dx2 +
VÆ;h(x) on [�Æ; Æ]: Let � be a �xed interval on the positive energy axis and suppose

� 2 �. Then, with the assumption Æ << 1 and h >> 1,

jjM�(�Æ; Æ) � Ijj � ch2Æ3:

P r o o f. Assume that h >> � > 0 and let �h;Æ(�) =
p
h� �Æ. Let us write

an explicit formula for M�(�Æ; 0) and M�(0; Æ): Simple calculations show that

M�(�Æ; 0) =

0
@ cosh�h;Æ(�)

p
�Æ

�h;Æ(�)
sinh�h;Æ(�)

�h;Æ(�)p
�Æ

sinh�h;Æ(�) cosh�h;Æ(�)

1
A

=

 
1 +O(hÆ2) O(Æ)
hÆp
�
+O(h2Æ3) 1 +O(hÆ2)

!
(24)
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while

M�(0; Æ) =

0
@ cos�h;Æ(�)

p
�Æ

�h;Æ(�)
sin�h;Æ(�)

��h;Æ(�)p
�Æ

sin�h;Æ(�) cos�h;Æ(�)

1
A

=

 
1 +O(hÆ2) O(Æ)

� hÆp
�
+O(h2Æ3) 1 +O(hÆ2)

!
: (25)

With the fact that M�(�Æ; Æ) =M�(0; Æ)M�(�Æ; 0), it follows from (24) and (25)

that

jjM�(�Æ; Æ) � Ijj = O(h2Æ3); (26)

which implies jjM�;n � Ijj � Ch2
n
Æ3
n
; where M�;n = M�(xn � Æn; xn + Æn). Now

M�(0; xn+ Æn) = OnM�;n � � �O2M�;2; O1M�;1; where Oi are appropriate orthogo-

nal matrices, and from (26) it follows that

jjM�(0; xn + Æn)jj �
nY
k=1

(1 + Ch2
k
Æ3
k
) � exp

 
nX
k=1

Ch2
k
Æ3
k

!
<1:

It is known that the existence of a sequence xn, for which the monodromy

matrix is uniformly bounded from above for all energies in a �xed interval �,

implies the absolute continuity of the spectrum in this interval (see [7]). We have

proved that
P

ac
(H) � [0;1). In fact, it is easy to prove that

P
ac
(H) = [0;1).

The second example is related to the one above. We will use here and in Ex. 3.4

the following observation: let H = �d2=dx2 + hÆ0(x). Then, in the generalized

Pr�ufer representation

M�(0�; 0+) =

 
1 0
hp
�

1

!
: (27)

Example 3.4. Let V (x) be the potential de�ned by

V (x) =
X
n

hn(Æ(x � xn)� Æ(x� xn � Æn));

where hn; xn !1 and Æn ! 0. Let H� be de�ned on L2(R+) by H� = �d2=dx2+
V (x) with the boundary condition  (0) cos � �  0(0) sin � = 0 with � 2 [0; �).

From (27), an explicit formula for M�(xn � 0; xn + Æn + 0) can be obtained,

namely

M�(xn � 0; xn + Æn + 0)

=

 
1 0
hnp
�

1

!
O�(xn � Æn � 0; xn + 0)

 
1 0

� hnp
�

1

!
; (28)
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where

O�(xn � Æn � 0; xn + 0) = 
cos

p
hn � �Æn

1p
hn��

sin
p
hn � �Æn

�phn � � sin
p
hn � �Æn cos

p
hn � �Æn

!
: (29)

From (28) and (29), one can deduce that

jjM�jj = 1 +O(hnÆ
2
n
);

and hence if X
n

Æ2
n
hn <1;

then
P

ac
(H�) = [0;1) for any � 2 [0; �):

Example 3.5. Let V (x) =
P
hnÆ(x�xn); where hn; xn > 0 and hn; xn !1.

Let H� be de�ned on L2(R+) by H� = �d2=dx2+V (x) with the boundary condition

 (0) cos � �  0(0) sin � = 0 with � 2 [0; �).

Since hn !1, it follows immediately from Th. 1.4 that
P

ac
(H) = ;. We can

estimate the norm by

jjM�(0; xn + 0)jj =


nY
k=1

 
1 0
hkp
�

1

! � c(�)n
nY
i=1

hi

and in general jjM�(0; x + 0)jj =
Qn

k=1

 
1 0
hkp
�

1

! � c(�)n(x)
Qn(x)
i=1 hi with

n(x) = #fxijxi � xg: Now,
1Z
0

dx

jjM�(0; x)jj2
�
X
i

xi � xi�1
h21h

2
2 � � � h2n(xi)c(�)2n(xi)

:

For fast increasing distances xi � xi�1 and �xed hi the last series diverges, from

which it follows (see [10])
P

pp
(H) = ;. In this particular case the spectrum is

purely singular continuous. It is probably the simplest example of an operator

with purely singular continuous spectrum (compare [3] and [10]). In fact, if hn = n

and xn = (n!)2+Æ for Æ > 0, then
P

(H�) =
P

sc
(H): One can prove also that for

xn = (n!)2�Æ with Æ > 0, the spectrum of H� is pure point for a.e � 2 [0; �): This

proves Th. 1.5 formulated in the introduction.
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