On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives

M.M. Sheremeta and O.A. Volokh
Department of Mechanics and Mathematics, Ivan Franko Lviv National University 1 Universitetska Str., Lviv, 7900, Ukraine E-mail:tftj@franko.lviv.ua

Received February 12, 2004, revised December 28, 2006

For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk $\{z:|z|<R\}, 0<R \leq+\infty$.

Key words: formal power series, Gelfond-Leont'ev derivatives, analytic function.

Mathematics Subject Classification 2000: 30D50, 30D99.

1. Introduction

Let $\left(f_{k}\right)_{k=0}^{\infty}$ be an arbitrary sequence of complex numbers. For $0<R \leq \infty$ by $A(R)$ we denote the class of analytic functions

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} f_{k} z^{k} \tag{1}
\end{equation*}
$$

in the disk $\{z:|z|<R\}$. The denotement $f \in A(0)$ means further that either $f \in A(R)$ for some $R>0$ or the series (1) converges only at the point $z=0$, i.e., $A(0)$ is a class of formal power series. Clearly, $A\left(R_{2}\right) \subset A\left(R_{1}\right)$ for all $0 \leq R_{1} \leq$ $R_{2} \leq \infty$. We say that $f \in A^{+}(R)$ if $f \in A(R)$ and $f_{k}>0$ for all $k \geq 0$.

For $f \in A(0)$ and $l(z)=\sum_{k=0}^{\infty} l_{k} z^{k} \in A^{+}(0)$ the formal power series

$$
\begin{equation*}
D_{l}^{n} f(z)=\sum_{k=0}^{\infty} \frac{l_{k}}{l_{k+n}} f_{k+n} z^{k} \tag{2}
\end{equation*}
$$

is called $[1-2]$ the Gelfond-Leont'ev derivative of the order n. If $l(z)=e^{z}$, that is $l_{k}=1 / k!$, then $D_{l}^{n} f(z)=f^{(n)}(z)$ is a usual derivative of the order n. We can assume that $l_{0}=1$.

As in [2], let Λ be a class of all positive sequences $\lambda=\left(\lambda_{k}\right)$ with $\lambda_{1} \geq 1$, and let $\Lambda^{*}=\left\{\lambda \in \Lambda: \ln \lambda_{k} \leq a k\right.$ for every $k \in \mathbb{N}$ and some $\left.a \in[0,+\infty)\right\}$. We say that $f \in A_{\lambda}(0)$ if $f \in A(0)$ and $\left|f_{k}\right| \leq \lambda_{k}\left|f_{1}\right|$ for all $k \geq 1$. Finally, let N be a class of increasing sequences (n_{p}) of nonnegative integers, $n_{0}=0$.

Studying of conditions on the Gelfond-Leont'ev derivatives, under which series (1) represents an entire function, was started in [2]. In particular, the following theorems are proved.

Theorem A. Let $\left(n_{p}\right) \in N$. In order that for every $\lambda \in \Lambda, f \in A(0)$ and $l \in A^{+}(\infty)$ the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ implies $f \in A(\infty)$, it is necessary and sufficient that $\varlimsup_{p \rightarrow+\infty}\left(n_{p+1}-n_{p}\right)<\infty$.

Theorem B. Let $\left(n_{p}\right) \in N, l \in A^{+}(\infty)$ and the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ be nondecreasing. In order that for every $\lambda \in \Lambda^{*}$ and $f \in A(0)$ the condition $(\forall p \in$ $\left.\mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ implies $f \in A(\infty)$, it is necessary and sufficient that

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}=+\infty . \tag{3}
\end{equation*}
$$

A problem on finding conditions on $l \in A^{+}(0), \lambda \in \Lambda$ and $\left(n_{p}\right) \in N$, under which the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ implies $f \in A(R), R>0$, is natural. In [3] the following analog of Th. A is proved.

Theorem C. Let $\left(n_{p}\right) \in N$ and let $R[f]$ and $R[l]$ be the radii of developments into power series of f and l. The condition $\varlimsup_{p \rightarrow \infty}\left(n_{p+1}-n_{p}\right)<+\infty$ is necessary and sufficient in order that for every $\lambda \in \Lambda, f \in A(0)$ and $l \in A^{+}(0)$ the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ implies the inequality $R[f] \geq P R[l]$ with some constant $P>0$.

The main result of this paper is the following analog of Th. B.
Theorem 1. Let $\left(n_{p}\right) \in N$. In order that for every $f \in A(0), l \in A^{+}(0)$ and $\lambda \in \Lambda$ such that the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is nondecreasing and $\lambda_{k-1} \lambda_{k+1} / \lambda_{k}^{2} \geq 1$, $k \geq 2$, the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ implies $f \in A(R)$, it is necessary and sufficient that

$$
\begin{equation*}
\varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\} \geq \ln R . \tag{4}
\end{equation*}
$$

None of the conditions on $\lambda \in \Lambda$ and $l \in A^{+}(0)$ in Th. 1 can be dropped in general.

2. Proof of Theorem 1

In [2] the following lemma is proved.
Lemma 1. If $\lambda \in \Lambda,\left(n_{p}\right) \in N, f \in A(0), l \in A^{+}(0)$ and $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$then

$$
\begin{equation*}
\left|f_{n_{p}+k}\right| \leq\left|f_{1}\right| l_{1}^{p} l_{n_{p}+k} \frac{\lambda_{k}}{l_{k}} \prod_{j=1}^{p} \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}} \tag{5}
\end{equation*}
$$

for all $p \in \mathbb{Z}_{+}$and $k=2, \ldots, n_{p+1}-n_{p}+1$.
First we prove the following theorem using Lem. 1.
Theorem 2. Let $\left(n_{p}\right) \in N$ and the sequence $\lambda \in \Lambda$ and the function $l \in A^{+}(0)$ be such that for all $p \in \mathbb{Z}_{+}$and $k=2, \ldots, n_{p+1}-n_{p}$

$$
\begin{equation*}
\ln \frac{l_{n_{p}+k-1} l_{n_{p}+k+1}}{l_{n_{p}+k}^{2}}-\ln \frac{l_{k-1} l_{k+1}}{l_{k}^{2}}+\ln \frac{\lambda_{k-1} \lambda_{k+1}}{\lambda_{k}^{2}} \geq 0 . \tag{6}
\end{equation*}
$$

If $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$then the estimate

$$
\begin{equation*}
\ln R[f] \geq \lim _{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\} \tag{7}
\end{equation*}
$$

is true and sharp.

$$
\text { Proof. From (5) for } p \rightarrow \infty \text { we have }
$$

$$
\frac{\ln \left|f_{n_{p}+k}\right|}{n_{p}+k}
$$

$$
\begin{equation*}
\leq \frac{1}{n_{p}+k}\left\{\ln l_{n_{p}+k}-\ln l_{k}+\ln \lambda_{k}+p \ln l_{1}+\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\}+o(1) . \tag{8}
\end{equation*}
$$

We put

$$
A_{p}=p \ln l_{1}+\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}
$$

and
$\gamma_{k}=\gamma_{k, p}=\frac{1}{n_{p}+k}\left\{\ln l_{n_{p}+k}-\ln l_{k}+\ln \lambda_{k}+A_{p}\right\}, \quad k=1,2, \ldots, n_{p+1}-n_{p}+1$.
Then

$$
\begin{equation*}
\gamma_{k}-\gamma_{k-1}=\frac{\delta_{k}}{\left(n_{p}+k\right)\left(n_{p}+k-1\right)}, \quad k=2, \ldots, n_{p+1}-n_{p}+1, \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta_{k} & =\left(n_{p}+k-1\right)\left(\ln l_{n_{p}+k}-\ln l_{k}+\ln \lambda_{k}\right) \\
& -\left(n_{p}+k\right)\left(\ln l_{n_{p}+k-1}-\ln l_{k-1}+\ln \lambda_{k-1}\right)-A_{p} .
\end{aligned}
$$

In view of (6)

$$
\begin{gathered}
\delta_{k+1}-\delta_{k}=\left(n_{p}+k\right)\left(\ln \frac{l_{n_{p}+k-1} l_{n_{p}+k+1}}{l_{n_{p}+k}^{2}}-\ln \frac{l_{k-1} l_{k+1}}{l_{k}^{2}}+\ln \frac{\lambda_{k-1} \lambda_{k+1}}{\lambda_{k}^{2}}\right) \geq 0 \\
k=2, \ldots, n_{p+1}-n_{p}
\end{gathered}
$$

i.e., $\delta_{2} \leq \cdots \leq \delta_{n_{p+1}-n_{p}+1}$. If all $\delta_{k} \geq 0$, then in view of (9) $\gamma_{k} \geq \gamma_{k-1}$ for all $k=2, \ldots, n_{p+1}-n_{p}+1$ and $\max \left\{\gamma_{k}: 2 \leq k \leq n_{p+1}-n_{p}+1\right\}=\gamma_{n_{p+1}-n_{p}+1}$. If all $\delta_{k} \leq 0$, then $\gamma_{k} \leq \gamma_{k-1}$ for all $k=2, \ldots, n_{p+1}-n_{p}+1$ and $\max \left\{\gamma_{k}: 2 \leq\right.$ $\left.k \leq n_{p+1}-n_{p}+1\right\}=\gamma_{1}$. Finally, if $\delta_{2} \leq \cdots \leq \delta_{k_{0}-1}<0 \leq \delta_{k_{0}} \leq \ldots \delta_{n_{p+1}-n_{p}+1}$ for some $k_{0}, 2 \leq k_{0} \leq n_{p+1}-n_{p}+1$, then $\gamma_{k_{0}-1}<\gamma_{k_{0}-2}<\cdots<\gamma_{1}$ and $\gamma_{k_{0}-1} \leq \gamma_{k_{0}} \leq \cdots<\gamma_{n_{p+1}-n_{p}+1}$. Thus,

$$
\max \left\{\gamma_{k}: 1 \leq k \leq n_{p+1}-n_{p}+1\right\}=\max \left\{\gamma_{1}, \gamma_{n_{p+1}-n_{p}+1}\right\}
$$

Since

$$
\gamma_{1}=\frac{1}{n_{p}+1}\left\{\ln l_{n_{p}+1}-\ln l_{1}+\ln \lambda_{1}+A_{p}\right\}
$$

and

$$
\begin{gathered}
\gamma_{n_{p+1}-n_{p}+1}=\frac{1}{n_{p+1}+1}\left\{\ln l_{n_{p+1}+1}-\ln l_{n_{p+1}-n_{p}+1}+\ln \lambda_{n_{p+1}-n_{p}+1}+A_{p}\right\} \\
=\frac{1}{n_{p+1}+1}\left\{\ln l_{n_{p+1}+1}-\ln l_{1}+A_{p+1}\right\}
\end{gathered}
$$

from (8) for $1 \leq k \leq n_{p+1}-n_{p}+1$ we have

$$
\frac{\ln \left|f_{n_{p}+k}\right|}{n_{p}+k} \leq \max \left\{\frac{\ln l_{n_{p}+1}+A_{p}}{n_{p}+1}, \frac{\ln l_{n_{p+1}+1}+A_{p+1}}{n_{p+1}+1}\right\}+o(1), \quad p \rightarrow \infty
$$

i.e., for $p \rightarrow \infty$

$$
\begin{gathered}
\frac{1}{n_{p}+k} \ln \frac{1}{\left|f_{n_{p}+k}\right|} \\
\geq \min \left\{\frac{1}{n_{p}+1}\left(\frac{1}{\ln l_{n_{p}+1}}-A_{p}\right), \frac{1}{n_{p+1}+1}\left(\ln \frac{1}{l_{n_{p+1}+1}}-A_{p+1}\right)\right\}+o(1) .
\end{gathered}
$$

Hence it follows

$$
\ln R[f] \geq \varliminf_{p \rightarrow \infty} \frac{1}{n_{p}+1}\left(\frac{1}{\ln l_{n_{p}+1}}-A_{p}\right)
$$

that is in view of the definition of A_{p} the estimate (7) is proved.
For the proof of its sharpness we consider a power series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} f_{n_{k}+1} z^{n_{k}+1} \tag{10}
\end{equation*}
$$

Since for the series (10)

$$
D_{l}^{n_{p}} f(z)=\sum_{k=p}^{\infty} \frac{l_{n_{k}-n_{p}+1}}{l_{n_{k}+1}} f_{n_{k}+1} z^{n_{k}-n_{p}+1}
$$

then $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$if and only if for all $p \in \mathbb{Z}_{+}$and $k>p$

$$
\begin{equation*}
\frac{l_{n_{k}-n_{p}+1}}{l_{n_{k}+1}}\left|f_{n_{k}+1}\right| \leq \lambda_{n_{k}-n_{p}+1} \frac{l_{1}}{l_{n_{p}+1}}\left|f_{n_{p}+1}\right| . \tag{11}
\end{equation*}
$$

It is easy to see that if $f_{1}>0$ and

$$
\begin{equation*}
f_{n_{k}+1}=f_{1} l_{1}^{k-1} l_{n_{k}+1} \prod_{j=1}^{k} \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}, \quad k \geq 1 \tag{12}
\end{equation*}
$$

then (11) holds if and only if for all $p \in \mathbb{Z}_{+}$и $k>p$

$$
\begin{equation*}
\prod_{j=p+1}^{k} \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}} \leq l_{1}^{p+1-k} \frac{\lambda_{n_{k}-n_{p}+1}}{l_{n_{k}-n_{p}+1}} \tag{13}
\end{equation*}
$$

We suppose that $l_{1} \geq 1$, and $\lambda_{k} / l_{k}=\exp \{(k-1) \varphi(k-1)\}, k \geq 2$, where φ is positive, continuous and nondecreasing function on $[0,+\infty)$. Then

$$
\begin{gathered}
\prod_{j=p+1}^{k} \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}} \leq \prod_{j=p+1}^{k} e^{\left(n_{j}-n_{j-1}\right) \varphi\left(n_{j}-n_{j-1}\right)} \leq \prod_{j=p+1}^{k} e^{\left(n_{j}-n_{j-1}\right) \varphi\left(n_{k}-n_{p}\right)} \\
=e^{\left(n_{k}-n_{p}\right) \varphi\left(n_{k}-n_{p}\right)}=\frac{\lambda_{n_{k}-n_{p}+1}}{l_{n_{k}-n_{p}+1}} \leq l_{1}^{p+1-k} \frac{\lambda_{n_{k}-n_{p}+1}}{l_{n_{k}-n_{p}+1}}
\end{gathered}
$$

i.e., (13) holds and, thus, $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$. Since for the series (10) with the coefficients (12) the equality

$$
\begin{equation*}
\ln R[f]=\varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\} \tag{14}
\end{equation*}
$$

is true, then we need to show that there exist sequences $\left(l_{k}\right)$ and $\left(\lambda_{k}\right)$ such that $\lambda_{k} / l_{k}=\exp \{(k-1) \varphi(k-1)\}, k \geq 2$, and the condition (6) holds.

Since for $\lambda_{k} / l_{k}=\exp \{(k-1) \varphi(k-1)\}$ the condition (6) takes the form

$$
\ln \frac{l_{n_{p}+k-1} l_{n_{p}+k+1}}{l_{n_{p}+k}^{2}}+(k-2) \varphi(k-2)+k \varphi(k)-2(k-1) \varphi(k-1) \geq 0
$$

it is sufficient to choose a sequence $\left(l_{k}\right)$ such that $l_{k-1} l_{k+1} \geq l_{k}^{2}, k \geq 2$, and a function φ such that the function $x \varphi(x)$ is convex. The proof of Th. 2 is complete.

Proof of Theorem 1. At first we remark that if $\lambda \in \Lambda, l \in A^{+}(0)$, the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is nondecreasing and $\lambda_{k-1} \lambda_{k+1} / \lambda_{k}^{2} \geq 1, k \geq 2$, then the condition (6) of Th. 2 holds. Therefore, if (4) holds, then (7) implies the inequality $R[f] \geq R$, i.e. $f \in A(R)$. The sufficiency of (4) is proved.

On the other hand, from the proof of Th. 2 it follows that there exist $f \in A(0)$, $\lambda \in \Lambda, l \in A^{+}(0)$ (for example, $l_{k}=1$ and $\lambda_{k}=\exp \{(k-1) \varphi(k-1)\}, k \geq 2$) such that the sequence ($l_{k-1} l_{k+1} / l_{k}^{2}$) is nondecreasing, $\lambda_{k-1} \lambda_{k+1} / \lambda_{k}^{2} \geq 1$ for $k \geq 2$ and $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$and the equality (14) holds. Therefore, if the condition (4) does not hold, then for the series (10) with the coefficients (12) we have

$$
\varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\}<\ln R,
$$

i.e., $f \notin A(R)$. Theorem 1 is proved.

3. Essentiality of the Conditions in Theorems 1-2

We suppose that $n_{p}=2^{p}$ for $p \geq 1$ (thus, $n_{p+1}-n_{p}=n_{p}$ for $p \geq 2$) and consider a power series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty}\left(f_{n_{k}} z^{n_{k}}+f_{n_{k}+1} z^{n_{k}+1}\right) \tag{15}
\end{equation*}
$$

where $f_{0}=0, f_{1}=1, f_{n_{1}}=\lambda_{n_{1}}$,

$$
\begin{equation*}
f_{n_{k}}=l_{n_{k}} \mu_{n_{k-1}} \prod_{j=0}^{k-2} \mu_{n_{j}+1}, k \geq 2, \quad f_{n_{k}+1}=l_{n_{k}+1} \prod_{j=0}^{k-1} \mu_{n_{j}+1}, k \geq 1 \tag{16}
\end{equation*}
$$

and $\left(\mu_{n}\right)$ is an arbitrary sequence of positive numbers. Since for the series (15)

$$
D_{l}^{n_{p}} f(z)=\sum_{k=p}^{\infty}\left(\frac{l_{n_{k}-n_{p}}}{l_{n_{k}}} f_{n_{k}} z^{n_{k}-n_{p}}+\frac{l_{n_{k}-n_{p}+1}}{l_{n_{k}+1}} f_{n_{k}+1} z^{n_{k}-n_{p}+1}\right)
$$

then $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ if and only if for all $k \geq p+1$

$$
\frac{l_{n_{k}-n_{p}+1}}{l_{n_{k}+1}} f_{n_{k}+1} \leq \lambda_{n_{k}-n_{p}+1} \frac{l_{1}}{l_{n_{p}+1}} f_{n_{p}+1}, \quad \frac{l_{n_{k}-n_{p}}}{l_{n_{k}}} f_{n_{k}} \leq \lambda_{n_{k}-n_{p}} \frac{l_{1}}{l_{n_{p}+1}} f_{n_{p}+1}
$$

If $l_{1}=1$ then hence it follows that $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \geq 0$ if and only if for all $p \geq 1$

$$
\begin{equation*}
\mu_{n_{p}} \leq \frac{\lambda_{n_{p+1}-n_{p}}}{l_{n_{p+1}-n_{p}}}=\frac{\lambda_{n_{p}}}{l_{n_{p}}} \tag{17}
\end{equation*}
$$

and for all $p \geq 0$

$$
\begin{equation*}
\prod_{j=p}^{k-1} \mu_{n_{j}+1} \leq \frac{\lambda_{n_{k}-n_{p}+1}}{l_{n_{k}-n_{p}+1}}, k \geq p+1, \quad \mu_{n_{k-1}} \prod_{j=p}^{k-2} \mu_{n_{j}+1} \leq \frac{\lambda_{n_{k}-n_{p}}}{l_{n_{k}-n_{p}}}, k \geq p+2 \tag{18}
\end{equation*}
$$

Choosing properly the sequences $\left(l_{k}\right),\left(\lambda_{k}\right)$ and $\left(\mu_{k}\right)$, we can show that the conditions in Ths. 1 and 2 are essential.

For example, if $l_{k}=\lambda_{k}$ and $\mu_{k}=1$ for all $k \geq 1$, then the inequalities (17) and (18) are obvious and $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$.

Besides, if $l_{2 j}=e^{-2 j a}, l_{2 j+1}=e^{-(2 j+1) b}$ and $b>a$, then the condition (6) does not hold,

$$
\lim _{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\}=b
$$

and

$$
\ln R[f]=\lim _{p \rightarrow+\infty} \frac{1}{n_{p}} \ln \frac{1}{l_{n_{p}}}=a
$$

i.e., the inequality (7) does not hold and, thus, the condition (6) in Th. 2 can not be dropped in general.

Now we show that the condition $\lambda_{k-1} \lambda_{k+1} / \lambda_{k}^{2} \geq 1, k \geq 2$, in Th. 1 can not be dropped in general. For this purpose we put $l_{k}=1$ and $\mu_{k}=\lambda_{k}$ for $k \geq 1$, and we choose the sequence $\left(\lambda_{k}\right)$ such that $\lambda_{2 j+1}=1, \lambda_{2(j+1)} \geq \lambda_{2 j}$ for all $j \geq 1$ and $\ln \lambda_{n_{k}}=n_{k}, k \geq 1$. Due to the choice $l \in A^{+}(0)$, the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is nondecreasing and it is easy to verify the fulfillment of conditions (17) and (18), i.e., $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$. Besides,

$$
\underset{p \rightarrow+\infty}{ } \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\}=0
$$

and

$$
\ln R[f]=\underset{p \rightarrow+\infty}{\lim } \frac{1}{n_{p}} \ln \frac{1}{f_{n_{p}}}=\underline{\lim }_{p \rightarrow+\infty} \frac{1}{n_{p}} \ln \frac{1}{\lambda_{n_{p-1}}}=-\frac{1}{2}<0
$$

i.e., the condition (4) holds with $R=1$, but $f \notin A(R)$.

Finally, we show that the condition of nondecreasing for the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ in Th. 1 can not be dropped in general. We choose $\lambda_{k}=e^{k^{2}}, l_{2 k}=$ $e^{-(2 k)^{2}}, l_{2 k+1}=e^{-12(2 k)^{2}}$ and $\mu_{k}=1 / l_{k}$. Then $\lambda_{k-1} \lambda_{k+1} / \lambda_{k}^{2} \geq 1, k \geq 2$, and the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is not nondecreasing. The inequality (17) is obvious and for $k \geq p+1$

$$
\begin{gathered}
\sum_{j=p}^{k-1} \ln \mu_{n_{j}+1}=-\sum_{j=p+1}^{k} \ln l_{n_{j}-n_{j-1}+1}=12 \sum_{j=p+1}^{k}\left(n_{j}-n_{j-1}\right)^{2} \leq 12\left(n_{k}-n_{p}\right)^{2} \\
=-\ln l_{n_{k}-n_{p}+1}<\ln \frac{\lambda_{n_{k}-n_{p}+1}}{l_{n_{k}-n_{p}+1}},
\end{gathered}
$$

that is the first inequality in (18) holds. Further, for $k \geq p+2$ we have

$$
\begin{gathered}
\ln \mu_{n_{k-1}}+\sum_{j=p}^{k-2} \ln \mu_{n_{j}+1}=-\ln l_{n_{k-1}}-\sum_{j=p}^{k-2} \ln l_{n_{j}+1}=n_{k-1}^{2}+12 \sum_{j=p}^{k-2} n_{j}^{2} \\
=4^{k-1}+12 \sum_{j=p}^{k-2} 4^{j}=4^{k-1}+4^{k}-4^{p+1}<2\left(2^{k}-2^{p}\right)^{2}=2\left(n_{k}-n_{p}\right)^{2}=\ln \frac{\lambda_{n_{k}-n_{p}}}{l_{n_{k}-n_{p}}},
\end{gathered}
$$

that is the second inequality in (18) holds and, thus, $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$. Besides,

$$
\begin{gathered}
\quad \varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\} \\
=\lim _{p \rightarrow+\infty} \frac{1}{n_{p}}\left\{12 n_{p}^{2}-\sum_{j=1}^{p}\left(\left(n_{j}-n_{j-1}+1\right)^{2}+12\left(n_{j}-n_{j-1}\right)^{2}\right)\right\} \\
=\lim _{p \rightarrow+\infty} \frac{1}{n_{p}}\left\{12 n_{p}^{2}-13 \sum_{j=1}^{p}\left(n_{j}-n_{j-1}\right)^{2}-2 \sum_{j=1}^{p}\left(n_{j}-n_{j-1}\right)-\sum_{j=1}^{p} 1\right\} \\
=\underset{p \rightarrow+\infty}{ } \frac{1}{2^{p}}\left\{124^{p}-\frac{13}{3}\left(4^{p}-1\right)-2^{p+1}-p\right\}=+\infty
\end{gathered}
$$

and
$\ln R[f]=\lim _{p \rightarrow+\infty} \frac{1}{n_{p}} \ln \frac{1}{f_{n_{p}}}=\underline{\lim }_{p \rightarrow+\infty} \frac{1}{n_{p}}\left\{\ln \frac{1}{l_{n_{p}}}-\ln \frac{1}{l_{n_{p-1}}}-\sum_{j=0}^{p-2} \ln \frac{1}{l_{n_{j}+1}}\right\}$

$$
\left.\left.\begin{array}{c}
\varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}}\left\{n_{p}^{2}-n_{p-1}^{2}\right.
\end{array}\right)-12 \sum_{j=0}^{p-2} n_{j}^{2}\right\}=\varliminf_{p \rightarrow+\infty} \frac{1}{2^{p}}\left\{4^{p}-4^{p-1}-12 \sum_{j=0}^{p-2} 4^{j}\right\},
$$

that is the condition (4) holds with $R=+\infty$, but $f \notin A(\infty)$.

4. Supplements and Remarks

Here we consider the case when the sequence $\lambda \in \Lambda$ satisfies a condition of the form $\lambda \in \Lambda^{*}$.

Proposition 1. Let $\left(n_{p}\right) \in N$, the function $l \in A^{+}(0)$ be such that the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is nondecreasing and $\ln \lambda_{k} \leq a(k-1)$ for all $k \geq 1$ and some $a \in(0,+\infty)$. If $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$, then the estimate

$$
\begin{equation*}
\ln R[f] \geq \underline{\lim }_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}-a \tag{19}
\end{equation*}
$$

is true and sharp.
Indeed, from the conditions $\ln \lambda_{k} \leq a(k-1)$ for all $k \geq 1$ and $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$it follows that $D_{l}^{n_{p}} f \in A_{\lambda^{*}}(0)$ for all $p \in \mathbb{Z}_{+}$, where $\ln \lambda_{k}^{*}=$ $a(k-1)$. It is clear that $\lambda_{k-1}^{*} \lambda_{k+1}^{*}=\left(\lambda_{k}^{*}\right)^{2}$ and, since the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is nondecreasing, the condition (6) of Th. 2 holds. Therefore, from (7) we obtain

$$
\ln R[f]
$$

$$
\begin{aligned}
& \geq \underset{p \rightarrow+\infty}{\lim } \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}-\sum_{j=1}^{p} \ln \lambda_{n_{j}-n_{j-1}+1}^{*}\right\} \\
& \geq \underset{p \rightarrow+\infty}{\lim } \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}-a \sum_{j=1}^{p}\left(n_{j}-n_{j-1}\right)\right\},
\end{aligned}
$$

whence the inequality (19) follows.
For the proof of sharpness of the inequality (19) it is sufficient to consider the series (10) with the coefficients (12) and choose $\lambda_{k}=l_{k}=e^{a(k-1)}$. Then the inequality (13) holds (thus, $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$) and

$$
\ln R[f]=\varliminf_{p \rightarrow+\infty}^{\lim } \frac{1}{n_{p}+1} \ln \frac{1}{f_{n_{p}+1}}=\varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}+1} \ln \frac{1}{l_{n_{p}+1}}=-a
$$

$$
=\varliminf_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}-a
$$

Proposition 1 is proved.
We remark that the condition $\ln \lambda_{k} \leq a(k-1)$ in Prop. 1 can not be replaced in general by the condition $\ln \lambda_{k} \leq a k$ and moreover by the condition $\varlimsup_{k \rightarrow \infty}\left(\ln \lambda_{n}\right) / n=a$. Indeed, let $n_{p}=p+[\sqrt{p}]$ for all $p \geq 0, \lambda_{k}=e^{a k}$, and $l_{k}=e^{b k}$ for all $k \geq 2, b>a$, and $l_{1}=1$. It is easy to verify that for such λ_{k} and l_{k} the inequality (13) holds. Therefore, for the function (10) with the coefficients (12) we have $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$. Besides,

$$
\begin{gathered}
\ln R[f]=\underset{p \rightarrow+\infty}{\lim } \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\} \\
=\underset{p \rightarrow+\infty}{\lim } \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}-\lim _{p \rightarrow \infty} \frac{a\left(n_{p}+p\right)}{n_{p}+1} \\
=\frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}-2 a,
\end{gathered}
$$

that is the inequality (19) does not hold.
We remark that from the proof of Prop. 1 it follows that if the sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ is nondecreasing, $\lambda_{k}=1$ for all $k \geq 1$ and $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$, then

$$
\begin{equation*}
\ln R[f] \geq \underline{\lim }_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\} \tag{20}
\end{equation*}
$$

and moreover the condition $\lambda_{k}=1$ can not be replaced in general by the condition $\ln \lambda_{k}=o(k), k \rightarrow \infty$. However the following proposition is true.

Proposition 2. Let $\left(n_{p}\right) \in N, \ln \lambda_{k}=o(k)$ as $k \rightarrow \infty, l \in A^{+}(0)$ and the sequence $\left(\mu_{k-1} \mu_{k+1} / \mu_{k}^{2}\right)$ is nondecreasing, where $\mu_{k}=l_{k} / \lambda_{k}$. If $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$then the estimate (20) is true and sharp.

Indeed, from the inequality (5) we have

$$
\left|f_{n_{p}+k}\right| \leq\left|f_{1}\right| l_{1}^{p} \lambda_{n_{p}+k} \frac{\mu_{n_{p}+k}}{\mu_{k}} \prod_{j=1}^{p} \frac{1}{\mu_{n_{j}-n_{j-1}+1}}
$$

for all $p \in \mathbb{Z}_{+}$и $k=2, \ldots, n_{p+1}-n_{p}+1$, whence in view of the condition $\ln \lambda_{k}=o(k), k \rightarrow \infty$, we have

$$
\begin{gathered}
\frac{\ln \left|f_{n_{p}+k}\right|}{n_{p}+k} \\
\leq \frac{1}{n_{p}+k}\left\{\ln \mu_{n_{p}+k}-\ln \mu_{k}+p \ln l_{1}+\sum_{j=1}^{p} \ln \frac{1}{\mu_{n_{j}-n_{j-1}+1}}\right\}+o(1), \quad p \rightarrow \infty
\end{gathered}
$$

Since the sequence $\left(\mu_{k-1} \mu_{k+1} / \mu_{k}^{2}\right)$ is nondecreasing, hence as in the proof of Th. 2 we obtain for all $p \in \mathbb{Z}_{+}$and $k=2, \ldots, n_{p+1}-n_{p}+1$

$$
\begin{aligned}
& \frac{1}{n_{p}+k} \ln \frac{1}{\left|f_{n_{p}+k}\right|} \geq \min \left\{\frac{1}{n_{p}+1}\left(\ln \frac{1}{\mu_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{\mu_{n_{j}-n_{j-1}+1}}\right)\right. \\
& \left.\frac{1}{n_{p+1}+1}\left(\ln \frac{1}{\mu_{n_{p+1}+1}}-(p+1) \ln l_{1}-\sum_{j=1}^{p+1} \ln \frac{1}{\mu_{n_{j}-n_{j-1}+1}}\right)\right\}+o(1), \quad p \rightarrow \infty
\end{aligned}
$$

that is

$$
\ln R[f] \geq \underset{p \rightarrow+\infty}{\lim } \frac{1}{n_{p}+1}\left\{\ln \frac{1}{\mu_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{\mu_{n_{j}-n_{j-1}+1}}\right\}
$$

Since $\mu_{k}=l_{k} / \lambda_{k}$ and $\ln \lambda_{k}=o(k), k \rightarrow \infty$, hence we obtain the inequality (20). For the proof of its sharpness it is sufficient to consider the series (10) with the coefficients (12), where $\lambda_{1}=1, \lambda_{k}=k-1$ and $l_{k}=(k-1) e^{k-1}$ for $k \geq 2$. Proposition 2 is proved.

From the proof of Prop. 2 one can see that in Th. A nondecreasing of sequence $\left(l_{k-1} l_{k+1} / l_{k}^{2}\right)$ can be replaced by the following condition: there exists a positive sequence $\left(\nu_{k}\right)$ such that $\ln \nu_{k}=O(k), k \rightarrow \infty$, and $\left(\mu_{k-1} \mu_{k+1} / \mu_{k}^{2}\right)$ does not decrease, where $\mu_{k}=l_{k} \nu_{k}$.

Finally, the following proposition supplements Th. A.

Proposition 3. For all $\lambda \in \Lambda$ and $l \in A^{+}(0)$ there exists $f \in A(0)$ such that $D_{l}^{n} f \in A_{\lambda}(0)$ for all $n \geq 0$ and $R[f]=+\infty$.

Indeed, there exists an increasing to $+\infty$ function φ such that

$$
\max \left\{-\frac{2}{k-1} \ln \frac{1}{l_{k-1}},-\frac{1}{k} \ln \frac{\lambda_{1} \lambda_{k}}{l_{k}}\right\} \leq \varphi(k), \quad k \geq 1
$$

We put $f_{k}=l_{k} \exp \{-(k+1) \varphi(k+1)\}, k \geq 1$. Then

$$
\frac{1}{k} \ln \frac{1}{f_{k}} \geq \frac{1}{k} \ln \frac{1}{l_{k}}+\varphi(k+1) \rightarrow+\infty, \quad k \rightarrow \infty
$$

and for all $n \geq 0$ and $k \geq 1$

$$
\frac{f_{k+n}}{l_{k+n}}=e^{-(k+n+1) \varphi(k+n+1)} \leq e^{-k \varphi(k)} e^{-(n+1) \varphi(n+1)} \leq \frac{l_{1} \lambda_{k}}{l_{k}} \frac{f_{n+1}}{l_{n+1}},
$$

that is $R[f]=+\infty$ and $D_{l}^{n} f \in A_{\lambda}(0)$ for all $n \geq 0$. Proposition 3 is proved.
We remark that in view of Th. A one can not replace $R[f]=+\infty$ by $R[f]=$ $R \in(0,+\infty)$ in the last proposition.

References

[1] A.O. Gelfond and A.F. Leont'ev, On a Generalisation of Fourier Series. - Mat. Sb. 29 (1951), No. 3, 477-500. (Russian)
[2] M.M. Sheremeta, On Power Series with Gelfond-Leont'ev Derivatives Satisfying a Special Condition. - Mat. phys., anal., geom. 3 (1996), 423-445. (Russian)
[3] O.A. Volokh and M.M. Sheremeta, On Formal Power Series with Gelfond-Leont'ev Derivatives Satisfying a Special Condition. - Mat. Stud. 22 (2004), No. 1, 87-93. (Ukraine)

